GENIEGenerator
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Private Attributes | List of all members
genie::Born Class Reference

Born level nu-electron cross section. More...

#include <Born.h>

Public Member Functions

 Born ()
 
virtual ~Born ()
 
double GetReAlpha (void)
 
double PXSecCCR (double s, double t, double mlin, double mlout)
 
double PXSecCCV (double s, double t, double mlin, double mlout)
 
double PXSecCCRNC (double s, double t, double mlin, double mlout)
 
double PXSecCCVNC (double s, double t, double mlin, double mlout)
 
double PXSecNCVnu (double s, double t, double mlin, double mlout)
 
double PXSecNCVnubar (double s, double t, double mlin, double mlout)
 
double PXSecPhoton (double s, double t, double mlout2)
 
double PXSecPhoton_T (double s12, double s13, double Q2, double ml2)
 
double PXSecPhoton_L (double s12, double s13, double Q2, double ml2)
 
double GetS (double mlin, double Enuin)
 
double GetT (double mlin, double mlout, double s, double costhCM)
 
double GetU (double mlin, double mlout, double s, double t)
 
bool IsInPhaseSpace (double mlin, double mlout, double Enuin, double Enuout)
 
double Lambda (double a, double b, double c)
 

Private Attributes

double fGw
 
double fGz
 
TComplex falpha
 
TComplex fsw2
 
TComplex fcw2
 
TComplex fmw2c
 
TComplex fmz2c
 
TComplex fgae
 
TComplex fgbe
 
TComplex fgav
 

Detailed Description

Born level nu-electron cross section.

Author
Alfonso Garcia <aagarciasoto km3net.de> IFIC & Harvard University
Created:
Dec 8, 2021
License:
Copyright (c) 2003-2024, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org or see $GENIE/LICENSE

Definition at line 26 of file Born.h.

Constructor & Destructor Documentation

Born::Born ( )

Definition at line 24 of file Born.cxx.

References genie::PDGLibrary::Find(), genie::PDGLibrary::Instance(), genie::constants::kGF, genie::constants::kMw, genie::constants::kMw2, genie::constants::kMz, genie::constants::kMz2, genie::kPdgWM, genie::kPdgZ0, and genie::constants::kPi.

25 {
26 
27  fGw = PDGLibrary::Instance()->Find(kPdgWM)->Width();
28  fGz = PDGLibrary::Instance()->Find(kPdgZ0)->Width();
29  fmw2c = TComplex(kMw2,fGw*kMw);
30  fmz2c = TComplex(kMz2,fGz*kMz);
31  TComplex rat = fmw2c/fmz2c;
32  fsw2 = TComplex(1.-rat.Re(),-rat.Im());
33  fcw2 = 1.-fsw2;
34  falpha = TMath::Sqrt(2.)*kGF/kPi * fmw2c * fsw2;
35 
36  fgae = -1./2. + 2.*fsw2;
37  fgbe = -1./2.;
38  fgav = 1./2.;
39 
40 }
TComplex fsw2
Definition: Born.h:54
TComplex fgav
Definition: Born.h:60
const int kPdgWM
Definition: PDGCodes.h:192
const int kPdgZ0
Definition: PDGCodes.h:190
double fGw
Definition: Born.h:50
TComplex falpha
Definition: Born.h:53
TComplex fgbe
Definition: Born.h:59
static PDGLibrary * Instance(void)
Definition: PDGLibrary.cxx:68
TParticlePDG * Find(int pdgc, bool must_exist=true)
Definition: PDGLibrary.cxx:86
TComplex fgae
Definition: Born.h:58
TComplex fcw2
Definition: Born.h:55
TComplex fmz2c
Definition: Born.h:57
TComplex fmw2c
Definition: Born.h:56
double fGz
Definition: Born.h:51
Born::~Born ( )
virtual

Definition at line 42 of file Born.cxx.

43 {
44 
45 /*
46 Make sure the p3 is always the charged lepton:
47 
48 nu (p1) + lp (p2) -> lp (p3) + nu (p4)
49 
50  s-channel t-channel u-channel
51 1 \ / 3 1 --------- 3 1 ------\ / 3
52  ------ | | X
53 2 / \ 4 2 --------- 4 2 ------/ \ 4
54 */
55 
56 }

Member Function Documentation

double genie::Born::GetReAlpha ( void  )
inline
double Born::GetS ( double  mlin,
double  Enuin 
)
double Born::GetT ( double  mlin,
double  mlout,
double  s,
double  costhCM 
)

Definition at line 200 of file Born.cxx.

Referenced by genie::HENuElGenerator::ProcessEventRecord(), genie::GLRESGenerator::ProcessEventRecord(), genie::HENuElPXSec::XSec(), genie::PhotonRESPXSec::XSec(), and genie::GLRESPXSec::XSec().

201 {
202  //http://edu.itp.phys.ethz.ch/hs10/ppp1/PPP1_2.pdf [Sec 2.2.1]
203  double sum = mlin*mlin+mlout*mlout;
204  return ( (TMath::Sqrt(Lambda(s,0.,mlin*mlin)*Lambda(s,mlout*mlout,0.))*costhCM+mlin*mlin*mlout*mlout)/s + sum - s ) /2.;
205 }
static constexpr double s
Definition: Units.h:95
double Lambda(double a, double b, double c)
Definition: Born.cxx:190
double Born::GetU ( double  mlin,
double  mlout,
double  s,
double  t 
)

Definition at line 207 of file Born.cxx.

208 {
209  return mlin*mlin+mlout*mlout-s-t;
210 }
static constexpr double s
Definition: Units.h:95
bool Born::IsInPhaseSpace ( double  mlin,
double  mlout,
double  Enuin,
double  Enuout 
)

Definition at line 212 of file Born.cxx.

Referenced by genie::GLRESPXSec::XSec(), and genie::HENuElPXSec::XSec().

213 {
214 
215  //https://arxiv.org/pdf/2007.14426.pdf [section 2.2]
216  double frac = Enuout/Enuin;
217  if ( frac < mlin/(mlin+2.*Enuin)+(mlout*mlout-mlin*mlin)/2./Enuin/(mlin+2.*Enuin) ) return false;
218  else if ( frac > 1.-(mlout*mlout-mlin*mlin)/2./Enuin/mlin ) return false;
219 
220  return true;
221 
222 }
double Born::Lambda ( double  a,
double  b,
double  c 
)

Definition at line 190 of file Born.cxx.

Referenced by genie::PhotonCOHPXSec::XSec().

191 {
192  return a*a + b*b + c*c - 2*a*b - 2*a*c - 2*b*c;
193 }
static constexpr double b
Definition: Units.h:78
const double a
double Born::PXSecCCR ( double  s,
double  t,
double  mlin,
double  mlout 
)

Definition at line 58 of file Born.cxx.

Referenced by genie::GLRESPXSec::XSec(), and genie::PhotonRESPXSec::XSec().

59 {
60 
61  TComplex prop = falpha/fsw2/(s-fmw2c);
62 
63  return (t-mlout*mlout)*(t-mlin*mlin) * prop.Rho2();
64 
65 }
TComplex fsw2
Definition: Born.h:54
static constexpr double s
Definition: Units.h:95
TComplex falpha
Definition: Born.h:53
TComplex fmw2c
Definition: Born.h:56
double Born::PXSecCCRNC ( double  s,
double  t,
double  mlin,
double  mlout 
)

Definition at line 76 of file Born.cxx.

References a, and genie::units::b.

Referenced by genie::GLRESPXSec::XSec(), and genie::PhotonRESPXSec::XSec().

77 {
78 
79  double u = GetU(mlin,mlout,s,t);
80 
81  TComplex a = fgav*(fgae-fgbe)/(u-fmz2c)/fcw2/fsw2;
82  TComplex b = fgav*(fgae+fgbe)/(u-fmz2c)/fcw2/fsw2 + 1./(s-fmw2c)/fsw2;
83  return falpha.Rho2() * ( (t-mlout*mlout)*(t-mlin*mlin)*b.Rho2() + (s-mlout*mlout)*(s-mlin*mlin)*a.Rho2() );
84 
85 }
TComplex fsw2
Definition: Born.h:54
TComplex fgav
Definition: Born.h:60
static constexpr double s
Definition: Units.h:95
static constexpr double b
Definition: Units.h:78
const double a
TComplex falpha
Definition: Born.h:53
TComplex fgbe
Definition: Born.h:59
TComplex fgae
Definition: Born.h:58
TComplex fcw2
Definition: Born.h:55
TComplex fmz2c
Definition: Born.h:57
double GetU(double mlin, double mlout, double s, double t)
Definition: Born.cxx:207
TComplex fmw2c
Definition: Born.h:56
double Born::PXSecCCV ( double  s,
double  t,
double  mlin,
double  mlout 
)

Definition at line 67 of file Born.cxx.

Referenced by genie::HENuElPXSec::XSec().

68 {
69 
70  TComplex prop = falpha/fsw2/(t-fmw2c);
71 
72  return (s-mlout*mlout)*(s-mlin*mlin) * prop.Rho2();
73 
74 }
TComplex fsw2
Definition: Born.h:54
static constexpr double s
Definition: Units.h:95
TComplex falpha
Definition: Born.h:53
TComplex fmw2c
Definition: Born.h:56
double Born::PXSecCCVNC ( double  s,
double  t,
double  mlin,
double  mlout 
)

Definition at line 87 of file Born.cxx.

References a, and genie::units::b.

Referenced by genie::HENuElPXSec::XSec().

88 {
89 
90  double u = GetU(mlin,mlout,s,t);
91 
92  TComplex a = fgav*(fgae+fgbe)/(u-fmz2c)/fcw2/fsw2 + 1./(t-fmw2c)/fsw2;
93  TComplex b = fgav*(fgae-fgbe)/(u-fmz2c)/fcw2/fsw2;
94  return falpha.Rho2() * ( (t-mlout*mlout)*(t-mlin*mlin)*b.Rho2() + (s-mlout*mlout)*(s-mlin*mlin)*a.Rho2() );
95 
96 }
TComplex fsw2
Definition: Born.h:54
TComplex fgav
Definition: Born.h:60
static constexpr double s
Definition: Units.h:95
static constexpr double b
Definition: Units.h:78
const double a
TComplex falpha
Definition: Born.h:53
TComplex fgbe
Definition: Born.h:59
TComplex fgae
Definition: Born.h:58
TComplex fcw2
Definition: Born.h:55
TComplex fmz2c
Definition: Born.h:57
double GetU(double mlin, double mlout, double s, double t)
Definition: Born.cxx:207
TComplex fmw2c
Definition: Born.h:56
double Born::PXSecNCVnu ( double  s,
double  t,
double  mlin,
double  mlout 
)

Definition at line 98 of file Born.cxx.

References a, and genie::units::b.

Referenced by genie::HENuElPXSec::XSec().

99 {
100 
101  double u = GetU(mlin,mlout,s,t);
102 
103  TComplex a = fgav*(fgae+fgbe)/(u-fmz2c)/fcw2/fsw2;
104  TComplex b = fgav*(fgae-fgbe)/(u-fmz2c)/fcw2/fsw2;
105  return falpha.Rho2() * ( (t-mlout*mlout)*(t-mlin*mlin)*b.Rho2() + (s-mlout*mlout)*(s-mlin*mlin)*a.Rho2() );
106 
107 }
TComplex fsw2
Definition: Born.h:54
TComplex fgav
Definition: Born.h:60
static constexpr double s
Definition: Units.h:95
static constexpr double b
Definition: Units.h:78
const double a
TComplex falpha
Definition: Born.h:53
TComplex fgbe
Definition: Born.h:59
TComplex fgae
Definition: Born.h:58
TComplex fcw2
Definition: Born.h:55
TComplex fmz2c
Definition: Born.h:57
double GetU(double mlin, double mlout, double s, double t)
Definition: Born.cxx:207
double Born::PXSecNCVnubar ( double  s,
double  t,
double  mlin,
double  mlout 
)

Definition at line 109 of file Born.cxx.

References a, and genie::units::b.

Referenced by genie::HENuElPXSec::XSec().

110 {
111 
112  double u = GetU(mlin,mlout,s,t);
113 
114  TComplex a = fgav*(fgae-fgbe)/(u-fmz2c)/fcw2/fsw2;
115  TComplex b = fgav*(fgae+fgbe)/(u-fmz2c)/fcw2;
116  return falpha.Rho2() * ( (t-mlout*mlout)*(t-mlin*mlin)*b.Rho2()/fsw2.Rho2() + (s-mlout*mlout)*(s-mlin*mlin)*a.Rho2() );
117 
118 }
TComplex fsw2
Definition: Born.h:54
TComplex fgav
Definition: Born.h:60
static constexpr double s
Definition: Units.h:95
static constexpr double b
Definition: Units.h:78
const double a
TComplex falpha
Definition: Born.h:53
TComplex fgbe
Definition: Born.h:59
TComplex fgae
Definition: Born.h:58
TComplex fcw2
Definition: Born.h:55
TComplex fmz2c
Definition: Born.h:57
double GetU(double mlin, double mlout, double s, double t)
Definition: Born.cxx:207
double Born::PXSecPhoton ( double  s,
double  t,
double  mlout2 
)

Definition at line 120 of file Born.cxx.

References genie::constants::kMw2, and genie::constants::kPi2.

121 {
122 
123  double u = kMw2 + mlout2 - s - t;
124 
125  double ME = 8*kPi2*falpha.Rho2()*s/kMw2/fsw2.Re()/TMath::Power(mlout2 - t,2)/TMath::Power(kMw2 - u,2)*
126  ( -2*(kMw2 - u)*TMath::Power(mlout2,3) - 2*TMath::Power(mlout2,2)*(-2*kMw2*u + u*(s + u) + TMath::Power(kMw2,2))
127  + mlout2*(-(kMw2*u*(4*s + 5*u)) + (s + u)*TMath::Power(kMw2,2) + 3*TMath::Power(kMw2,3) + (s + u)*TMath::Power(u,2))
128  + 2*kMw2*((3*s + u)*TMath::Power(kMw2,2) - TMath::Power(kMw2,3) + 4*u*TMath::Power(s,2) + 2*TMath::Power(s,3) + 3*s*TMath::Power(u,2)
129  + TMath::Power(u,3) - kMw2*TMath::Power(2*s + u,2)) );
130 
131  return TMath::Max(0.,ME);
132 
133 }
TComplex fsw2
Definition: Born.h:54
static constexpr double s
Definition: Units.h:95
TComplex falpha
Definition: Born.h:53
double Born::PXSecPhoton_L ( double  s12,
double  s13,
double  Q2,
double  ml2 
)

Definition at line 163 of file Born.cxx.

References genie::constants::kMw2, and genie::constants::kPi2.

Referenced by genie::PhotonCOHPXSec::XSec().

164 {
165  double ME2 = 0.0;
166  ME2 = 2*falpha.Rho2()*Q2*TMath::Power(kMw2,-3)*kPi2*TMath::Power(s12,-2)*TMath::Power(ml2 - kMw2 + s13,-2)*TMath::Power(ml2 - kMw2 - s12 + s13,-2)*
167  ((s12 - s13)*TMath::Power(ml2,5)*TMath::Power(s12,2) - 2*s12*TMath::Power(ml2,4)*(2*kMw2*TMath::Power(s12,2) - (Q2 - s12)*(-3*s12*s13 + TMath::Power(s12,2) + 2*TMath::Power(s13,2))) +
168  TMath::Power(ml2,3)*(-2*(s12 - s13)*TMath::Power(kMw2,2)*TMath::Power(s12,2) +
169  2*kMw2*s12*(Q2*(9*s12*s13 - 5*TMath::Power(s12,2) - 2*TMath::Power(s13,2)) + s12*(-11*s12*s13 + 3*TMath::Power(s12,2) + 4*TMath::Power(s13,2))) +
170  (s12 - s13)*(TMath::Power(Q2,2)*TMath::Power(s12 - 2*s13,2) + TMath::Power(s12,2)*(-6*s12*s13 + TMath::Power(s12,2) + 6*TMath::Power(s13,2)) -
171  2*Q2*s12*(-5*s12*s13 + TMath::Power(s12,2) + 6*TMath::Power(s13,2)))) +
172  2*TMath::Power(ml2,2)*(4*(2*s12 - s13)*TMath::Power(kMw2,3)*TMath::Power(s12,2) +
173  (Q2 - s12)*s13*(Q2*(s12 - 2*s13) + s12*(-s12 + s13))*(-3*s12*s13 + TMath::Power(s12,2) + 2*TMath::Power(s13,2)) +
174  s12*TMath::Power(kMw2,2)*(Q2*(-11*s12*s13 + 7*TMath::Power(s12,2) - 2*TMath::Power(s13,2)) + s12*(15*s12*s13 - 11*TMath::Power(s12,2) + 2*TMath::Power(s13,2))) -
175  kMw2*((s12 - s13)*TMath::Power(Q2,2)*TMath::Power(s12 - 2*s13,2) + TMath::Power(s12,2)*(-11*s13*TMath::Power(s12,2) + TMath::Power(s12,3) + 20*s12*TMath::Power(s13,2) - 8*TMath::Power(s13,3)) -
176  2*Q2*s12*(-10*s13*TMath::Power(s12,2) + TMath::Power(s12,3) + 17*s12*TMath::Power(s13,2) - 6*TMath::Power(s13,3)))) +
177  4*TMath::Power(kMw2,2)*TMath::Power(s12,2)*(-(s13*(Q2 - 7*s12 + 4*s13)*TMath::Power(kMw2,2)) + (s12 - 2*s13)*TMath::Power(kMw2,3) + kMw2*(2*Q2 - s12 - 2*s13)*TMath::Power(s13,2) +
178  (-Q2 + s12)*TMath::Power(s13,3)) + ml2*(-15*(s12 - s13)*TMath::Power(kMw2,4)*TMath::Power(s12,2) +
179  2*s12*TMath::Power(kMw2,3)*(Q2*(7*s12*s13 - 3*TMath::Power(s12,2) + 2*TMath::Power(s13,2)) + s12*(-21*s12*s13 + 9*TMath::Power(s12,2) + 4*TMath::Power(s13,2))) +
180  TMath::Power(kMw2,2)*((s12 - s13)*TMath::Power(Q2,2)*TMath::Power(s12 - 2*s13,2) +
181  TMath::Power(s12,2)*(-31*s13*TMath::Power(s12,2) + TMath::Power(s12,3) + 60*s12*TMath::Power(s13,2) - 14*TMath::Power(s13,3)) -
182  2*Q2*s12*(-14*s13*TMath::Power(s12,2) + TMath::Power(s12,3) + 27*s12*TMath::Power(s13,2) - 6*TMath::Power(s13,3))) -
183  2*kMw2*s13*((s12 - s13)*TMath::Power(Q2,2)*TMath::Power(s12 - 2*s13,2) +
184  TMath::Power(s12,2)*(-8*s13*TMath::Power(s12,2) + TMath::Power(s12,3) + 11*s12*TMath::Power(s13,2) - 4*TMath::Power(s13,3)) +
185  Q2*s12*(15*s13*TMath::Power(s12,2) - 2*TMath::Power(s12,3) - 25*s12*TMath::Power(s13,2) + 10*TMath::Power(s13,3))) +
186  (s12 - s13)*TMath::Power(s13,2)*TMath::Power(Q2*(s12 - 2*s13) + s12*(-s12 + s13),2)))/fsw2.Re();
187  return TMath::Max(0.,ME2);
188 }
TComplex fsw2
Definition: Born.h:54
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
TComplex falpha
Definition: Born.h:53
double Born::PXSecPhoton_T ( double  s12,
double  s13,
double  Q2,
double  ml2 
)

Definition at line 135 of file Born.cxx.

References genie::constants::kMw2, and genie::constants::kPi2.

Referenced by genie::PhotonCOHPXSec::XSec().

136 {
137  double ME2 = 0.0;
138  ME2 = (4*falpha.Rho2()*kPi2*(TMath::Power(ml2,4)*s12*(2*TMath::Power(kMw2,2)*TMath::Power(s12,2) - 2*kMw2*Q2*s12*s13 + TMath::Power(Q2,2)*s13*(-s12 + s13)) +
139  TMath::Power(ml2,3)*(-2*TMath::Power(kMw2,3)*TMath::Power(s12,3) + TMath::Power(Q2,2)*(s12 - s13)*s13*(-(Q2*s12) + TMath::Power(s12,2) + Q2*s13 - 3*s12*s13) +
140  2*TMath::Power(kMw2,2)*TMath::Power(s12,2)*(3*Q2*s12 - 2*TMath::Power(s12,2) + 2*Q2*s13 + s12*s13) +
141  kMw2*Q2*s12*(Q2*TMath::Power(s12,2) - Q2*TMath::Power(s13,2) - 2*s12*TMath::Power(s13,2))) +
142  TMath::Power(ml2,2)*(-6*TMath::Power(kMw2,4)*TMath::Power(s12,3) + 2*kMw2*Q2*
143  (-(Q2*s12*(s12 - 3*s13)) + TMath::Power(Q2,2)*(s12 - s13) + TMath::Power(s12,2)*(s12 - s13))*(s12 - s13)*s13 +
144  TMath::Power(Q2,2)*(s12 - s13)*TMath::Power(s13,2)*(-2*Q2*s12 + 2*TMath::Power(s12,2) + 2*Q2*s13 - 3*s12*s13) +
145  2*TMath::Power(kMw2,3)*TMath::Power(s12,2)*(2*TMath::Power(s12,2) - 3*Q2*(2*s12 + s13)) +
146  TMath::Power(kMw2,2)*s12*(2*TMath::Power(s12,2)*TMath::Power(s12 - s13,2) + TMath::Power(Q2,2)*(s12 - s13)*s13 -
147  2*Q2*s12*(TMath::Power(s12,2) - 8*s12*s13 - 2*TMath::Power(s13,2)))) -
148  2*TMath::Power(kMw2,2)*TMath::Power(s12,2)*(2*TMath::Power(kMw2,4)*s12 + TMath::Power(Q2,2)*TMath::Power(s13,2)*(-s12 + s13) -
149  2*TMath::Power(kMw2,3)*(2*TMath::Power(s12,2) - Q2*s13 + s12*s13) +
150  TMath::Power(kMw2,2)*(4*Q2*s12*(s12 - 2*s13) + TMath::Power(Q2,2)*(-s12 + s13) + 2*s12*TMath::Power(s12 + s13,2)) +
151  2*kMw2*s13*(TMath::Power(Q2,2)*(s12 - s13) - s12*(TMath::Power(s12,2) + TMath::Power(s13,2)) + Q2*(-TMath::Power(s12,2) + 2*s12*s13 + TMath::Power(s13,2)))) +
152  ml2*(10*TMath::Power(kMw2,5)*TMath::Power(s12,3) - TMath::Power(Q2,2)*(Q2 - s12)*TMath::Power(s12 - s13,2)*TMath::Power(s13,3) +
153  2*TMath::Power(kMw2,4)*TMath::Power(s12,2)*(3*Q2*s12 - 4*TMath::Power(s12,2) + 4*Q2*s13 - 3*s12*s13) +
154  kMw2*Q2*(s12 - s13)*TMath::Power(s13,2)*(2*TMath::Power(Q2,2)*(s12 - s13) + 2*TMath::Power(s12,2)*(s12 - s13) + Q2*s12*(-3*s12 + 5*s13)) +
155  TMath::Power(kMw2,3)*s12*(2*Q2*s12*(5*TMath::Power(s12,2) - 16*s12*s13 - TMath::Power(s13,2)) +
156  TMath::Power(Q2,2)*(-3*TMath::Power(s12,2) + 2*s12*s13 + TMath::Power(s13,2)) + 2*TMath::Power(s12,2)*(TMath::Power(s12,2) + 6*s12*s13 + TMath::Power(s13,2))) -
157  TMath::Power(kMw2,2)*s13*(TMath::Power(Q2,3)*TMath::Power(s12 - s13,2) - 2*TMath::Power(s12,3)*TMath::Power(s12 - s13,2) +
158  TMath::Power(Q2,2)*s12*(-5*TMath::Power(s12,2) + 8*s12*s13 - 3*TMath::Power(s13,2)) +
159  2*Q2*TMath::Power(s12,2)*(3*TMath::Power(s12,2) - 9*s12*s13 + 2*TMath::Power(s13,2))))))/(TMath::Power(kMw2,3)*TMath::Power(s12,2)*TMath::Power(ml2 - kMw2 + s13,2)*TMath::Power(ml2 - kMw2 - s12 + s13,2)*fsw2.Re());
160  return TMath::Max(0.,ME2);
161 }
TComplex fsw2
Definition: Born.h:54
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
TComplex falpha
Definition: Born.h:53

Member Data Documentation

TComplex genie::Born::falpha
private

Definition at line 53 of file Born.h.

Referenced by GetReAlpha().

TComplex genie::Born::fcw2
private

Definition at line 55 of file Born.h.

TComplex genie::Born::fgae
private

Definition at line 58 of file Born.h.

TComplex genie::Born::fgav
private

Definition at line 60 of file Born.h.

TComplex genie::Born::fgbe
private

Definition at line 59 of file Born.h.

double genie::Born::fGw
private

Definition at line 50 of file Born.h.

double genie::Born::fGz
private

Definition at line 51 of file Born.h.

TComplex genie::Born::fmw2c
private

Definition at line 56 of file Born.h.

TComplex genie::Born::fmz2c
private

Definition at line 57 of file Born.h.

TComplex genie::Born::fsw2
private

Definition at line 54 of file Born.h.


The documentation for this class was generated from the following files: