GENIEGenerator
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Private Member Functions | Private Attributes | List of all members
genie::SmithMonizQELCCPXSec Class Reference

Computes neutrino-nucleon(nucleus) QELCC differential cross section. Is a concrete implementation of the XSecAlgorithmI interface. More...

#include <SmithMonizQELCCPXSec.h>

Inheritance diagram for genie::SmithMonizQELCCPXSec:
Inheritance graph
[legend]
Collaboration diagram for genie::SmithMonizQELCCPXSec:
Collaboration graph
[legend]

Public Member Functions

 SmithMonizQELCCPXSec ()
 
 SmithMonizQELCCPXSec (string config)
 
virtual ~SmithMonizQELCCPXSec ()
 
double XSec (const Interaction *i, KinePhaseSpace_t kps) const
 Compute the cross section for the input interaction. More...
 
double Integral (const Interaction *i) const
 
bool ValidProcess (const Interaction *i) const
 Can this cross section algorithm handle the input process? More...
 
void Configure (const Registry &config)
 
void Configure (string param_set)
 
- Public Member Functions inherited from genie::XSecAlgorithmI
virtual ~XSecAlgorithmI ()
 
virtual bool ValidKinematics (const Interaction *i) const
 Is the input kinematical point a physically allowed one? More...
 
- Public Member Functions inherited from genie::Algorithm
virtual ~Algorithm ()
 
virtual void FindConfig (void)
 
virtual const RegistryGetConfig (void) const
 
RegistryGetOwnedConfig (void)
 
virtual const AlgIdId (void) const
 Get algorithm ID. More...
 
virtual AlgStatus_t GetStatus (void) const
 Get algorithm status. More...
 
virtual bool AllowReconfig (void) const
 
virtual AlgCmp_t Compare (const Algorithm *alg) const
 Compare with input algorithm. More...
 
virtual void SetId (const AlgId &id)
 Set algorithm ID. More...
 
virtual void SetId (string name, string config)
 
const AlgorithmSubAlg (const RgKey &registry_key) const
 
void AdoptConfig (void)
 
void AdoptSubstructure (void)
 
virtual void Print (ostream &stream) const
 Print algorithm info. More...
 

Private Member Functions

void LoadConfig (void)
 
double d3sQES_dQ2dvdkF_SM (const Interaction *interaction) const
 
double dsQES_dQ2_SM (const Interaction *interaction) const
 
double d2sQES_dQ2dv_SM (const Interaction *i) const
 

Private Attributes

SmithMonizUtilssm_utils
 
double fXSecScale
 external xsec scaling factor More...
 
QELFormFactors fFormFactors
 
const QELFormFactorsModelIfFormFactorsModel
 
const XSecIntegratorIfXSecIntegrator
 
double fVud2
 |Vud|^2(square of magnitude ud-element of CKM-matrix) More...
 

Additional Inherited Members

- Static Public Member Functions inherited from genie::Algorithm
static string BuildParamVectKey (const std::string &comm_name, unsigned int i)
 
static string BuildParamVectSizeKey (const std::string &comm_name)
 
static string BuildParamMatKey (const std::string &comm_name, unsigned int i, unsigned int j)
 
static string BuildParamMatRowSizeKey (const std::string &comm_name)
 
static string BuildParamMatColSizeKey (const std::string &comm_name)
 
- Protected Member Functions inherited from genie::XSecAlgorithmI
 XSecAlgorithmI ()
 
 XSecAlgorithmI (string name)
 
 XSecAlgorithmI (string name, string config)
 
- Protected Member Functions inherited from genie::Algorithm
 Algorithm ()
 
 Algorithm (string name)
 
 Algorithm (string name, string config)
 
void Initialize (void)
 
void DeleteConfig (void)
 
void DeleteSubstructure (void)
 
RegistryExtractLocalConfig (const Registry &in) const
 
RegistryExtractLowerConfig (const Registry &in, const string &alg_key) const
 Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key. More...
 
template<class T >
bool GetParam (const RgKey &name, T &p, bool is_top_call=true) const
 
template<class T >
bool GetParamDef (const RgKey &name, T &p, const T &def) const
 
template<class T >
int GetParamVect (const std::string &comm_name, std::vector< T > &v, bool is_top_call=true) const
 Handle to load vectors of parameters. More...
 
int GetParamVectKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
template<class T >
int GetParamMat (const std::string &comm_name, TMatrixT< T > &mat, bool is_top_call=true) const
 Handle to load matrix of parameters. More...
 
template<class T >
int GetParamMatSym (const std::string &comm_name, TMatrixTSym< T > &mat, bool is_top_call=true) const
 
int GetParamMatKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
int AddTopRegistry (Registry *rp, bool owns=true)
 add registry with top priority, also update ownership More...
 
int AddLowRegistry (Registry *rp, bool owns=true)
 add registry with lowest priority, also update ownership More...
 
int MergeTopRegistry (const Registry &r)
 
int AddTopRegisties (const vector< Registry * > &rs, bool owns=false)
 Add registries with top priority, also udated Ownerships. More...
 
- Protected Attributes inherited from genie::Algorithm
bool fAllowReconfig
 
bool fOwnsSubstruc
 true if it owns its substructure (sub-algs,...) More...
 
AlgId fID
 algorithm name and configuration set More...
 
vector< Registry * > fConfVect
 
vector< bool > fOwnerships
 ownership for every registry in fConfVect More...
 
AlgStatus_t fStatus
 algorithm execution status More...
 
AlgMapfOwnedSubAlgMp
 local pool for owned sub-algs (taken out of the factory pool) More...
 

Detailed Description

Computes neutrino-nucleon(nucleus) QELCC differential cross section. Is a concrete implementation of the XSecAlgorithmI interface.

References:
[1] R.A.Smith and E.J.Moniz, Nuclear Physics B43, (1972) 605-622
[2] K.S. Kuzmin, V.V. Lyubushkin, V.A.Naumov, Eur. Phys. J. C54, (2008) 517-538
Author
Igor Kakorin kakor.nosp@m.in@j.nosp@m.inr.r.nosp@m.u Joint Institute for Nuclear Research
adapted from fortran code provided by:
Konstantin Kuzmin kkuzm.nosp@m.in@t.nosp@m.heor..nosp@m.jinr.nosp@m..ru Joint Institute for Nuclear Research
Vladimir Lyubushkin Joint Institute for Nuclear Research
Vadim Naumov vnaum.nosp@m.ov@t.nosp@m.heor..nosp@m.jinr.nosp@m..ru Joint Institute for Nuclear Research
based on code of:
Costas Andreopoulos <c.andreopoulos cern.ch> University of Liverpool
Created:
May 05, 2017
License:
Copyright (c) 2003-2024, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org

Definition at line 52 of file SmithMonizQELCCPXSec.h.

Constructor & Destructor Documentation

SmithMonizQELCCPXSec::SmithMonizQELCCPXSec ( )

Definition at line 55 of file SmithMonizQELCCPXSec.cxx.

55  :
56 XSecAlgorithmI("genie::SmithMonizQELCCPXSec")
57 {
58 
59 }
SmithMonizQELCCPXSec::SmithMonizQELCCPXSec ( string  config)

Definition at line 61 of file SmithMonizQELCCPXSec.cxx.

61  :
62 XSecAlgorithmI("genie::SmithMonizQELCCPXSec", config)
63 {
64 
65 }
SmithMonizQELCCPXSec::~SmithMonizQELCCPXSec ( )
virtual

Definition at line 67 of file SmithMonizQELCCPXSec.cxx.

68 {
69 
70 }

Member Function Documentation

void SmithMonizQELCCPXSec::Configure ( const Registry config)
virtual

Configure the algorithm with an external registry The registry is merged with the top level registry if it is owned, Otherwise a copy of it is added with the highest priority

Reimplemented from genie::Algorithm.

Definition at line 154 of file SmithMonizQELCCPXSec.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

155 {
156  Algorithm::Configure(config);
157  this->LoadConfig();
158 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
void SmithMonizQELCCPXSec::Configure ( string  config)
virtual

Configure the algorithm from the AlgoConfigPool based on param_set string given in input An algorithm contains a vector of registries coming from different xml configuration files, which are loaded according a very precise prioriy This methods will load a number registries in order of priority: 1) "Tunable" parameter set from CommonParametes. This is loaded with the highest prioriry and it is designed to be used for tuning procedure Usage not expected from the user. 2) For every string defined in "CommonParame" the corresponding parameter set will be loaded from CommonParameter.xml 3) parameter set specified by the config string and defined in the xml file of the algorithm 4) if config is not "Default" also the Default parameter set from the same xml file will be loaded Effectively this avoids the repetion of a parameter when it is not changed in the requested configuration

Reimplemented from genie::Algorithm.

Definition at line 160 of file SmithMonizQELCCPXSec.cxx.

References genie::Algorithm::Configure(), LoadConfig(), and genie::Registry::Set().

161 {
162  Algorithm::Configure(config);
163 
164  Registry r( "SmithMonizQELCCPXSec_specific", false ) ;
165  r.Set("sm_utils_algo", RgAlg("genie::SmithMonizUtils","Default") ) ;
166 
168 
169  this->LoadConfig();
170 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
A registry. Provides the container for algorithm configuration parameters.
Definition: Registry.h:65
double SmithMonizQELCCPXSec::d2sQES_dQ2dv_SM ( const Interaction i) const
private

Definition at line 311 of file SmithMonizQELCCPXSec.cxx.

References d3sQES_dQ2dvdkF_SM(), fXSecScale, genie::Kinematics::GetKV(), genie::Target::HitNucPdg(), genie::pdg::IsProton(), genie::SmithMonizUtils::kFQES_SM_lim(), genie::kKVPn, genie::kKVQ2, genie::kKVv, genie::Range1D_t::max, genie::Range1D_t::min, genie::Target::N(), genie::utils::kinematics::Q2(), genie::SmithMonizUtils::SetInteraction(), genie::Kinematics::SetKV(), sm_utils, genie::InitialState::Tgt(), genie::utils::kinematics::W(), and genie::Target::Z().

Referenced by XSec().

312 {
313  Kinematics * kinematics = interaction -> KinePtr();
314  sm_utils->SetInteraction(interaction);
315  const InitialState & init_state = interaction -> InitState();
316  // Assuming that the energy is greater of threshold.
317  // See condition in method SmithMonizQELCCXSec::Integrate
318  // interaction->InitState().ProbeE(kRfLab)<sm_utils->E_nu_thr_SM()
319  // of SmithMonizQELCCXSec.cxx
320  // if (E_nu < sm_utils->E_nu_thr_SM()) return 0;
321  // Assuming that variables Q2 and \nu are within allowable kinematic region
322  // which are specified in method: genie::utils::gsl::d2Xsec_dQ2dv::DoEval
323  double Q2 = kinematics->GetKV(kKVQ2);
324  double v = kinematics->GetKV(kKVv);
325  Range1D_t rkF = sm_utils->kFQES_SM_lim(Q2,v);
326 
327  const Target & target = init_state.Tgt();
328 
329 
330 
331 // Gaussian quadratures integrate over Fermi momentum
332  double R[48]= { 0.16276744849602969579e-1,0.48812985136049731112e-1,
333  0.81297495464425558994e-1,1.13695850110665920911e-1,
334  1.45973714654896941989e-1,1.78096882367618602759e-1,
335  2.10031310460567203603e-1,2.41743156163840012328e-1,
336  2.73198812591049141487e-1,3.04364944354496353024e-1,
337  3.35208522892625422616e-1,3.65696861472313635031e-1,
338  3.95797649828908603285e-1,4.25478988407300545365e-1,
339  4.54709422167743008636e-1,4.83457973920596359768e-1,
340  5.11694177154667673586e-1,5.39388108324357436227e-1,
341  5.66510418561397168404e-1,5.93032364777572080684e-1,
342  6.18925840125468570386e-1,6.44163403784967106798e-1,
343  6.68718310043916153953e-1,6.92564536642171561344e-1,
344  7.15676812348967626225e-1,7.38030643744400132851e-1,
345  7.59602341176647498703e-1,7.80369043867433217604e-1,
346  8.00308744139140817229e-1,8.19400310737931675539e-1,
347  8.37623511228187121494e-1,8.54959033434601455463e-1,
348  8.71388505909296502874e-1,8.86894517402420416057e-1,
349  9.01460635315852341319e-1,9.15071423120898074206e-1,
350  9.27712456722308690965e-1,9.39370339752755216932e-1,
351  9.50032717784437635756e-1,9.59688291448742539300e-1,
352  9.68326828463264212174e-1,9.75939174585136466453e-1,
353  9.82517263563014677447e-1,9.88054126329623799481e-1,
354  9.92543900323762624572e-1,9.95981842987209290650e-1,
355  9.98364375863181677724e-1,9.99689503883230766828e-1};
356 
357  double W[48]= { 0.00796792065552012429e-1,0.01853960788946921732e-1,
358  0.02910731817934946408e-1,0.03964554338444686674e-1,
359  0.05014202742927517693e-1,0.06058545504235961683e-1,
360  0.07096470791153865269e-1,0.08126876925698759217e-1,
361  0.09148671230783386633e-1,0.10160770535008415758e-1,
362  0.11162102099838498591e-1,0.12151604671088319635e-1,
363  0.13128229566961572637e-1,0.14090941772314860916e-1,
364  0.15038721026994938006e-1,0.15970562902562291381e-1,
365  0.16885479864245172450e-1,0.17782502316045260838e-1,
366  0.18660679627411467395e-1,0.19519081140145022410e-1,
367  0.20356797154333324595e-1,0.21172939892191298988e-1,
368  0.21966644438744349195e-1,0.22737069658329374001e-1,
369  0.23483399085926219842e-1,0.24204841792364691282e-1,
370  0.24900633222483610288e-1,0.25570036005349361499e-1,
371  0.26212340735672413913e-1,0.26826866725591762198e-1,
372  0.27412962726029242823e-1,0.27970007616848334440e-1,
373  0.28497411065085385646e-1,0.28994614150555236543e-1,
374  0.29461089958167905970e-1,0.29896344136328385984e-1,
375  0.30299915420827593794e-1,0.30671376123669149014e-1,
376  0.31010332586313837423e-1,0.31316425596861355813e-1,
377  0.31589330770727168558e-1,0.31828758894411006535e-1,
378  0.32034456231992663218e-1,0.32206204794030250669e-1,
379  0.32343822568575928429e-1,0.32447163714064269364e-1,
380  0.32516118713868835987e-1,0.32550614492363166242e-1};
381 
382  double Sum = 0;
383  for(int i = 0;i<48;i++)
384  {
385  double kF = 0.5*(-R[i]*(rkF.max-rkF.min)+rkF.min+rkF.max);
386  kinematics->SetKV(kKVPn, kF);
387  Sum+=d3sQES_dQ2dvdkF_SM(interaction)*W[47-i];
388  kF = 0.5*(R[i]*(rkF.max-rkF.min)+rkF.min+rkF.max);
389  kinematics->SetKV(kKVPn, kF);
390  Sum+=d3sQES_dQ2dvdkF_SM(interaction)*W[47-i];
391  }
392 
393  double xsec = 0.5*Sum*(rkF.max-rkF.min);
394 
395  int nucpdgc = target.HitNucPdg();
396  int NNucl = (pdg::IsProton(nucpdgc)) ? target.Z() : target.N();
397 
398  xsec *= NNucl; // nuclear xsec
399 
400  // Apply given scaling factor
401  xsec *= fXSecScale;
402 
403  return xsec;
404 
405 }
void SetInteraction(const Interaction *i)
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
int HitNucPdg(void) const
Definition: Target.cxx:304
double fXSecScale
external xsec scaling factor
A simple [min,max] interval for doubles.
Definition: Range1.h:42
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
double d3sQES_dQ2dvdkF_SM(const Interaction *interaction) const
double W(const Interaction *const i)
Definition: KineUtils.cxx:1101
Range1D_t kFQES_SM_lim(double nu, double Q2) const
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:40
int Z(void) const
Definition: Target.h:68
double GetKV(KineVar_t kv) const
Definition: Kinematics.cxx:323
void SetKV(KineVar_t kv, double value)
Definition: Kinematics.cxx:335
double max
Definition: Range1.h:53
int N(void) const
Definition: Target.h:69
double min
Definition: Range1.h:52
const Target & Tgt(void) const
Definition: InitialState.h:66
Initial State information.
Definition: InitialState.h:48
double SmithMonizQELCCPXSec::d3sQES_dQ2dvdkF_SM ( const Interaction interaction) const
private

Definition at line 199 of file SmithMonizQELCCPXSec.cxx.

References genie::QELFormFactors::Calculate(), genie::QELFormFactors::F1V(), genie::QELFormFactors::FA(), fFormFactors, genie::PDGLibrary::Find(), genie::QELFormFactors::Fp(), genie::Interaction::FSPrimLepton(), fVud2, genie::SmithMonizUtils::GetBindingEnergy(), genie::SmithMonizUtils::GetFermiMomentum(), genie::Kinematics::GetKV(), genie::Target::HitNucMass(), genie::Target::HitNucPdg(), genie::PDGLibrary::Instance(), genie::pdg::IsNeutrino(), genie::constants::kGF2, genie::kKVPn, genie::kKVQ2, genie::kKVv, genie::constants::kMw2, genie::constants::kNucleonMass, genie::constants::kNucleonMass2, genie::constants::kPi, genie::kRfLab, genie::utils::res::Mass(), genie::Target::Mass(), genie::InitialState::ProbeE(), genie::InitialState::ProbePdg(), genie::utils::kinematics::Q2(), genie::SmithMonizUtils::rho(), genie::SmithMonizUtils::SetInteraction(), sm_utils, genie::pdg::SwitchProtonNeutron(), genie::InitialState::Tgt(), and genie::QELFormFactors::xiF2V().

Referenced by d2sQES_dQ2dv_SM(), and XSec().

200 {
201  // Assuming that variables E_nu, Q2, \nu and kF are within allowable kinematic region
202  // which are specified in methods: genie::utils::gsl::d2Xsec_dQ2dv::DoEval and QELEventGeneratorSM::ProcessEventRecord
203  // Get kinematics & init-state parameters
204  const Kinematics & kinematics = interaction -> Kine();
205  sm_utils->SetInteraction(interaction);
206  const InitialState & init_state = interaction -> InitState();
207  const Target & target = init_state.Tgt();
208  double E_nu = init_state.ProbeE(kRfLab);
209  double Q2 = kinematics.GetKV(kKVQ2);
210  double v = kinematics.GetKV(kKVv);
211  double kF = kinematics.GetKV(kKVPn);
212  double kkF = kF*kF;
213  int nucl_pdg_ini = target.HitNucPdg();
214  int nucl_pdg_fin = genie::pdg::SwitchProtonNeutron(nucl_pdg_ini);
215 
216  PDGLibrary * pdglib = PDGLibrary::Instance();
217  TParticlePDG * nucl_fin = pdglib->Find( nucl_pdg_fin );
218 
219  double E_BIN = sm_utils->GetBindingEnergy();
220  double m_ini = target.HitNucMass();
221  double mm_ini = m_ini*m_ini;
222  double m_fin = nucl_fin -> Mass(); // Mass of final hadron or hadron system (GeV)
223  double mm_fin = m_fin*m_fin;
224  double m_tar = target.Mass(); // Mass of target nucleus (GeV)
225  double mm_tar = m_tar*m_tar;
226 
227  // One of the xsec terms changes sign for antineutrinos
228  bool is_neutrino = pdg::IsNeutrino(init_state.ProbePdg());
229  int n_NT = (is_neutrino) ? +1 : -1;
230 
231  double E_p = TMath::Sqrt(mm_ini+kkF)-E_BIN;
232  //|\vec{q}|
233  double qqv = v*v+Q2;
234  double qv = TMath::Sqrt(qqv);
235  double cosT_p = ((v-E_BIN)*(2*E_p+v+E_BIN)-qqv+mm_ini-mm_fin)/(2*kF*qv); //\cos\theta_p
236  if (cosT_p < -1.0 || cosT_p > 1.0 )
237  {
238  return 0.0;
239  }
240 
241  double pF = TMath::Sqrt(kkF+(2*kF*qv)*cosT_p+qqv);
242 
243  double E_lep = E_nu-v;
244  double m_lep = interaction->FSPrimLepton()->Mass();
245  double mm_lep = m_lep*m_lep;
246  if (E_lep < m_lep)
247  {
248  return 0.0;
249  }
250  double P_lep = TMath::Sqrt(E_lep*E_lep-mm_lep);
251  double k6 = (Q2+mm_lep)/(2*E_nu);
252  double cosT_lep= (E_lep-k6)/P_lep;
253  if (cosT_lep < -1.0 || cosT_lep > 1.0 ) return 0.0;
254 
255  double cosT_k = (v+k6)/qv;
256  if (cosT_k < -1.0 || cosT_k > 1.0 ) return 0.0;
257 
258  double b2_flux = (E_p-kF*cosT_k*cosT_p)*(E_p-kF*cosT_k*cosT_p);
259  double c2_flux = kkF*(1-cosT_p*cosT_p)*(1-cosT_k*cosT_k);
260 
261  double k1 = fVud2*kNucleonMass2*kPi;
262  double k2 = mm_lep/(2*mm_tar);
263  double k7 = P_lep*cosT_lep;
264 
265  double P_Fermi = sm_utils->GetFermiMomentum();
266  double FV_SM = 4.0*TMath::Pi()/3*TMath::Power(P_Fermi, 3);
267  double factor = k1*(m_tar*kF/(FV_SM*qv*TMath::Sqrt(b2_flux-c2_flux)))*SmithMonizUtils::rho(P_Fermi, 0.0, kF)*(1-SmithMonizUtils::rho(P_Fermi, 0.01, pF));
268 
269  double a2 = kkF/kNucleonMass2;
270  double a3 = a2*cosT_p*cosT_p;
271  double a6 = kF*cosT_p/kNucleonMass;
272  double a7 = E_p/kNucleonMass;
273  double a4 = a7*a7;
274  double a5 = 2*a7*a6;
275 
276  double k3 = v/qv;
277  double k4 = (3*a3-a2)/qqv;
278  double k5 = (a7-a6*k3)*m_tar/kNucleonMass;
279 
280  // Calculate the QEL form factors
281  fFormFactors.Calculate(interaction);
282  double F_V = fFormFactors.F1V();
283  double F_M = fFormFactors.xiF2V();
284  double F_A = fFormFactors.FA();
285  double F_P = fFormFactors.Fp();
286  double FF_V = F_V*F_V;
287  double FF_M = F_M*F_M;
288  double FF_A = F_A*F_A;
289 
290  double t = Q2/(4*kNucleonMass2);
291  double W_1 = FF_A*(1+t)+t*(F_V+F_M)*(F_V+F_M); //Ref.[1], \tilde{T}_1
292  double W_2 = FF_A+FF_V+t*FF_M; //Ref.[1], \tilde{T}_2
293  double W_3 =-2*F_A*(F_V+F_M); //Ref.[1], \tilde{T}_8
294  double W_4 =-0.5*F_V*F_M-F_A*F_P+t*F_P*F_P-0.25*(1-t)*FF_M; //Ref.[1], \tilde{T}_\alpha
295  double W_5 = FF_V+t*FF_M+FF_A;
296 
297  double T_1 = 1.0*W_1+(a2-a3)*0.5*W_2; //Ref.[1], W_1
298  double T_2 = ((a2-a3)*Q2/(2*qqv)+a4-k3*(a5-k3*a3))*W_2; //Ref.[1], W_2
299  double T_3 = k5*W_3; //Ref.[1], W_8
300  double T_4 = mm_tar*(0.5*W_2*k4+1.0*W_4/kNucleonMass2+a6*W_5/(kNucleonMass*qv)); //Ref.[1], W_\alpha
301  double T_5 = k5*W_5+m_tar*(a5/qv-v*k4)*W_2;
302 
303  double xsec = kGF2*factor*((E_lep-k7)*(T_1+k2*T_4)/m_tar+(E_lep+k7)*T_2/(2*m_tar)
304  +n_NT*T_3*((E_nu+E_lep)*(E_lep-k7)/(2*mm_tar)-k2)-k2*T_5)
305  *(kMw2/(kMw2+Q2))*(kMw2/(kMw2+Q2))/E_nu/kPi;
306  return xsec;
307 
308 
309 }
void SetInteraction(const Interaction *i)
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:110
static const double kNucleonMass
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
int HitNucPdg(void) const
Definition: Target.cxx:304
double HitNucMass(void) const
Definition: Target.cxx:233
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
int SwitchProtonNeutron(int pdgc)
Definition: PDGUtils.cxx:356
double Mass(Resonance_t res)
resonance mass (GeV)
double Mass(void) const
Definition: Target.cxx:224
double GetBindingEnergy(void) const
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:40
int ProbePdg(void) const
Definition: InitialState.h:64
double GetKV(KineVar_t kv) const
Definition: Kinematics.cxx:323
static const double kNucleonMass2
double xiF2V(void) const
Get the computed form factor xi*F2V.
TParticlePDG * FSPrimLepton(void) const
final state primary lepton
void Calculate(const Interaction *interaction)
Compute the form factors for the input interaction using the attached model.
static PDGLibrary * Instance(void)
Definition: PDGLibrary.cxx:68
static double rho(double P_Fermi, double T_Fermi, double p)
Singleton class to load &amp; serve a TDatabasePDG.
Definition: PDGLibrary.h:35
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
double F1V(void) const
Get the computed form factor F1V.
TParticlePDG * Find(int pdgc, bool must_exist=true)
Definition: PDGLibrary.cxx:86
const Target & Tgt(void) const
Definition: InitialState.h:66
double Fp(void) const
Get the computed form factor Fp.
double ProbeE(RefFrame_t rf) const
double FA(void) const
Get the computed form factor FA.
double GetFermiMomentum(void) const
Initial State information.
Definition: InitialState.h:48
double SmithMonizQELCCPXSec::dsQES_dQ2_SM ( const Interaction interaction) const
private

Definition at line 407 of file SmithMonizQELCCPXSec.cxx.

References genie::Target::A(), genie::units::A, genie::QELFormFactors::Calculate(), genie::QELFormFactors::F1V(), genie::QELFormFactors::FA(), fFormFactors, genie::QELFormFactors::Fp(), genie::Interaction::FSPrimLepton(), fVud2, fXSecScale, genie::Target::HitNucMass(), genie::Target::HitNucPdg(), genie::pdg::IsAntiNuE(), genie::pdg::IsNeutrino(), genie::Target::IsNeutron(), genie::pdg::IsNuE(), genie::Target::IsProton(), genie::pdg::IsProton(), genie::constants::kAem, genie::constants::kElectronMass, genie::constants::kGF2, genie::constants::kMw2, genie::constants::kNeutronMass2, genie::constants::kPi, genie::constants::kProtonMass, genie::constants::kProtonMass2, genie::kRfHitNucRest, genie::Target::N(), genie::InitialState::ProbeE(), genie::InitialState::ProbePdg(), genie::Kinematics::q2(), genie::utils::kinematics::Q2(), genie::InitialState::Tgt(), genie::QELFormFactors::xiF2V(), and genie::Target::Z().

Referenced by XSec().

408 {
409  // Get kinematics & init-state parameters
410  const Kinematics & kinematics = interaction -> Kine();
411  const InitialState & init_state = interaction -> InitState();
412  const Target & target = init_state.Tgt();
413 
414  double E = init_state.ProbeE(kRfHitNucRest);
415  double E2 = TMath::Power(E,2);
416  double ml = interaction->FSPrimLepton()->Mass();
417  double M = target.HitNucMass();
418  double q2 = kinematics.q2();
419 
420  // One of the xsec terms changes sign for antineutrinos
421  bool is_neutrino = pdg::IsNeutrino(init_state.ProbePdg());
422  int sign = (is_neutrino) ? -1 : 1;
423 
424  // Calculate the QEL form factors
425  fFormFactors.Calculate(interaction);
426 
427  double F1V = fFormFactors.F1V();
428  double xiF2V = fFormFactors.xiF2V();
429  double FA = fFormFactors.FA();
430  double Fp = fFormFactors.Fp();
431 
432 
433  // Calculate auxiliary parameters
434  double ml2 = TMath::Power(ml, 2);
435  double M2 = TMath::Power(M, 2);
436  double M4 = TMath::Power(M2, 2);
437  double FA2 = TMath::Power(FA, 2);
438  double Fp2 = TMath::Power(Fp, 2);
439  double F1V2 = TMath::Power(F1V, 2);
440  double xiF2V2 = TMath::Power(xiF2V, 2);
441  double Gfactor = M2*kGF2*fVud2*(kMw2/(kMw2-q2))*(kMw2/(kMw2-q2)) / (8*kPi*E2);
442  double s_u = 4*E*M + q2 - ml2;
443  double q2_M2 = q2/M2;
444 
445  // Compute free nucleon differential cross section
446  double A = (0.25*(ml2-q2)/M2) * (
447  (4-q2_M2)*FA2 - (4+q2_M2)*F1V2 - q2_M2*xiF2V2*(1+0.25*q2_M2)
448  -4*q2_M2*F1V*xiF2V - (ml2/M2)*(
449  (F1V2+xiF2V2+2*F1V*xiF2V)+(FA2+4*Fp2+4*FA*Fp)+(q2_M2-4)*Fp2));
450  double B = -1 * q2_M2 * FA*(F1V+xiF2V);
451  double C = 0.25*(FA2 + F1V2 - 0.25*q2_M2*xiF2V2);
452 
453  double xsec = Gfactor * (A + sign*B*s_u/M2 + C*s_u*s_u/M4);
454 
455  // Apply given scaling factor
456  xsec *= fXSecScale;
457 
458  // Pauli-correction factor for deuterium, we formally apply this factor for He-3 and tritium,
459  // because RFG model is not applicable for them.
460  if (1<target.A() && target.A()<4)
461  {
462  double Q2 = -q2;
463  double fQES_Pauli = 1.0-0.529*TMath::Exp((Q2*(228.0-531.0*Q2)-48.0)*Q2);
464  xsec *= fQES_Pauli;
465  }
466 
467  int nucpdgc = target.HitNucPdg();
468  int NNucl = (pdg::IsProton(nucpdgc)) ? target.Z() : target.N();
469 
470  xsec *= NNucl; // nuclear xsec
471 
472  // Apply radiative correction to the cross section for IBD processes
473  // Refs:
474  // 1) I.S. Towner, Phys. Rev. C 58 (1998) 1288;
475  // 2) J.F. Beacom, S.J. Parke, Phys. Rev. D 64 (2001) 091302;
476  // 3) A. Kurylov, M.J. Ramsey-Musolf, P. Vogel, Phys. Rev. C 65 (2002) 055501;
477  // 4) A. Kurylov, M.J. Ramsey-Musolf, P. Vogel, Phys. Rev. C 67 (2003) 035502.
478  double rc = 1.0;
479  if ( (target.IsProton() && pdg::IsAntiNuE(init_state.ProbePdg())) || (target.IsNeutron() && pdg::IsNuE(init_state.ProbePdg()) ))
480  {
481  const double mp = kProtonMass;
482  const double mp2 = kProtonMass2;
483  const double mn2 = kNeutronMass2;
484  const double Ee = E + ( (q2 - mn2 + mp2) / 2.0 / mp );
485  assert(Ee > 0.0); // must be non-zero and positive
486  rc = 6.0 + (1.5 * TMath::Log(kProtonMass / 2.0 / Ee));
487  rc += 1.2 * TMath::Power((kElectronMass / Ee), 1.5);
488  rc *= kAem / kPi;
489  rc += 1.0;
490  }
491 
492  xsec *= rc;
493  return xsec;
494 }
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:110
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
int HitNucPdg(void) const
Definition: Target.cxx:304
bool IsNeutron(void) const
Definition: Target.cxx:267
double fXSecScale
external xsec scaling factor
int A(void) const
Definition: Target.h:70
double HitNucMass(void) const
Definition: Target.cxx:233
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
bool IsNuE(int pdgc)
Definition: PDGUtils.cxx:158
static const double kElectronMass
double q2(bool selected=false) const
Definition: Kinematics.cxx:141
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
static constexpr double A
Definition: Units.h:74
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:40
int ProbePdg(void) const
Definition: InitialState.h:64
int Z(void) const
Definition: Target.h:68
double xiF2V(void) const
Get the computed form factor xi*F2V.
TParticlePDG * FSPrimLepton(void) const
final state primary lepton
void Calculate(const Interaction *interaction)
Compute the form factors for the input interaction using the attached model.
int N(void) const
Definition: Target.h:69
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
double F1V(void) const
Get the computed form factor F1V.
const Target & Tgt(void) const
Definition: InitialState.h:66
static const double kProtonMass2
double Fp(void) const
Get the computed form factor Fp.
static const double kNeutronMass2
bool IsProton(void) const
Definition: Target.cxx:262
double ProbeE(RefFrame_t rf) const
double FA(void) const
Get the computed form factor FA.
bool IsAntiNuE(int pdgc)
Definition: PDGUtils.cxx:173
Initial State information.
Definition: InitialState.h:48
double SmithMonizQELCCPXSec::Integral ( const Interaction i) const
virtual

Integrate the model over the kinematic phase space available to the input interaction (kinematical cuts can be included)

Implements genie::XSecAlgorithmI.

Definition at line 125 of file SmithMonizQELCCPXSec.cxx.

References fXSecIntegrator, and genie::XSecIntegratorI::Integrate().

126 {
127  return fXSecIntegrator->Integrate(this,in);
128 
129 }
const XSecIntegratorI * fXSecIntegrator
virtual double Integrate(const XSecAlgorithmI *model, const Interaction *interaction) const =0
void SmithMonizQELCCPXSec::LoadConfig ( void  )
private

Definition at line 172 of file SmithMonizQELCCPXSec.cxx.

References fFormFactors, fFormFactorsModel, fVud2, fXSecIntegrator, fXSecScale, genie::Algorithm::GetParam(), genie::Algorithm::GetParamDef(), genie::QELFormFactors::SetModel(), sm_utils, and genie::Algorithm::SubAlg().

Referenced by Configure().

173 {
174 
175  // Cross section scaling factor
176  GetParamDef( "QEL-CC-XSecScale", fXSecScale, 1. ) ;
177 
178  double Vud;
179  GetParam( "CKM-Vud", Vud ) ;
180  fVud2 = TMath::Power( Vud, 2 );
181 
182  // load QEL form factors model
183  fFormFactorsModel = dynamic_cast<const QELFormFactorsModelI *> (
184  this->SubAlg("FormFactorsAlg"));
185  assert(fFormFactorsModel);
186  fFormFactors.SetModel(fFormFactorsModel); // <-- attach algorithm
187 
188  // load XSec Integrators
190  dynamic_cast<const XSecIntegratorI *> (this->SubAlg("XSec-Integrator"));
191  assert(fXSecIntegrator);
192 
193  sm_utils = const_cast<genie::SmithMonizUtils *>(
194  dynamic_cast<const genie::SmithMonizUtils *>(
195  this -> SubAlg( "sm_utils_algo" ) ) ) ;
196 
197 }
Cross Section Integrator Interface.
double fXSecScale
external xsec scaling factor
void SetModel(const QELFormFactorsModelI *model)
Attach an algorithm.
Pure abstract base class. Defines the QELFormFactorsModelI interface to be implemented by any algorit...
const QELFormFactorsModelI * fFormFactorsModel
const XSecIntegratorI * fXSecIntegrator
Contains auxiliary functions for Smith-Moniz model. .
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
bool GetParamDef(const RgKey &name, T &p, const T &def) const
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:345
bool SmithMonizQELCCPXSec::ValidProcess ( const Interaction i) const
virtual

Can this cross section algorithm handle the input process?

Implements genie::XSecAlgorithmI.

Definition at line 131 of file SmithMonizQELCCPXSec.cxx.

References genie::Target::HitNucPdg(), genie::Interaction::InitState(), genie::pdg::IsAntiNeutrino(), genie::pdg::IsNeutrino(), genie::pdg::IsNeutron(), genie::pdg::IsProton(), genie::ProcessInfo::IsQuasiElastic(), genie::ProcessInfo::IsWeakCC(), genie::kISkipProcessChk, genie::InitialState::ProbePdg(), genie::Interaction::ProcInfo(), and genie::InitialState::Tgt().

Referenced by XSec().

132 {
133  if(interaction->TestBit(kISkipProcessChk)) return true;
134 
135  const InitialState & init_state = interaction->InitState();
136  const ProcessInfo & proc_info = interaction->ProcInfo();
137 
138  if(!proc_info.IsQuasiElastic()) return false;
139 
140  int nuc = init_state.Tgt().HitNucPdg();
141  int nu = init_state.ProbePdg();
142 
143  bool isP = pdg::IsProton(nuc);
144  bool isN = pdg::IsNeutron(nuc);
145  bool isnu = pdg::IsNeutrino(nu);
146  bool isnub = pdg::IsAntiNeutrino(nu);
147 
148  bool prcok = proc_info.IsWeakCC() && ((isP&&isnub) || (isN&&isnu));
149  if(!prcok) return false;
150 
151  return true;
152 }
bool IsWeakCC(void) const
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:110
int HitNucPdg(void) const
Definition: Target.cxx:304
bool IsQuasiElastic(void) const
Definition: ProcessInfo.cxx:69
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:341
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
bool IsAntiNeutrino(int pdgc)
Definition: PDGUtils.cxx:118
int ProbePdg(void) const
Definition: InitialState.h:64
const Target & Tgt(void) const
Definition: InitialState.h:66
const UInt_t kISkipProcessChk
if set, skip process validity checks
Definition: Interaction.h:47
Initial State information.
Definition: InitialState.h:48
double SmithMonizQELCCPXSec::XSec ( const Interaction i,
KinePhaseSpace_t  k 
) const
virtual

Compute the cross section for the input interaction.

Implements genie::XSecAlgorithmI.

Definition at line 72 of file SmithMonizQELCCPXSec.cxx.

References genie::KinePhaseSpace::AsString(), d2sQES_dQ2dv_SM(), d3sQES_dQ2dvdkF_SM(), dsQES_dQ2_SM(), genie::utils::mec::J(), genie::utils::kinematics::Jacobian(), genie::kPSQ2fE, genie::kPSQ2vfE, genie::kPSQ2vpfE, LOG, pWARN, genie::units::s, genie::XSecAlgorithmI::ValidKinematics(), and ValidProcess().

74 {
75  double xsec = 0. ;
76  // dimension of kine phase space
77  std::string s = KinePhaseSpace::AsString(kps);
78  int kpsdim = s!="<|E>"?1 + std::count(s.begin(), s.begin()+s.find('}'), ','):0;
79 
80  if(!this -> ValidProcess (interaction) )
81  {
82  LOG("SmithMoniz",pWARN) << "not a valid process";
83  return 0.;
84  }
85 
86  if(kpsdim == 1)
87  {
88  if(! this -> ValidKinematics (interaction) )
89  {
90  LOG("SmithMoniz",pWARN) << "not valid kinematics";
91  return 0.;
92  }
93  xsec = this->dsQES_dQ2_SM(interaction);
94  }
95 
96  if(kpsdim == 2)
97  {
98  xsec = this->d2sQES_dQ2dv_SM(interaction);
99  }
100 
101  if(kpsdim == 3)
102  {
103  xsec = this->d3sQES_dQ2dvdkF_SM(interaction);
104  }
105 
106 
107  // The algorithm computes d^1xsec/dQ2, d^2xsec/dQ2dv or d^3xsec/dQ2dvdp
108  // Check whether variable tranformation is needed
109  if ( kps != kPSQ2fE && kps != kPSQ2vfE )
110  {
111  double J = 1.;
112  if (kpsdim == 1)
113  J = utils::kinematics::Jacobian(interaction, kPSQ2fE, kps);
114  else if (kpsdim == 2)
115  J = utils::kinematics::Jacobian(interaction, kPSQ2vfE, kps);
116  else if (kpsdim == 3)
117  J = utils::kinematics::Jacobian(interaction, kPSQ2vpfE, kps);
118  xsec *= J;
119  }
120 
121  return xsec;
122 
123 }
double J(double q0, double q3, double Enu, double ml)
Definition: MECUtils.cxx:147
double d2sQES_dQ2dv_SM(const Interaction *i) const
static constexpr double s
Definition: Units.h:95
double d3sQES_dQ2dvdkF_SM(const Interaction *interaction) const
virtual bool ValidKinematics(const Interaction *i) const
Is the input kinematical point a physically allowed one?
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
static string AsString(KinePhaseSpace_t kps)
#define pWARN
Definition: Messenger.h:60
bool ValidProcess(const Interaction *i) const
Can this cross section algorithm handle the input process?
double Jacobian(const Interaction *const i, KinePhaseSpace_t f, KinePhaseSpace_t t)
Definition: KineUtils.cxx:130
double dsQES_dQ2_SM(const Interaction *interaction) const

Member Data Documentation

QELFormFactors genie::SmithMonizQELCCPXSec::fFormFactors
mutableprivate

Definition at line 78 of file SmithMonizQELCCPXSec.h.

Referenced by d3sQES_dQ2dvdkF_SM(), dsQES_dQ2_SM(), and LoadConfig().

const QELFormFactorsModelI* genie::SmithMonizQELCCPXSec::fFormFactorsModel
private

Definition at line 79 of file SmithMonizQELCCPXSec.h.

Referenced by LoadConfig().

double genie::SmithMonizQELCCPXSec::fVud2
private

|Vud|^2(square of magnitude ud-element of CKM-matrix)

Definition at line 81 of file SmithMonizQELCCPXSec.h.

Referenced by d3sQES_dQ2dvdkF_SM(), dsQES_dQ2_SM(), and LoadConfig().

const XSecIntegratorI* genie::SmithMonizQELCCPXSec::fXSecIntegrator
private

Definition at line 80 of file SmithMonizQELCCPXSec.h.

Referenced by Integral(), and LoadConfig().

double genie::SmithMonizQELCCPXSec::fXSecScale
private

external xsec scaling factor

Definition at line 77 of file SmithMonizQELCCPXSec.h.

Referenced by d2sQES_dQ2dv_SM(), dsQES_dQ2_SM(), and LoadConfig().

SmithMonizUtils* genie::SmithMonizQELCCPXSec::sm_utils
mutableprivate

Definition at line 70 of file SmithMonizQELCCPXSec.h.

Referenced by d2sQES_dQ2dv_SM(), d3sQES_dQ2dvdkF_SM(), and LoadConfig().


The documentation for this class was generated from the following files: