GENIEGenerator
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Private Member Functions | Private Attributes | List of all members
genie::ReinSehgalRESPXSec Class Reference

Computes the double differential cross section for resonance electro- or neutrino-production according to the Rein-Sehgal model. More...

#include <ReinSehgalRESPXSec.h>

Inheritance diagram for genie::ReinSehgalRESPXSec:
Inheritance graph
[legend]
Collaboration diagram for genie::ReinSehgalRESPXSec:
Collaboration graph
[legend]

Public Member Functions

 ReinSehgalRESPXSec ()
 
 ReinSehgalRESPXSec (string config)
 
virtual ~ReinSehgalRESPXSec ()
 
double XSec (const Interaction *i, KinePhaseSpace_t k) const
 Compute the cross section for the input interaction. More...
 
double Integral (const Interaction *i) const
 
bool ValidProcess (const Interaction *i) const
 Can this cross section algorithm handle the input process? More...
 
void Configure (const Registry &config)
 
void Configure (string config)
 
- Public Member Functions inherited from genie::XSecAlgorithmI
virtual ~XSecAlgorithmI ()
 
virtual bool ValidKinematics (const Interaction *i) const
 Is the input kinematical point a physically allowed one? More...
 
- Public Member Functions inherited from genie::Algorithm
virtual ~Algorithm ()
 
virtual void FindConfig (void)
 
virtual const RegistryGetConfig (void) const
 
RegistryGetOwnedConfig (void)
 
virtual const AlgIdId (void) const
 Get algorithm ID. More...
 
virtual AlgStatus_t GetStatus (void) const
 Get algorithm status. More...
 
virtual bool AllowReconfig (void) const
 
virtual AlgCmp_t Compare (const Algorithm *alg) const
 Compare with input algorithm. More...
 
virtual void SetId (const AlgId &id)
 Set algorithm ID. More...
 
virtual void SetId (string name, string config)
 
const AlgorithmSubAlg (const RgKey &registry_key) const
 
void AdoptConfig (void)
 
void AdoptSubstructure (void)
 
virtual void Print (ostream &stream) const
 Print algorithm info. More...
 

Private Member Functions

void LoadConfig (void)
 

Private Attributes

FKR fFKR
 
const RSHelicityAmplModelIfHAmplModelCC
 
const RSHelicityAmplModelIfHAmplModelNCp
 
const RSHelicityAmplModelIfHAmplModelNCn
 
const RSHelicityAmplModelIfHAmplModelEMp
 
const RSHelicityAmplModelIfHAmplModelEMn
 
bool fWghtBW
 weight with resonance breit-wigner? More...
 
bool fNormBW
 normalize resonance breit-wigner to 1? More...
 
double fZeta
 FKR parameter Zeta. More...
 
double fOmega
 FKR parameter Omega. More...
 
double fMa2
 (axial mass)^2 More...
 
double fMv2
 (vector mass)^2 More...
 
double fSin48w
 sin^4(Weingberg angle) More...
 
double fVud2
 |Vud|^2(square of magnitude ud-element of CKM-matrix) More...
 
bool fUsingDisResJoin
 use a DIS/RES joining scheme? More...
 
bool fUsingNuTauScaling
 use NeuGEN nutau xsec reduction factors? More...
 
double fWcut
 apply DIS/RES joining scheme < Wcut More...
 
double fN2ResMaxNWidths
 limits allowed phase space for n=2 res More...
 
double fN0ResMaxNWidths
 limits allowed phase space for n=0 res More...
 
double fGnResMaxNWidths
 limits allowed phase space for other res More...
 
string fKFTable
 table of Fermi momentum (kF) constants for various nuclei More...
 
bool fUseRFGParametrization
 use parametrization for fermi momentum insted of table? More...
 
bool fUsePauliBlocking
 account for Pauli blocking? More...
 
SplinefNuTauRdSpl
 xsec reduction spline for nu_tau More...
 
SplinefNuTauBarRdSpl
 xsec reduction spline for nu_tau_bar More...
 
double fXSecScaleCC
 external CC xsec scaling factor More...
 
double fXSecScaleNC
 external NC xsec scaling factor More...
 
double fXSecScaleEM
 external EM xsec scaling factor More...
 
const XSecIntegratorIfXSecIntegrator
 

Additional Inherited Members

- Static Public Member Functions inherited from genie::Algorithm
static string BuildParamVectKey (const std::string &comm_name, unsigned int i)
 
static string BuildParamVectSizeKey (const std::string &comm_name)
 
static string BuildParamMatKey (const std::string &comm_name, unsigned int i, unsigned int j)
 
static string BuildParamMatRowSizeKey (const std::string &comm_name)
 
static string BuildParamMatColSizeKey (const std::string &comm_name)
 
- Protected Member Functions inherited from genie::XSecAlgorithmI
 XSecAlgorithmI ()
 
 XSecAlgorithmI (string name)
 
 XSecAlgorithmI (string name, string config)
 
- Protected Member Functions inherited from genie::Algorithm
 Algorithm ()
 
 Algorithm (string name)
 
 Algorithm (string name, string config)
 
void Initialize (void)
 
void DeleteConfig (void)
 
void DeleteSubstructure (void)
 
RegistryExtractLocalConfig (const Registry &in) const
 
RegistryExtractLowerConfig (const Registry &in, const string &alg_key) const
 Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key. More...
 
template<class T >
bool GetParam (const RgKey &name, T &p, bool is_top_call=true) const
 
template<class T >
bool GetParamDef (const RgKey &name, T &p, const T &def) const
 
template<class T >
int GetParamVect (const std::string &comm_name, std::vector< T > &v, bool is_top_call=true) const
 Handle to load vectors of parameters. More...
 
int GetParamVectKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
template<class T >
int GetParamMat (const std::string &comm_name, TMatrixT< T > &mat, bool is_top_call=true) const
 Handle to load matrix of parameters. More...
 
template<class T >
int GetParamMatSym (const std::string &comm_name, TMatrixTSym< T > &mat, bool is_top_call=true) const
 
int GetParamMatKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
int AddTopRegistry (Registry *rp, bool owns=true)
 add registry with top priority, also update ownership More...
 
int AddLowRegistry (Registry *rp, bool owns=true)
 add registry with lowest priority, also update ownership More...
 
int MergeTopRegistry (const Registry &r)
 
int AddTopRegisties (const vector< Registry * > &rs, bool owns=false)
 Add registries with top priority, also udated Ownerships. More...
 
- Protected Attributes inherited from genie::Algorithm
bool fAllowReconfig
 
bool fOwnsSubstruc
 true if it owns its substructure (sub-algs,...) More...
 
AlgId fID
 algorithm name and configuration set More...
 
vector< Registry * > fConfVect
 
vector< bool > fOwnerships
 ownership for every registry in fConfVect More...
 
AlgStatus_t fStatus
 algorithm execution status More...
 
AlgMapfOwnedSubAlgMp
 local pool for owned sub-algs (taken out of the factory pool) More...
 

Detailed Description

Computes the double differential cross section for resonance electro- or neutrino-production according to the Rein-Sehgal model.

      The computed cross section is the d^2 xsec/ dQ^2 dW \n

      where \n
        \li \c Q^2 : momentum transfer ^ 2
        \li \c W   : invariant mass of the final state hadronic system

      Is a concrete implementation of the XSecAlgorithmI interface.
References:
D.Rein and L.M.Sehgal, Neutrino Excitation of Baryon Resonances and Single Pion Production, Ann.Phys.133, 79 (1981)
Author
Costas Andreopoulos <c.andreopoulos cern.ch> University of Liverpool
Created:
May 05, 2004
License:
Copyright (c) 2003-2024, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org

Definition at line 43 of file ReinSehgalRESPXSec.h.

Constructor & Destructor Documentation

ReinSehgalRESPXSec::ReinSehgalRESPXSec ( )

Definition at line 42 of file ReinSehgalRESPXSec.cxx.

References fNuTauBarRdSpl, and fNuTauRdSpl.

42  :
43 XSecAlgorithmI("genie::ReinSehgalRESPXSec")
44 {
45  fNuTauRdSpl = 0;
46  fNuTauBarRdSpl = 0;
47 }
Spline * fNuTauBarRdSpl
xsec reduction spline for nu_tau_bar
Spline * fNuTauRdSpl
xsec reduction spline for nu_tau
ReinSehgalRESPXSec::ReinSehgalRESPXSec ( string  config)

Definition at line 49 of file ReinSehgalRESPXSec.cxx.

References fNuTauBarRdSpl, and fNuTauRdSpl.

49  :
50 XSecAlgorithmI("genie::ReinSehgalRESPXSec", config)
51 {
52  fNuTauRdSpl = 0;
53  fNuTauBarRdSpl = 0;
54 }
Spline * fNuTauBarRdSpl
xsec reduction spline for nu_tau_bar
Spline * fNuTauRdSpl
xsec reduction spline for nu_tau
ReinSehgalRESPXSec::~ReinSehgalRESPXSec ( )
virtual

Definition at line 56 of file ReinSehgalRESPXSec.cxx.

References fNuTauBarRdSpl, and fNuTauRdSpl.

57 {
58  if(fNuTauRdSpl) delete fNuTauRdSpl;
59  if(fNuTauBarRdSpl) delete fNuTauBarRdSpl;
60 }
Spline * fNuTauBarRdSpl
xsec reduction spline for nu_tau_bar
Spline * fNuTauRdSpl
xsec reduction spline for nu_tau

Member Function Documentation

void ReinSehgalRESPXSec::Configure ( const Registry config)
virtual

Configure the algorithm with an external registry The registry is merged with the top level registry if it is owned, Otherwise a copy of it is added with the highest priority

Reimplemented from genie::Algorithm.

Definition at line 414 of file ReinSehgalRESPXSec.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

415 {
416  Algorithm::Configure(config);
417  this->LoadConfig();
418 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
void ReinSehgalRESPXSec::Configure ( string  config)
virtual

Configure the algorithm from the AlgoConfigPool based on param_set string given in input An algorithm contains a vector of registries coming from different xml configuration files, which are loaded according a very precise prioriy This methods will load a number registries in order of priority: 1) "Tunable" parameter set from CommonParametes. This is loaded with the highest prioriry and it is designed to be used for tuning procedure Usage not expected from the user. 2) For every string defined in "CommonParame" the corresponding parameter set will be loaded from CommonParameter.xml 3) parameter set specified by the config string and defined in the xml file of the algorithm 4) if config is not "Default" also the Default parameter set from the same xml file will be loaded Effectively this avoids the repetion of a parameter when it is not changed in the requested configuration

Reimplemented from genie::Algorithm.

Definition at line 420 of file ReinSehgalRESPXSec.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

421 {
422  Algorithm::Configure(config);
423  this->LoadConfig();
424 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
double ReinSehgalRESPXSec::Integral ( const Interaction i) const
virtual

Integrate the model over the kinematic phase space available to the input interaction (kinematical cuts can be included)

Implements genie::XSecAlgorithmI.

Definition at line 381 of file ReinSehgalRESPXSec.cxx.

References fXSecIntegrator, and genie::XSecIntegratorI::Integrate().

382 {
383  double xsec = fXSecIntegrator->Integrate(this,interaction);
384  return xsec;
385 }
const XSecIntegratorI * fXSecIntegrator
virtual double Integrate(const XSecAlgorithmI *model, const Interaction *interaction) const =0
void ReinSehgalRESPXSec::LoadConfig ( void  )
private

Definition at line 426 of file ReinSehgalRESPXSec.cxx.

References fGnResMaxNWidths, fHAmplModelCC, fHAmplModelEMn, fHAmplModelEMp, fHAmplModelNCn, fHAmplModelNCp, fKFTable, fMa2, fMv2, fN0ResMaxNWidths, fN2ResMaxNWidths, fNormBW, fNuTauBarRdSpl, fNuTauRdSpl, fOmega, fSin48w, fUsePauliBlocking, fUseRFGParametrization, fUsingDisResJoin, fUsingNuTauScaling, fVud2, fWcut, fWghtBW, fXSecIntegrator, fXSecScaleCC, fXSecScaleEM, fXSecScaleNC, fZeta, genie::AlgFactory::GetAlgorithm(), genie::Algorithm::GetParam(), genie::Algorithm::GetParamDef(), genie::AlgFactory::Instance(), LOG, pNOTICE, and genie::Algorithm::SubAlg().

Referenced by Configure().

427 {
428  // Cross section scaling factors
429  this->GetParam( "RES-CC-XSecScale", fXSecScaleCC ) ;
430  this->GetParam( "RES-NC-XSecScale", fXSecScaleNC ) ;
431  this->GetParam( "RES-EM-XSecScale", fXSecScaleEM ) ;
432 
433  this->GetParam( "RES-Zeta", fZeta ) ;
434  this->GetParam( "RES-Omega", fOmega ) ;
435 
436  double ma, mv ;
437  this->GetParam( "RES-Ma", ma ) ;
438  this->GetParam( "RES-Mv", mv ) ;
439  fMa2 = TMath::Power(ma,2);
440  fMv2 = TMath::Power(mv,2);
441 
442  this->GetParamDef( "BreitWignerWeight", fWghtBW, true ) ;
443  this->GetParamDef( "BreitWignerNorm", fNormBW, true);
444 
445  double thw ;
446  this->GetParam( "WeinbergAngle", thw ) ;
447  fSin48w = TMath::Power( TMath::Sin(thw), 4 );
448  double Vud;
449  this->GetParam("CKM-Vud", Vud );
450  fVud2 = TMath::Power( Vud, 2 );
451  this->GetParam("FermiMomentumTable", fKFTable);
452  this->GetParam("RFG-UseParametrization", fUseRFGParametrization);
453  this->GetParam("UsePauliBlockingForRES", fUsePauliBlocking);
454 
455  // Load all the sub-algorithms needed
456 
457  fHAmplModelCC = 0;
458  fHAmplModelNCp = 0;
459  fHAmplModelNCn = 0;
460  fHAmplModelEMp = 0;
461  fHAmplModelEMn = 0;
462 
463  AlgFactory * algf = AlgFactory::Instance();
464 
465  fHAmplModelCC = dynamic_cast<const RSHelicityAmplModelI *> (
466  algf->GetAlgorithm("genie::RSHelicityAmplModelCC","Default"));
467  fHAmplModelNCp = dynamic_cast<const RSHelicityAmplModelI *> (
468  algf->GetAlgorithm("genie::RSHelicityAmplModelNCp","Default"));
469  fHAmplModelNCn = dynamic_cast<const RSHelicityAmplModelI *> (
470  algf->GetAlgorithm("genie::RSHelicityAmplModelNCn","Default"));
471  fHAmplModelEMp = dynamic_cast<const RSHelicityAmplModelI *> (
472  algf->GetAlgorithm("genie::RSHelicityAmplModelEMp","Default"));
473  fHAmplModelEMn = dynamic_cast<const RSHelicityAmplModelI *> (
474  algf->GetAlgorithm("genie::RSHelicityAmplModelEMn","Default"));
475 
476  assert( fHAmplModelCC );
477  assert( fHAmplModelNCp );
478  assert( fHAmplModelNCn );
479  assert( fHAmplModelEMp );
480  assert( fHAmplModelEMn );
481 
482  // Use algorithm within a DIS/RES join scheme. If yes get Wcut
483  this->GetParam( "UseDRJoinScheme", fUsingDisResJoin ) ;
484  fWcut = 999999;
485  if(fUsingDisResJoin) {
486  this->GetParam( "Wcut", fWcut ) ;
487  }
488 
489  // NeuGEN limits in the allowed resonance phase space:
490  // W < min{ Wmin(physical), (res mass) + x * (res width) }
491  // It limits the integration area around the peak and avoids the
492  // problem with huge xsec increase at low Q2 and high W.
493  // In correspondence with Hugh, Rein said that the underlying problem
494  // are unphysical assumptions in the model.
495  this->GetParamDef( "MaxNWidthForN2Res", fN2ResMaxNWidths, 2.0 ) ;
496  this->GetParamDef( "MaxNWidthForN0Res", fN0ResMaxNWidths, 6.0 ) ;
497  this->GetParamDef( "MaxNWidthForGNRes", fGnResMaxNWidths, 4.0 ) ;
498 
499  // NeuGEN reduction factors for nu_tau: a gross estimate of the effect of
500  // neglected form factors in the R/S model
501  this->GetParamDef( "UseNuTauScalingFactors", fUsingNuTauScaling, true ) ;
502  if(fUsingNuTauScaling) {
503  if(fNuTauRdSpl) delete fNuTauRdSpl;
504  if(fNuTauBarRdSpl) delete fNuTauBarRdSpl;
505 
506  assert( std::getenv( "GENIE") );
507  string base = std::getenv( "GENIE") ;
508 
509  string filename = base + "/data/evgen/rein_sehgal/res/nutau_xsec_scaling_factors.dat";
510  LOG("ReinSehgalRes", pNOTICE)
511  << "Loading nu_tau xsec reduction spline from: " << filename;
512  fNuTauRdSpl = new Spline(filename);
513 
514  filename = base + "/data/evgen/rein_sehgal/res/nutaubar_xsec_scaling_factors.dat";
515  LOG("ReinSehgalRes", pNOTICE)
516  << "Loading bar{nu_tau} xsec reduction spline from: " << filename;
517  fNuTauBarRdSpl = new Spline(filename);
518  }
519 
520  // load the differential cross section integrator
522  dynamic_cast<const XSecIntegratorI *> (this->SubAlg("XSec-Integrator"));
523  assert(fXSecIntegrator);
524 }
bool fNormBW
normalize resonance breit-wigner to 1?
Spline * fNuTauBarRdSpl
xsec reduction spline for nu_tau_bar
Cross Section Integrator Interface.
bool fWghtBW
weight with resonance breit-wigner?
const RSHelicityAmplModelI * fHAmplModelEMn
const RSHelicityAmplModelI * fHAmplModelNCp
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
A numeric analysis tool class for interpolating 1-D functions.
Definition: Spline.h:58
double fMv2
(vector mass)^2
const RSHelicityAmplModelI * fHAmplModelCC
const RSHelicityAmplModelI * fHAmplModelNCn
const RSHelicityAmplModelI * fHAmplModelEMp
double fZeta
FKR parameter Zeta.
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
double fWcut
apply DIS/RES joining scheme &lt; Wcut
const Algorithm * GetAlgorithm(const AlgId &algid)
Definition: AlgFactory.cxx:75
Pure abstract base class. Defines the RSHelicityAmplModelI interface.
const XSecIntegratorI * fXSecIntegrator
double fXSecScaleCC
external CC xsec scaling factor
static AlgFactory * Instance()
Definition: AlgFactory.cxx:64
double fOmega
FKR parameter Omega.
bool fUseRFGParametrization
use parametrization for fermi momentum insted of table?
bool fUsingDisResJoin
use a DIS/RES joining scheme?
double fXSecScaleEM
external EM xsec scaling factor
double fSin48w
sin^4(Weingberg angle)
double fN0ResMaxNWidths
limits allowed phase space for n=0 res
double fGnResMaxNWidths
limits allowed phase space for other res
#define pNOTICE
Definition: Messenger.h:61
bool GetParamDef(const RgKey &name, T &p, const T &def) const
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
The GENIE Algorithm Factory.
Definition: AlgFactory.h:39
double fXSecScaleNC
external NC xsec scaling factor
double fMa2
(axial mass)^2
bool fUsingNuTauScaling
use NeuGEN nutau xsec reduction factors?
string fKFTable
table of Fermi momentum (kF) constants for various nuclei
bool fUsePauliBlocking
account for Pauli blocking?
double fN2ResMaxNWidths
limits allowed phase space for n=2 res
Spline * fNuTauRdSpl
xsec reduction spline for nu_tau
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:345
bool ReinSehgalRESPXSec::ValidProcess ( const Interaction i) const
virtual

Can this cross section algorithm handle the input process?

Implements genie::XSecAlgorithmI.

Definition at line 387 of file ReinSehgalRESPXSec.cxx.

References genie::Interaction::ExclTag(), genie::Target::HitNucPdg(), genie::Interaction::InitState(), genie::pdg::IsChargedLepton(), genie::ProcessInfo::IsEM(), genie::pdg::IsNeutralLepton(), genie::pdg::IsNeutron(), genie::pdg::IsProton(), genie::ProcessInfo::IsResonant(), genie::ProcessInfo::IsWeak(), genie::kISkipProcessChk, genie::XclsTag::KnownResonance(), genie::InitialState::ProbePdg(), genie::Interaction::ProcInfo(), and genie::InitialState::Tgt().

Referenced by XSec().

388 {
389  if(interaction->TestBit(kISkipProcessChk)) return true;
390 
391  const InitialState & init_state = interaction->InitState();
392  const ProcessInfo & proc_info = interaction->ProcInfo();
393  const XclsTag & xcls = interaction->ExclTag();
394 
395  if(!proc_info.IsResonant()) return false;
396  if(!xcls.KnownResonance()) return false;
397 
398  int hitnuc = init_state.Tgt().HitNucPdg();
399  bool is_pn = (pdg::IsProton(hitnuc) || pdg::IsNeutron(hitnuc));
400 
401  if (!is_pn) return false;
402 
403  int probe = init_state.ProbePdg();
404  bool is_weak = proc_info.IsWeak();
405  bool is_em = proc_info.IsEM();
406  bool nu_weak = (pdg::IsNeutralLepton(probe) && is_weak);
407  bool l_em = (pdg::IsChargedLepton(probe) && is_em );
408 
409  if (!nu_weak && !l_em) return false;
410 
411  return true;
412 }
bool IsResonant(void) const
Definition: ProcessInfo.cxx:99
bool IsWeak(void) const
int HitNucPdg(void) const
Definition: Target.cxx:304
bool KnownResonance(void) const
Definition: XclsTag.h:68
bool IsChargedLepton(int pdgc)
Definition: PDGUtils.cxx:101
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:39
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:341
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
int ProbePdg(void) const
Definition: InitialState.h:64
bool IsEM(void) const
bool IsNeutralLepton(int pdgc)
Definition: PDGUtils.cxx:95
const Target & Tgt(void) const
Definition: InitialState.h:66
const UInt_t kISkipProcessChk
if set, skip process validity checks
Definition: Interaction.h:47
Initial State information.
Definition: InitialState.h:48
double ReinSehgalRESPXSec::XSec ( const Interaction i,
KinePhaseSpace_t  k 
) const
virtual

Compute the cross section for the input interaction.

Implements genie::XSecAlgorithmI.

Definition at line 62 of file ReinSehgalRESPXSec.cxx.

References genie::Target::A(), genie::units::A, genie::utils::res::AsString(), genie::Interaction::AsString(), genie::FKR::B, genie::utils::bwfunc::BreitWignerL(), genie::utils::bwfunc::BreitWignerLGamma(), genie::utils::res::BWNorm(), genie::FKR::C, genie::RSHelicityAmplModelI::Compute(), genie::Spline::Evaluate(), genie::Interaction::ExclTag(), genie::utils::nuclear::FermiMomentumForIsoscalarNucleonParametrization(), fFKR, fGnResMaxNWidths, fHAmplModelCC, fHAmplModelEMn, fHAmplModelEMp, fHAmplModelNCn, fHAmplModelNCp, genie::FermiMomentumTable::FindClosestKF(), fKFTable, fMa2, fMv2, fN0ResMaxNWidths, fN2ResMaxNWidths, fNormBW, fNuTauBarRdSpl, fNuTauRdSpl, fOmega, fSin48w, fUsePauliBlocking, fUseRFGParametrization, fUsingDisResJoin, fUsingNuTauScaling, fVud2, fWcut, fWghtBW, fXSecScaleCC, fXSecScaleEM, fXSecScaleNC, fZeta, genie::FermiMomentumTablePool::GetTable(), genie::Target::HitNucMass(), genie::Target::HitNucPdg(), genie::FermiMomentumTablePool::Instance(), genie::pdg::IonPdgCode(), genie::pdg::IsAntiNeutrino(), genie::pdg::IsAntiNuTau(), genie::utils::res::IsDelta(), genie::ProcessInfo::IsEM(), genie::pdg::IsNegChargedLepton(), genie::pdg::IsNeutrino(), genie::pdg::IsNeutron(), genie::pdg::IsNuTau(), genie::pdg::IsPosChargedLepton(), genie::pdg::IsProton(), genie::ProcessInfo::IsWeakCC(), genie::ProcessInfo::IsWeakNC(), genie::utils::mec::J(), genie::utils::kinematics::Jacobian(), genie::constants::kAem2, genie::constants::kGF2, genie::kIAssumeFreeNucleon, genie::constants::kPi, genie::constants::kPi2, genie::constants::kPionMass2, genie::kPSWQ2fE, genie::kRfHitNucRest, genie::constants::kSqrt2, genie::FKR::Lamda, LOG, genie::utils::res::Mass(), genie::utils::res::OrbitalAngularMom(), pDEBUG, pINFO, genie::InitialState::ProbeE(), genie::InitialState::ProbePdg(), genie::Kinematics::q2(), genie::utils::kinematics::Q2(), genie::FKR::R, genie::FKR::Ra, genie::XclsTag::Resonance(), genie::utils::res::ResonanceIndex(), genie::FKR::Rminus, genie::FKR::Rplus, genie::FKR::Rv, genie::FKR::S, genie::FKR::T, genie::FKR::Ta, genie::InitialState::Tgt(), genie::FKR::Tminus, genie::FKR::Tplus, genie::FKR::Tv, genie::XSecAlgorithmI::ValidKinematics(), ValidProcess(), genie::Kinematics::W(), genie::utils::kinematics::W(), genie::utils::res::Width(), and genie::Target::Z().

64 {
65  if(! this -> ValidProcess (interaction) ) return 0.;
66  if(! this -> ValidKinematics (interaction) ) return 0.;
67 
68  const InitialState & init_state = interaction -> InitState();
69  const ProcessInfo & proc_info = interaction -> ProcInfo();
70  const Target & target = init_state.Tgt();
71 
72  // Get kinematical parameters
73  const Kinematics & kinematics = interaction -> Kine();
74  double W = kinematics.W();
75  double q2 = kinematics.q2();
76 
77  // Under the DIS/RES joining scheme, xsec(RES)=0 for W>=Wcut
78  if(fUsingDisResJoin) {
79  if(W>=fWcut) {
80 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
81  LOG("ReinSehgalRes", pDEBUG)
82  << "RES/DIS Join Scheme: XSec[RES, W=" << W
83  << " >= Wcut=" << fWcut << "] = 0";
84 #endif
85  return 0;
86  }
87  }
88 
89  // Get the input baryon resonance
90  Resonance_t resonance = interaction->ExclTag().Resonance();
91  string resname = utils::res::AsString(resonance);
92  bool is_delta = utils::res::IsDelta (resonance);
93 
94  // Get the neutrino, hit nucleon & weak current
95  int nucpdgc = target.HitNucPdg();
96  int probepdgc = init_state.ProbePdg();
97  bool is_nu = pdg::IsNeutrino (probepdgc);
98  bool is_nubar = pdg::IsAntiNeutrino (probepdgc);
99  bool is_lplus = pdg::IsPosChargedLepton (probepdgc);
100  bool is_lminus = pdg::IsNegChargedLepton (probepdgc);
101  bool is_p = pdg::IsProton (nucpdgc);
102  bool is_n = pdg::IsNeutron (nucpdgc);
103  bool is_CC = proc_info.IsWeakCC();
104  bool is_NC = proc_info.IsWeakNC();
105  bool is_EM = proc_info.IsEM();
106 
107  if(is_CC && !is_delta) {
108  if((is_nu && is_p) || (is_nubar && is_n)) return 0;
109  }
110 
111  // Get baryon resonance parameters
112  int IR = utils::res::ResonanceIndex (resonance);
113  int LR = utils::res::OrbitalAngularMom (resonance);
114  double MR = utils::res::Mass (resonance);
115  double WR = utils::res::Width (resonance);
117 
118  // Following NeuGEN, avoid problems with underlying unphysical
119  // model assumptions by restricting the allowed W phase space
120  // around the resonance peak
121  if (fNormBW) {
122  if (W > MR + fN0ResMaxNWidths * WR && IR==0) return 0.;
123  else if (W > MR + fN2ResMaxNWidths * WR && IR==2) return 0.;
124  else if (W > MR + fGnResMaxNWidths * WR) return 0.;
125  }
126 
127  // Compute auxiliary & kinematical factors
128  double E = init_state.ProbeE(kRfHitNucRest);
129  double Mnuc = target.HitNucMass();
130  double W2 = TMath::Power(W, 2);
131  double Mnuc2 = TMath::Power(Mnuc, 2);
132  double k = 0.5 * (W2 - Mnuc2)/Mnuc;
133  double v = k - 0.5 * q2/Mnuc;
134  double v2 = TMath::Power(v, 2);
135  double Q2 = v2 - q2;
136  double Q = TMath::Sqrt(Q2);
137  double Eprime = E - v;
138  double U = 0.5 * (E + Eprime + Q) / E;
139  double V = 0.5 * (E + Eprime - Q) / E;
140  double U2 = TMath::Power(U, 2);
141  double V2 = TMath::Power(V, 2);
142  double UV = U*V;
143 
144 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
145  LOG("ReinSehgalRes", pDEBUG)
146  << "Kinematical params V = " << V << ", U = " << U;
147 #endif
148 
149  // Calculate the Feynman-Kislinger-Ravndall parameters
150 
151  double Go = TMath::Power(1 - 0.25 * q2/Mnuc2, 0.5-IR);
152  double GV = Go * TMath::Power( 1./(1-q2/fMv2), 2);
153  double GA = Go * TMath::Power( 1./(1-q2/fMa2), 2);
154 
155  if(is_EM) {
156  GA = 0.; // zero the axial term for EM scattering
157  }
158 
159  double d = TMath::Power(W+Mnuc,2.) - q2;
160  double sq2omg = TMath::Sqrt(2./fOmega);
161  double nomg = IR * fOmega;
162  double mq_w = Mnuc*Q/W;
163 
164  fFKR.Lamda = sq2omg * mq_w;
165  fFKR.Tv = GV / (3.*W*sq2omg);
166  fFKR.Rv = kSqrt2 * mq_w*(W+Mnuc)*GV / d;
167  fFKR.S = (-q2/Q2) * (3*W*Mnuc + q2 - Mnuc2) * GV / (6*Mnuc2);
168  fFKR.Ta = (2./3.) * (fZeta/sq2omg) * mq_w * GA / d;
169  fFKR.Ra = (kSqrt2/6.) * fZeta * (GA/W) * (W+Mnuc + 2*nomg*W/d );
170  fFKR.B = fZeta/(3.*W*sq2omg) * (1 + (W2-Mnuc2+q2)/ d) * GA;
171  fFKR.C = fZeta/(6.*Q) * (W2 - Mnuc2 + nomg*(W2-Mnuc2+q2)/d) * (GA/Mnuc);
172  fFKR.R = fFKR.Rv;
173  fFKR.Rplus = - (fFKR.Rv + fFKR.Ra);
174  fFKR.Rminus = - (fFKR.Rv - fFKR.Ra);
175  fFKR.T = fFKR.Tv;
176  fFKR.Tplus = - (fFKR.Tv + fFKR.Ta);
177  fFKR.Tminus = - (fFKR.Tv - fFKR.Ta);
178 
179 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
180  LOG("FKR", pDEBUG)
181  << "FKR params for RES = " << resname << " : " << fFKR;
182 #endif
183 
184  // Calculate the Rein-Sehgal Helicity Amplitudes
185 
186  const RSHelicityAmplModelI * hamplmod = 0;
187  if(is_CC) {
188  hamplmod = fHAmplModelCC;
189  }
190  else
191  if(is_NC) {
192  if (is_p) { hamplmod = fHAmplModelNCp;}
193  else { hamplmod = fHAmplModelNCn;}
194  }
195  else
196  if(is_EM) {
197  if (is_p) { hamplmod = fHAmplModelEMp;}
198  else { hamplmod = fHAmplModelEMn;}
199  }
200  assert(hamplmod);
201 
202  const RSHelicityAmpl & hampl = hamplmod->Compute(resonance, fFKR);
203 
204 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
205  LOG("RSHAmpl", pDEBUG)
206  << "Helicity Amplitudes for RES = " << resname << " : " << hampl;
207 #endif
208 
209  double g2 = kGF2;
210  if(is_CC) g2 = kGF2*fVud2;
211  // For EM interaction replace G_{Fermi} with :
212  // a_{em} * pi / ( sqrt(2) * sin^2(theta_weinberg) * Mass_{W}^2 }
213  // See C.Quigg, Gauge Theories of the Strong, Weak and E/M Interactions,
214  // ISBN 0-8053-6021-2, p.112 (6.3.57)
215  // Also, take int account that the photon propagator is 1/p^2 but the
216  // W propagator is 1/(p^2-Mass_{W}^2), so weight the EM case with
217  // Mass_{W}^4 / q^4
218  // So, overall:
219  // G_{Fermi}^2 --> a_{em}^2 * pi^2 / (2 * sin^4(theta_weinberg) * q^{4})
220  //
221  if(is_EM) {
222  double q4 = q2*q2;
223  g2 = kAem2 * kPi2 / (2.0 * fSin48w * q4);
224  }
225 
226  // Compute the cross section
227 
228  double sig0 = 0.125*(g2/kPi)*(-q2/Q2)*(W/Mnuc);
229  double scLR = W/Mnuc;
230  double scS = (Mnuc/W)*(-Q2/q2);
231  double sigL = scLR* (hampl.Amp2Plus3 () + hampl.Amp2Plus1 ());
232  double sigR = scLR* (hampl.Amp2Minus3() + hampl.Amp2Minus1());
233  double sigS = scS * (hampl.Amp20Plus () + hampl.Amp20Minus());
234 
235 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
236  LOG("ReinSehgalRes", pDEBUG) << "sig_{0} = " << sig0;
237  LOG("ReinSehgalRes", pDEBUG) << "sig_{L} = " << sigL;
238  LOG("ReinSehgalRes", pDEBUG) << "sig_{R} = " << sigR;
239  LOG("ReinSehgalRes", pDEBUG) << "sig_{S} = " << sigS;
240 #endif
241 
242  double xsec = 0.0;
243  if (is_nu || is_lminus) {
244  xsec = sig0*(V2*sigR + U2*sigL + 2*UV*sigS);
245  }
246  else
247  if (is_nubar || is_lplus) {
248  xsec = sig0*(U2*sigR + V2*sigL + 2*UV*sigS);
249  }
250  xsec = TMath::Max(0.,xsec);
251 
252  double mult = 1.0;
253  if(is_CC && is_delta) {
254  if((is_nu && is_p) || (is_nubar && is_n)) mult=3.0;
255  }
256  xsec *= mult;
257 
258  // Check whether the cross section is to be weighted with a
259  // Breit-Wigner distribution (default: true)
260  double bw = 1.0;
261  if(fWghtBW) {
262  //different Delta photon decay branch
263  if(is_delta){
264  bw = utils::bwfunc::BreitWignerLGamma(W,LR,MR,WR,NR);
265  }
266  else{
267  bw = utils::bwfunc::BreitWignerL(W,LR,MR,WR,NR);
268  }
269  }
270 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
271  LOG("ReinSehgalRes", pDEBUG)
272  << "BreitWigner(RES=" << resname << ", W=" << W << ") = " << bw;
273 #endif
274  xsec *= bw;
275 
276  // Apply NeuGEN nutau cross section reduction factors
277  double rf = 1.0;
278  Spline * spl = 0;
279  if (is_CC && fUsingNuTauScaling) {
280  if (pdg::IsNuTau (probepdgc)) spl = fNuTauRdSpl;
281  else if (pdg::IsAntiNuTau(probepdgc)) spl = fNuTauBarRdSpl;
282 
283  if(spl) {
284  if(E <spl->XMax()) rf = spl->Evaluate(E);
285  }
286  }
287  xsec *= rf;
288 
289  // Apply given scaling factor
290  double xsec_scale = 1.;
291  if (is_CC) { xsec_scale = fXSecScaleCC; }
292  else if (is_NC) { xsec_scale = fXSecScaleNC; }
293  else if (is_EM) { xsec_scale = fXSecScaleEM; }
294  xsec *= xsec_scale;
295 
296 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
297  LOG("ReinSehgalRes", pINFO)
298  << "\n d2xsec/dQ2dW" << "[" << interaction->AsString()
299  << "](W=" << W << ", q2=" << q2 << ", E=" << E << ") = " << xsec;
300 #endif
301 
302  // The algorithm computes d^2xsec/dWdQ2
303  // Check whether variable tranformation is needed
304  if(kps!=kPSWQ2fE) {
305  double J = utils::kinematics::Jacobian(interaction,kPSWQ2fE,kps);
306  xsec *= J;
307  }
308 
309  // If requested return the free nucleon xsec even for input nuclear tgt
310  if( interaction->TestBit(kIAssumeFreeNucleon) ) return xsec;
311 
312 
313  int Z = target.Z();
314  int A = target.A();
315  int N = A-Z;
316 
317  // Take into account the number of scattering centers in the target
318  int NNucl = (is_p) ? Z : N;
319 
320  xsec*=NNucl; // nuclear xsec (no nuclear suppression factor)
321 
322  if (fUsePauliBlocking && A!=1)
323  {
324  // Calculation of Pauli blocking according references:
325  //
326  // [1] S.L. Adler, S. Nussinov, and E.A. Paschos, "Nuclear
327  // charge exchange corrections to leptonic pion production
328  // in the (3,3) resonance region," Phys. Rev. D 9 (1974)
329  // 2125-2143 [Erratum Phys. Rev. D 10 (1974) 1669].
330  // [2] J.Y. Yu, "Neutrino interactions and nuclear effects in
331  // oscillation experiments and the nonperturbative disper-
332  // sive sector in strong (quasi-)abelian fields," Ph. D.
333  // Thesis, Dortmund U., Dortmund, 2002 (unpublished).
334  // [3] E.A. Paschos, J.Y. Yu, and M. Sakuda, "Neutrino pro-
335  // duction of resonances," Phys. Rev. D 69 (2004) 014013
336  // [arXiv: hep-ph/0308130].
337 
338  double P_Fermi = 0.0;
339 
340  // Maximum value of Fermi momentum of target nucleon (GeV)
341  if (A<6 || !fUseRFGParametrization)
342  {
343  // Look up the Fermi momentum for this target
345  const FermiMomentumTable * kft = kftp->GetTable(fKFTable);
346  P_Fermi = kft->FindClosestKF(pdg::IonPdgCode(A, Z), nucpdgc);
347  }
348  else {
349  // Define the Fermi momentum for this target
351  // Correct the Fermi momentum for the struck nucleon
352  if(is_p) { P_Fermi *= TMath::Power( 2.*Z/A, 1./3); }
353  else { P_Fermi *= TMath::Power( 2.*N/A, 1./3); }
354  }
355 
356  double FactorPauli_RES = 1.0;
357 
358  double k0 = 0., q = 0., q0 = 0.;
359 
360  if (P_Fermi > 0.)
361  {
362  k0 = (W2-Mnuc2-Q2)/(2*W);
363  k = TMath::Sqrt(k0*k0+Q2); // previous value of k is overridden
364  q0 = (W2-Mnuc2+kPionMass2)/(2*W);
365  q = TMath::Sqrt(q0*q0-kPionMass2);
366  }
367 
368  if (2*P_Fermi < k-q)
369  FactorPauli_RES = 1.0;
370  if (2*P_Fermi >= k+q)
371  FactorPauli_RES = ((3*k*k+q*q)/(2*P_Fermi)-(5*TMath::Power(k,4)+TMath::Power(q,4)+10*k*k*q*q)/(40*TMath::Power(P_Fermi,3)))/(2*k);
372  if (2*P_Fermi >= k-q && 2*P_Fermi <= k+q)
373  FactorPauli_RES = ((q+k)*(q+k)-4*P_Fermi*P_Fermi/5-TMath::Power(k-q, 3)/(2*P_Fermi)+TMath::Power(k-q, 5)/(40*TMath::Power(P_Fermi, 3)))/(4*q*k);
374 
375  xsec *= FactorPauli_RES;
376  }
377 
378  return xsec;
379 }
bool IsDelta(Resonance_t res)
is it a Delta resonance?
double W(bool selected=false) const
Definition: Kinematics.cxx:157
bool ValidProcess(const Interaction *i) const
Can this cross section algorithm handle the input process?
bool IsNuTau(int pdgc)
Definition: PDGUtils.cxx:168
bool fNormBW
normalize resonance breit-wigner to 1?
bool IsWeakCC(void) const
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:110
double J(double q0, double q3, double Enu, double ml)
Definition: MECUtils.cxx:147
Spline * fNuTauBarRdSpl
xsec reduction spline for nu_tau_bar
double Rminus
Definition: FKR.h:50
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
bool fWghtBW
weight with resonance breit-wigner?
int HitNucPdg(void) const
Definition: Target.cxx:304
const RSHelicityAmplModelI * fHAmplModelEMn
const RSHelicityAmplModelI * fHAmplModelNCp
double Ra
Definition: FKR.h:42
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
int A(void) const
Definition: Target.h:70
virtual const RSHelicityAmpl & Compute(Resonance_t res, const FKR &fkr) const =0
double HitNucMass(void) const
Definition: Target.cxx:233
A numeric analysis tool class for interpolating 1-D functions.
Definition: Spline.h:58
static FermiMomentumTablePool * Instance(void)
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
bool IsAntiNuTau(int pdgc)
Definition: PDGUtils.cxx:183
double Lamda
Definition: FKR.h:37
double Mass(Resonance_t res)
resonance mass (GeV)
double R
Definition: FKR.h:45
A table of Fermi momentum constants.
double Width(Resonance_t res)
resonance width (GeV)
double fMv2
(vector mass)^2
double BreitWignerLGamma(double W, int L, double mass, double width0, double norm)
Definition: BWFunc.cxx:22
double Evaluate(double x) const
Definition: Spline.cxx:363
double BreitWignerL(double W, int L, double mass, double width0, double norm)
Definition: BWFunc.cxx:99
const RSHelicityAmplModelI * fHAmplModelCC
double BWNorm(Resonance_t res, double N0ResMaxNWidths=6, double N2ResMaxNWidths=2, double GnResMaxNWidths=4)
breit-wigner normalization factor
enum genie::EResonance Resonance_t
const RSHelicityAmplModelI * fHAmplModelNCn
const RSHelicityAmplModelI * fHAmplModelEMp
double W(const Interaction *const i)
Definition: KineUtils.cxx:1101
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:341
double fZeta
FKR parameter Zeta.
bool IsPosChargedLepton(int pdgc)
Definition: PDGUtils.cxx:148
double Tv
Definition: FKR.h:38
virtual bool ValidKinematics(const Interaction *i) const
Is the input kinematical point a physically allowed one?
double q2(bool selected=false) const
Definition: Kinematics.cxx:141
A class holding the Rein-Sehgal&#39;s helicity amplitudes.
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
bool IsWeakNC(void) const
Singleton class to load &amp; serve tables of Fermi momentum constants.
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
static constexpr double A
Definition: Units.h:74
const FermiMomentumTable * GetTable(string name)
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
double fWcut
apply DIS/RES joining scheme &lt; Wcut
double T
Definition: FKR.h:46
double Rv
Definition: FKR.h:39
bool IsAntiNeutrino(int pdgc)
Definition: PDGUtils.cxx:118
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:40
int ProbePdg(void) const
Definition: InitialState.h:64
int OrbitalAngularMom(Resonance_t res)
orbital angular momentum
int Z(void) const
Definition: Target.h:68
#define pINFO
Definition: Messenger.h:62
Pure abstract base class. Defines the RSHelicityAmplModelI interface.
bool IsEM(void) const
double C
Definition: FKR.h:44
double FermiMomentumForIsoscalarNucleonParametrization(const Target &target)
double Tplus
Definition: FKR.h:47
double fXSecScaleCC
external CC xsec scaling factor
double B
Definition: FKR.h:43
double fOmega
FKR parameter Omega.
double Rplus
Definition: FKR.h:49
bool fUseRFGParametrization
use parametrization for fermi momentum insted of table?
bool fUsingDisResJoin
use a DIS/RES joining scheme?
const UInt_t kIAssumeFreeNucleon
Definition: Interaction.h:49
double fXSecScaleEM
external EM xsec scaling factor
double Tminus
Definition: FKR.h:48
int IonPdgCode(int A, int Z)
Definition: PDGUtils.cxx:71
double fSin48w
sin^4(Weingberg angle)
double fN0ResMaxNWidths
limits allowed phase space for n=0 res
double Jacobian(const Interaction *const i, KinePhaseSpace_t f, KinePhaseSpace_t t)
Definition: KineUtils.cxx:130
const char * AsString(Resonance_t res)
resonance id -&gt; string
double fGnResMaxNWidths
limits allowed phase space for other res
double FindClosestKF(int target_pdgc, int nucleon_pdgc) const
const Target & Tgt(void) const
Definition: InitialState.h:66
double fXSecScaleNC
external NC xsec scaling factor
double fMa2
(axial mass)^2
bool fUsingNuTauScaling
use NeuGEN nutau xsec reduction factors?
string fKFTable
table of Fermi momentum (kF) constants for various nuclei
double ProbeE(RefFrame_t rf) const
bool IsNegChargedLepton(int pdgc)
Definition: PDGUtils.cxx:139
double S
Definition: FKR.h:40
double Ta
Definition: FKR.h:41
int ResonanceIndex(Resonance_t res)
resonance idx, quark model / SU(6)
bool fUsePauliBlocking
account for Pauli blocking?
Initial State information.
Definition: InitialState.h:48
#define pDEBUG
Definition: Messenger.h:63
double fN2ResMaxNWidths
limits allowed phase space for n=2 res
Spline * fNuTauRdSpl
xsec reduction spline for nu_tau

Member Data Documentation

FKR genie::ReinSehgalRESPXSec::fFKR
mutableprivate

Definition at line 64 of file ReinSehgalRESPXSec.h.

Referenced by XSec().

double genie::ReinSehgalRESPXSec::fGnResMaxNWidths
private

limits allowed phase space for other res

Definition at line 86 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::ReinSehgalRESPXSec::fHAmplModelCC
private

Definition at line 66 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::ReinSehgalRESPXSec::fHAmplModelEMn
private

Definition at line 70 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::ReinSehgalRESPXSec::fHAmplModelEMp
private

Definition at line 69 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::ReinSehgalRESPXSec::fHAmplModelNCn
private

Definition at line 68 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::ReinSehgalRESPXSec::fHAmplModelNCp
private

Definition at line 67 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

string genie::ReinSehgalRESPXSec::fKFTable
private

table of Fermi momentum (kF) constants for various nuclei

Definition at line 87 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fMa2
private

(axial mass)^2

Definition at line 77 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fMv2
private

(vector mass)^2

Definition at line 78 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fN0ResMaxNWidths
private

limits allowed phase space for n=0 res

Definition at line 85 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fN2ResMaxNWidths
private

limits allowed phase space for n=2 res

Definition at line 84 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

bool genie::ReinSehgalRESPXSec::fNormBW
private

normalize resonance breit-wigner to 1?

Definition at line 74 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

Spline* genie::ReinSehgalRESPXSec::fNuTauBarRdSpl
private

xsec reduction spline for nu_tau_bar

Definition at line 91 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), ReinSehgalRESPXSec(), XSec(), and ~ReinSehgalRESPXSec().

Spline* genie::ReinSehgalRESPXSec::fNuTauRdSpl
private

xsec reduction spline for nu_tau

Definition at line 90 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), ReinSehgalRESPXSec(), XSec(), and ~ReinSehgalRESPXSec().

double genie::ReinSehgalRESPXSec::fOmega
private

FKR parameter Omega.

Definition at line 76 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fSin48w
private

sin^4(Weingberg angle)

Definition at line 79 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

bool genie::ReinSehgalRESPXSec::fUsePauliBlocking
private

account for Pauli blocking?

Definition at line 89 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

bool genie::ReinSehgalRESPXSec::fUseRFGParametrization
private

use parametrization for fermi momentum insted of table?

Definition at line 88 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

bool genie::ReinSehgalRESPXSec::fUsingDisResJoin
private

use a DIS/RES joining scheme?

Definition at line 81 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

bool genie::ReinSehgalRESPXSec::fUsingNuTauScaling
private

use NeuGEN nutau xsec reduction factors?

Definition at line 82 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fVud2
private

|Vud|^2(square of magnitude ud-element of CKM-matrix)

Definition at line 80 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fWcut
private

apply DIS/RES joining scheme < Wcut

Definition at line 83 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

bool genie::ReinSehgalRESPXSec::fWghtBW
private

weight with resonance breit-wigner?

Definition at line 73 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

const XSecIntegratorI* genie::ReinSehgalRESPXSec::fXSecIntegrator
private

Definition at line 96 of file ReinSehgalRESPXSec.h.

Referenced by Integral(), and LoadConfig().

double genie::ReinSehgalRESPXSec::fXSecScaleCC
private

external CC xsec scaling factor

Definition at line 92 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fXSecScaleEM
private

external EM xsec scaling factor

Definition at line 94 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fXSecScaleNC
private

external NC xsec scaling factor

Definition at line 93 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().

double genie::ReinSehgalRESPXSec::fZeta
private

FKR parameter Zeta.

Definition at line 75 of file ReinSehgalRESPXSec.h.

Referenced by LoadConfig(), and XSec().


The documentation for this class was generated from the following files: