GENIEGenerator
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
genie::BSKLNBaseRESPXSec2014 Class Reference

Base class for the Berger-Sehgal and the Kuzmin, Lyubushkin, Naumov resonance models, implemented as modifications to the Rein-Sehgal model. More...

#include <BSKLNBaseRESPXSec2014.h>

Inheritance diagram for genie::BSKLNBaseRESPXSec2014:
Inheritance graph
[legend]
Collaboration diagram for genie::BSKLNBaseRESPXSec2014:
Collaboration graph
[legend]

Public Member Functions

virtual ~BSKLNBaseRESPXSec2014 ()
 
double XSec (const Interaction *i, KinePhaseSpace_t k) const
 Compute the cross section for the input interaction. More...
 
double Integral (const Interaction *i) const
 
bool ValidProcess (const Interaction *i) const
 Can this cross section algorithm handle the input process? More...
 
void Configure (const Registry &config)
 
void Configure (string config)
 
- Public Member Functions inherited from genie::XSecAlgorithmI
virtual ~XSecAlgorithmI ()
 
virtual bool ValidKinematics (const Interaction *i) const
 Is the input kinematical point a physically allowed one? More...
 
- Public Member Functions inherited from genie::Algorithm
virtual ~Algorithm ()
 
virtual void FindConfig (void)
 
virtual const RegistryGetConfig (void) const
 
RegistryGetOwnedConfig (void)
 
virtual const AlgIdId (void) const
 Get algorithm ID. More...
 
virtual AlgStatus_t GetStatus (void) const
 Get algorithm status. More...
 
virtual bool AllowReconfig (void) const
 
virtual AlgCmp_t Compare (const Algorithm *alg) const
 Compare with input algorithm. More...
 
virtual void SetId (const AlgId &id)
 Set algorithm ID. More...
 
virtual void SetId (string name, string config)
 
const AlgorithmSubAlg (const RgKey &registry_key) const
 
void AdoptConfig (void)
 
void AdoptSubstructure (void)
 
virtual void Print (ostream &stream) const
 Print algorithm info. More...
 

Protected Member Functions

 BSKLNBaseRESPXSec2014 (string name)
 
 BSKLNBaseRESPXSec2014 (string name, string config)
 
void LoadConfig (void)
 
- Protected Member Functions inherited from genie::XSecAlgorithmI
 XSecAlgorithmI ()
 
 XSecAlgorithmI (string name)
 
 XSecAlgorithmI (string name, string config)
 
- Protected Member Functions inherited from genie::Algorithm
 Algorithm ()
 
 Algorithm (string name)
 
 Algorithm (string name, string config)
 
void Initialize (void)
 
void DeleteConfig (void)
 
void DeleteSubstructure (void)
 
RegistryExtractLocalConfig (const Registry &in) const
 
RegistryExtractLowerConfig (const Registry &in, const string &alg_key) const
 Split an incoming configuration Registry into a block valid for the sub-algo identified by alg_key. More...
 
template<class T >
bool GetParam (const RgKey &name, T &p, bool is_top_call=true) const
 
template<class T >
bool GetParamDef (const RgKey &name, T &p, const T &def) const
 
template<class T >
int GetParamVect (const std::string &comm_name, std::vector< T > &v, bool is_top_call=true) const
 Handle to load vectors of parameters. More...
 
int GetParamVectKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
template<class T >
int GetParamMat (const std::string &comm_name, TMatrixT< T > &mat, bool is_top_call=true) const
 Handle to load matrix of parameters. More...
 
template<class T >
int GetParamMatSym (const std::string &comm_name, TMatrixTSym< T > &mat, bool is_top_call=true) const
 
int GetParamMatKeys (const std::string &comm_name, std::vector< RgKey > &k, bool is_top_call=true) const
 
int AddTopRegistry (Registry *rp, bool owns=true)
 add registry with top priority, also update ownership More...
 
int AddLowRegistry (Registry *rp, bool owns=true)
 add registry with lowest priority, also update ownership More...
 
int MergeTopRegistry (const Registry &r)
 
int AddTopRegisties (const vector< Registry * > &rs, bool owns=false)
 Add registries with top priority, also udated Ownerships. More...
 

Protected Attributes

FKR fFKR
 
const RSHelicityAmplModelIfHAmplModelCC
 
const RSHelicityAmplModelIfHAmplModelNCp
 
const RSHelicityAmplModelIfHAmplModelNCn
 
const RSHelicityAmplModelIfHAmplModelEMp
 
const RSHelicityAmplModelIfHAmplModelEMn
 
double fFermiConstant2
 
double fFineStructure2
 
bool fWghtBW
 weight with resonance breit-wigner? More...
 
bool fNormBW
 normalize resonance breit-wigner to 1? More...
 
double fZeta
 FKR parameter Zeta. More...
 
double fOmega
 FKR parameter Omega. More...
 
double fCa50
 CA5_0. More...
 
double fMa2
 (axial mass)^2 More...
 
double fMv2
 (vector mass)^2 More...
 
double fVud2
 |Vud|^2(square of magnitude ud-element of CKM-matrix) More...
 
bool fUsingDisResJoin
 use a DIS/RES joining scheme? More...
 
double fWcut
 apply DIS/RES joining scheme < Wcut More...
 
double fN2ResMaxNWidths
 limits allowed phase space for n=2 res More...
 
double fN0ResMaxNWidths
 limits allowed phase space for n=0 res More...
 
double fGnResMaxNWidths
 limits allowed phase space for other res More...
 
string fKFTable
 table of Fermi momentum (kF) constants for various nuclei More...
 
bool fUseRFGParametrization
 use parametrization for fermi momentum insted of table? More...
 
bool fUsePauliBlocking
 account for Pauli blocking? More...
 
double fXSecScaleCC
 external CC xsec scaling factor More...
 
double fXSecScaleNC
 external NC xsec scaling factor More...
 
double fXSecScaleEM
 external EM xsec scaling factor More...
 
bool fKLN
 
bool fBRS
 
bool fGAMiniBooNE
 
bool fGVMiniBooNE
 
double fCv3
 
double fCv4
 
double fCv51
 
double fCv52
 
bool fGASaritaSchwinger
 
bool fGVSaritaSchwinger
 
double fcII
 
double fMb2
 
const XSecIntegratorIfXSecIntegrator
 
- Protected Attributes inherited from genie::Algorithm
bool fAllowReconfig
 
bool fOwnsSubstruc
 true if it owns its substructure (sub-algs,...) More...
 
AlgId fID
 algorithm name and configuration set More...
 
vector< Registry * > fConfVect
 
vector< bool > fOwnerships
 ownership for every registry in fConfVect More...
 
AlgStatus_t fStatus
 algorithm execution status More...
 
AlgMapfOwnedSubAlgMp
 local pool for owned sub-algs (taken out of the factory pool) More...
 

Additional Inherited Members

- Static Public Member Functions inherited from genie::Algorithm
static string BuildParamVectKey (const std::string &comm_name, unsigned int i)
 
static string BuildParamVectSizeKey (const std::string &comm_name)
 
static string BuildParamMatKey (const std::string &comm_name, unsigned int i, unsigned int j)
 
static string BuildParamMatRowSizeKey (const std::string &comm_name)
 
static string BuildParamMatColSizeKey (const std::string &comm_name)
 

Detailed Description

Base class for the Berger-Sehgal and the Kuzmin, Lyubushkin, Naumov resonance models, implemented as modifications to the Rein-Sehgal model.

References:
Berger, Sehgal Phys. Rev. D76, 113004 (2007)
Kuzmin, Lyubushkin, Naumov Mod. Phys. Lett. A19 (2004) 2815
D.Rein and L.M.Sehgal, Neutrino Excitation of Baryon Resonances

and Single Pion Production, Ann.Phys.133, 79 (1981)

      K. M. Graczyk* and J. T. Sobczyk,PHYSICAL REVIEW D 77, 053001 (2008) for vector and axial current calculation \n

      Modifications based on a MiniBooNE tune courtesy of J. Nowak, S.Dytman
Author
Steve Dytman University of Pittsburgh

Jarek Nowak University of Lancaster

Gabe Perdue Fermilab

Igor Kakorin kakor.nosp@m.in@i.nosp@m.nr.ru Joint Institute for Nuclear Research

      Costas Andreopoulos <c.andreopoulos \at cern.ch>
      University of Liverpool
Created:
Sep 15, 2015
License:
Copyright (c) 2003-2024, The GENIE Collaboration For the full text of the license visit http://copyright.genie-mc.org

Definition at line 56 of file BSKLNBaseRESPXSec2014.h.

Constructor & Destructor Documentation

BSKLNBaseRESPXSec2014::~BSKLNBaseRESPXSec2014 ( )
virtual

Definition at line 71 of file BSKLNBaseRESPXSec2014.cxx.

72 {
73 
74 }
BSKLNBaseRESPXSec2014::BSKLNBaseRESPXSec2014 ( string  name)
protected

Definition at line 59 of file BSKLNBaseRESPXSec2014.cxx.

59  :
61 {
62 
63 }
const char * name
BSKLNBaseRESPXSec2014::BSKLNBaseRESPXSec2014 ( string  name,
string  config 
)
protected

Definition at line 65 of file BSKLNBaseRESPXSec2014.cxx.

65  :
66 XSecAlgorithmI(name, config)
67 {
68 
69 }
const char * name

Member Function Documentation

void BSKLNBaseRESPXSec2014::Configure ( const Registry config)
virtual

Configure the algorithm with an external registry The registry is merged with the top level registry if it is owned, Otherwise a copy of it is added with the highest priority

Reimplemented from genie::Algorithm.

Definition at line 774 of file BSKLNBaseRESPXSec2014.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

775 {
776  Algorithm::Configure(config);
777  this->LoadConfig();
778 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
void BSKLNBaseRESPXSec2014::Configure ( string  config)
virtual

Configure the algorithm from the AlgoConfigPool based on param_set string given in input An algorithm contains a vector of registries coming from different xml configuration files, which are loaded according a very precise prioriy This methods will load a number registries in order of priority: 1) "Tunable" parameter set from CommonParametes. This is loaded with the highest prioriry and it is designed to be used for tuning procedure Usage not expected from the user. 2) For every string defined in "CommonParame" the corresponding parameter set will be loaded from CommonParameter.xml 3) parameter set specified by the config string and defined in the xml file of the algorithm 4) if config is not "Default" also the Default parameter set from the same xml file will be loaded Effectively this avoids the repetion of a parameter when it is not changed in the requested configuration

Reimplemented from genie::Algorithm.

Definition at line 780 of file BSKLNBaseRESPXSec2014.cxx.

References genie::Algorithm::Configure(), and LoadConfig().

781 {
782  Algorithm::Configure(config);
783  this->LoadConfig();
784 }
virtual void Configure(const Registry &config)
Definition: Algorithm.cxx:62
double BSKLNBaseRESPXSec2014::Integral ( const Interaction i) const
virtual

Integrate the model over the kinematic phase space available to the input interaction (kinematical cuts can be included)

Implements genie::XSecAlgorithmI.

Definition at line 741 of file BSKLNBaseRESPXSec2014.cxx.

References fXSecIntegrator, and genie::XSecIntegratorI::Integrate().

742 {
743  double xsec = fXSecIntegrator->Integrate(this,interaction);
744  return xsec;
745 }
virtual double Integrate(const XSecAlgorithmI *model, const Interaction *interaction) const =0
const XSecIntegratorI * fXSecIntegrator
void BSKLNBaseRESPXSec2014::LoadConfig ( void  )
protected

Definition at line 786 of file BSKLNBaseRESPXSec2014.cxx.

References fCa50, fcII, fCv3, fCv4, fCv51, fCv52, fFermiConstant2, fFineStructure2, fGAMiniBooNE, fGASaritaSchwinger, fGnResMaxNWidths, fGVMiniBooNE, fGVSaritaSchwinger, fHAmplModelCC, fHAmplModelEMn, fHAmplModelEMp, fHAmplModelNCn, fHAmplModelNCp, fKFTable, fMa2, fMb2, fMv2, fN0ResMaxNWidths, fN2ResMaxNWidths, fNormBW, fOmega, fUsePauliBlocking, fUseRFGParametrization, fUsingDisResJoin, fVud2, fWcut, fWghtBW, fXSecIntegrator, fXSecScaleCC, fXSecScaleEM, fXSecScaleNC, fZeta, genie::AlgFactory::GetAlgorithm(), genie::Algorithm::GetParam(), genie::Algorithm::GetParamDef(), genie::AlgFactory::Instance(), genie::units::mb, and genie::Algorithm::SubAlg().

Referenced by Configure().

787 {
788  // Cross section scaling factors
789  this->GetParam( "RES-CC-XSecScale", fXSecScaleCC ) ;
790  this->GetParam( "RES-NC-XSecScale", fXSecScaleNC ) ;
791  this->GetParam( "RES-EM-XSecScale", fXSecScaleEM ) ;
792 
793  // Load all configuration data or set defaults
794 
795  this->GetParam( "RES-Zeta" , fZeta ) ;
796  this->GetParam( "RES-Omega" , fOmega ) ;
797  this->GetParam( "minibooneGA", fGAMiniBooNE ) ;
798  this->GetParam( "minibooneGV", fGVMiniBooNE ) ;
799  this->GetParam( "GASaritaSchwinger", fGASaritaSchwinger ) ;
800  this->GetParam( "GVSaritaSchwinger", fGVSaritaSchwinger ) ;
801 
802  double fermi_constant ;
803  this->GetParam( "FermiConstant", fermi_constant ) ;
804  fFermiConstant2 = fermi_constant * fermi_constant ;
805 
806  double alpha ;
807  this->GetParam( "FineStructureConstant", alpha ) ;
808  fFineStructure2 = alpha * alpha ;
809 
810  double ma, mv ;
811  this->GetParam( "RES-Ma", ma ) ;
812  this->GetParam( "RES-Mv", mv ) ;
813  fMa2 = TMath::Power(ma,2);
814  fMv2 = TMath::Power(mv,2);
815 
816  // Additional parameters used for the Sarita-Schwinger parameterization of GV and GA
817  // PhysRevD.77.053001
818  double mb;
819  this->GetParam( "GVCAL-Cv3" , fCv3) ;
820  this->GetParam( "GVCAL-Cv4" , fCv4) ;
821  this->GetParam( "GVCAL-Cv51" , fCv51) ;
822  this->GetParam( "GVCAL-Cv52" , fCv52) ;
823  this->GetParam( "RES-CA50", fCa50 ) ;
824  this->GetParamDef( "GAcII", fcII, 0. ) ;
825  this->GetParamDef( "RES-Mb", mb, 1. ) ;
826  fMb2 = TMath::Power(mb,2);
827 
828  this->GetParamDef( "BreitWignerWeight", fWghtBW, true ) ;
829  this->GetParamDef( "BreitWignerNorm", fNormBW, true);
830  double Vud;
831  this->GetParam("CKM-Vud", Vud );
832  fVud2 = TMath::Power( Vud, 2 );
833  this->GetParam("FermiMomentumTable", fKFTable);
834  this->GetParam("RFG-UseParametrization", fUseRFGParametrization);
835  this->GetParam("UsePauliBlockingForRES", fUsePauliBlocking);
836 
837  // Load all the sub-algorithms needed
838 
839  fHAmplModelCC = 0;
840  fHAmplModelNCp = 0;
841  fHAmplModelNCn = 0;
842  fHAmplModelEMp = 0;
843  fHAmplModelEMn = 0;
844 
845  AlgFactory * algf = AlgFactory::Instance();
846 
847  fHAmplModelCC = dynamic_cast<const RSHelicityAmplModelI *> (
848  algf->GetAlgorithm("genie::RSHelicityAmplModelCC","Default"));
849  fHAmplModelNCp = dynamic_cast<const RSHelicityAmplModelI *> (
850  algf->GetAlgorithm("genie::RSHelicityAmplModelNCp","Default"));
851  fHAmplModelNCn = dynamic_cast<const RSHelicityAmplModelI *> (
852  algf->GetAlgorithm("genie::RSHelicityAmplModelNCn","Default"));
853  fHAmplModelEMp = dynamic_cast<const RSHelicityAmplModelI *> (
854  algf->GetAlgorithm("genie::RSHelicityAmplModelEMp","Default"));
855  fHAmplModelEMn = dynamic_cast<const RSHelicityAmplModelI *> (
856  algf->GetAlgorithm("genie::RSHelicityAmplModelEMn","Default"));
857 
858  assert( fHAmplModelCC );
859  assert( fHAmplModelNCp );
860  assert( fHAmplModelNCn );
861  assert( fHAmplModelEMp );
862  assert( fHAmplModelEMn );
863 
864  // Use algorithm within a DIS/RES join scheme. If yes get Wcut
865  this->GetParam( "UseDRJoinScheme", fUsingDisResJoin ) ;
866  fWcut = 999999;
867  if(fUsingDisResJoin) {
868  this->GetParam( "Wcut", fWcut ) ;
869  }
870 
871  // NeuGEN limits in the allowed resonance phase space:
872  // W < min{ Wmin(physical), (res mass) + x * (res width) }
873  // It limits the integration area around the peak and avoids the
874  // problem with huge xsec increase at low Q2 and high W.
875  // In correspondence with Hugh, Rein said that the underlying problem
876  // are unphysical assumptions in the model.
877  this->GetParamDef( "MaxNWidthForN2Res", fN2ResMaxNWidths, 2.0 ) ;
878  this->GetParamDef( "MaxNWidthForN0Res", fN0ResMaxNWidths, 6.0 ) ;
879  this->GetParamDef( "MaxNWidthForGNRes", fGnResMaxNWidths, 4.0 ) ;
880 
881  // Load the differential cross section integrator
883  dynamic_cast<const XSecIntegratorI *> (this->SubAlg("XSec-Integrator"));
884  assert(fXSecIntegrator);
885 }
bool fNormBW
normalize resonance breit-wigner to 1?
string fKFTable
table of Fermi momentum (kF) constants for various nuclei
double fOmega
FKR parameter Omega.
bool fUsingDisResJoin
use a DIS/RES joining scheme?
double fXSecScaleNC
external NC xsec scaling factor
Cross Section Integrator Interface.
double fN0ResMaxNWidths
limits allowed phase space for n=0 res
const RSHelicityAmplModelI * fHAmplModelEMp
const RSHelicityAmplModelI * fHAmplModelCC
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
bool fWghtBW
weight with resonance breit-wigner?
static constexpr double mb
Definition: Units.h:79
double fXSecScaleCC
external CC xsec scaling factor
const Algorithm * GetAlgorithm(const AlgId &algid)
Definition: AlgFactory.cxx:75
bool fUsePauliBlocking
account for Pauli blocking?
double fWcut
apply DIS/RES joining scheme &lt; Wcut
const RSHelicityAmplModelI * fHAmplModelEMn
Pure abstract base class. Defines the RSHelicityAmplModelI interface.
double fGnResMaxNWidths
limits allowed phase space for other res
bool fUseRFGParametrization
use parametrization for fermi momentum insted of table?
const RSHelicityAmplModelI * fHAmplModelNCp
static AlgFactory * Instance()
Definition: AlgFactory.cxx:64
const RSHelicityAmplModelI * fHAmplModelNCn
bool GetParamDef(const RgKey &name, T &p, const T &def) const
bool GetParam(const RgKey &name, T &p, bool is_top_call=true) const
The GENIE Algorithm Factory.
Definition: AlgFactory.h:39
double fN2ResMaxNWidths
limits allowed phase space for n=2 res
double fZeta
FKR parameter Zeta.
const XSecIntegratorI * fXSecIntegrator
double fXSecScaleEM
external EM xsec scaling factor
const Algorithm * SubAlg(const RgKey &registry_key) const
Definition: Algorithm.cxx:345
bool BSKLNBaseRESPXSec2014::ValidProcess ( const Interaction i) const
virtual

Can this cross section algorithm handle the input process?

Implements genie::XSecAlgorithmI.

Definition at line 747 of file BSKLNBaseRESPXSec2014.cxx.

References genie::Interaction::ExclTag(), genie::Target::HitNucPdg(), genie::Interaction::InitState(), genie::pdg::IsChargedLepton(), genie::ProcessInfo::IsEM(), genie::pdg::IsNeutralLepton(), genie::pdg::IsNeutron(), genie::pdg::IsProton(), genie::ProcessInfo::IsResonant(), genie::ProcessInfo::IsWeak(), genie::kISkipProcessChk, genie::XclsTag::KnownResonance(), genie::InitialState::ProbePdg(), genie::Interaction::ProcInfo(), and genie::InitialState::Tgt().

Referenced by XSec().

748 {
749  if(interaction->TestBit(kISkipProcessChk)) return true;
750 
751  const InitialState & init_state = interaction->InitState();
752  const ProcessInfo & proc_info = interaction->ProcInfo();
753  const XclsTag & xcls = interaction->ExclTag();
754 
755  if(!proc_info.IsResonant()) return false;
756  if(!xcls.KnownResonance()) return false;
757 
758  int hitnuc = init_state.Tgt().HitNucPdg();
759  bool is_pn = (pdg::IsProton(hitnuc) || pdg::IsNeutron(hitnuc));
760 
761  if (!is_pn) return false;
762 
763  int probe = init_state.ProbePdg();
764  bool is_weak = proc_info.IsWeak();
765  bool is_em = proc_info.IsEM();
766  bool nu_weak = (pdg::IsNeutralLepton(probe) && is_weak);
767  bool l_em = (pdg::IsChargedLepton(probe) && is_em );
768 
769  if (!nu_weak && !l_em) return false;
770 
771  return true;
772 }
bool IsResonant(void) const
Definition: ProcessInfo.cxx:99
bool IsWeak(void) const
int HitNucPdg(void) const
Definition: Target.cxx:304
bool KnownResonance(void) const
Definition: XclsTag.h:68
bool IsChargedLepton(int pdgc)
Definition: PDGUtils.cxx:101
Contains minimal information for tagging exclusive processes.
Definition: XclsTag.h:39
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:341
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
int ProbePdg(void) const
Definition: InitialState.h:64
bool IsEM(void) const
bool IsNeutralLepton(int pdgc)
Definition: PDGUtils.cxx:95
const Target & Tgt(void) const
Definition: InitialState.h:66
const UInt_t kISkipProcessChk
if set, skip process validity checks
Definition: Interaction.h:47
Initial State information.
Definition: InitialState.h:48
double BSKLNBaseRESPXSec2014::XSec ( const Interaction i,
KinePhaseSpace_t  k 
) const
virtual

Compute the cross section for the input interaction.

Implements genie::XSecAlgorithmI.

Definition at line 76 of file BSKLNBaseRESPXSec2014.cxx.

References genie::Target::A(), genie::units::A, a, genie::RSHelicityAmpl::Amp20Minus(), genie::RSHelicityAmpl::Amp20Plus(), genie::RSHelicityAmpl::Amp2Minus1(), genie::RSHelicityAmpl::Amp2Minus3(), genie::RSHelicityAmpl::Amp2Plus1(), genie::RSHelicityAmpl::Amp2Plus3(), genie::utils::res::AsString(), genie::Interaction::AsString(), genie::FKR::B, genie::utils::bwfunc::BreitWignerL(), genie::utils::res::BWNorm(), genie::FKR::C, genie::RSHelicityAmplModelI::Compute(), genie::Interaction::ExclTag(), fBRS, fCa50, fcII, fCv3, fCv4, fCv51, fCv52, genie::utils::nuclear::FermiMomentumForIsoscalarNucleonParametrization(), fFKR, fGAMiniBooNE, fGASaritaSchwinger, fGnResMaxNWidths, fGVMiniBooNE, fGVSaritaSchwinger, fHAmplModelCC, fHAmplModelEMn, fHAmplModelEMp, fHAmplModelNCn, fHAmplModelNCp, genie::FermiMomentumTable::FindClosestKF(), fKFTable, fKLN, fMa2, fMb2, fMv2, fN0ResMaxNWidths, fN2ResMaxNWidths, fNormBW, fOmega, genie::Kinematics::FSLeptonP4(), genie::Interaction::FSPrimLepton(), fUsePauliBlocking, fUseRFGParametrization, fUsingDisResJoin, fVud2, fWcut, fWghtBW, fXSecScaleCC, fXSecScaleEM, fXSecScaleNC, fZeta, genie::FermiMomentumTablePool::GetTable(), genie::Target::HitNucMass(), genie::Target::HitNucPdg(), genie::FermiMomentumTablePool::Instance(), genie::pdg::IonPdgCode(), genie::pdg::IsAntiNeutrino(), genie::utils::res::IsDelta(), genie::ProcessInfo::IsEM(), genie::pdg::IsNegChargedLepton(), genie::pdg::IsNeutrino(), genie::pdg::IsNeutron(), genie::pdg::IsPosChargedLepton(), genie::pdg::IsProton(), genie::ProcessInfo::IsWeakCC(), genie::ProcessInfo::IsWeakNC(), genie::utils::mec::J(), genie::utils::kinematics::Jacobian(), genie::constants::kAem2, genie::constants::kGF2, genie::kIAssumeFreeNucleon, genie::constants::kPi, genie::constants::kPi2, genie::constants::kPionMass2, genie::kPSWQ2fE, genie::kRfHitNucRest, genie::constants::kSqrt2, genie::FKR::Lamda, LOG, genie::utils::res::Mass(), genie::utils::res::OrbitalAngularMom(), pDEBUG, pINFO, genie::InitialState::ProbeE(), genie::InitialState::ProbePdg(), genie::Kinematics::q2(), genie::utils::kinematics::Q2(), genie::FKR::R, genie::FKR::Ra, genie::XclsTag::Resonance(), genie::utils::res::ResonanceIndex(), genie::FKR::Rminus, genie::FKR::Rplus, genie::FKR::Rv, genie::FKR::S, genie::FKR::T, genie::FKR::Ta, genie::InitialState::Tgt(), genie::FKR::Tminus, genie::FKR::Tplus, genie::FKR::Tv, genie::XSecAlgorithmI::ValidKinematics(), ValidProcess(), genie::Kinematics::W(), genie::utils::kinematics::W(), genie::utils::res::Width(), and genie::Target::Z().

78 {
79  if(! this -> ValidProcess (interaction) ) return 0.;
80  if(! this -> ValidKinematics (interaction) ) return 0.;
81 
82  const InitialState & init_state = interaction -> InitState();
83  const ProcessInfo & proc_info = interaction -> ProcInfo();
84  const Target & target = init_state.Tgt();
85 
86  // Get kinematical parameters
87  const Kinematics & kinematics = interaction -> Kine();
88  double W = kinematics.W();
89  double q2 = kinematics.q2();
90  double costh = kinematics.FSLeptonP4().CosTheta();
91 
92  // Under the DIS/RES joining scheme, xsec(RES)=0 for W>=Wcut
93  if(fUsingDisResJoin) {
94  if(W>=fWcut) {
95 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
96  LOG("BSKLNBaseRESPXSec2014", pDEBUG)
97  << "RES/DIS Join Scheme: XSec[RES, W=" << W
98  << " >= Wcut=" << fWcut << "] = 0";
99 #endif
100  return 0;
101  }
102  }
103 
104  // Get the input baryon resonance
105  Resonance_t resonance = interaction->ExclTag().Resonance();
106  string resname = utils::res::AsString(resonance);
107  bool is_delta = utils::res::IsDelta (resonance);
108 
109  // Get the neutrino, hit nucleon & weak current
110  int nucpdgc = target.HitNucPdg();
111  int probepdgc = init_state.ProbePdg();
112  bool is_nu = pdg::IsNeutrino (probepdgc);
113  bool is_nubar = pdg::IsAntiNeutrino (probepdgc);
114  bool is_lplus = pdg::IsPosChargedLepton (probepdgc);
115  bool is_lminus = pdg::IsNegChargedLepton (probepdgc);
116  bool is_p = pdg::IsProton (nucpdgc);
117  bool is_n = pdg::IsNeutron (nucpdgc);
118  bool is_CC = proc_info.IsWeakCC();
119  bool is_NC = proc_info.IsWeakNC();
120  bool is_EM = proc_info.IsEM();
121 
122  if(is_CC && !is_delta) {
123  if((is_nu && is_p) || (is_nubar && is_n)) return 0;
124  }
125 
126  // Get baryon resonance parameters
127  int IR = utils::res::ResonanceIndex (resonance);
128  int LR = utils::res::OrbitalAngularMom (resonance);
129  double MR = utils::res::Mass (resonance);
130  double WR = utils::res::Width (resonance);
132 
133  // Following NeuGEN, avoid problems with underlying unphysical
134  // model assumptions by restricting the allowed W phase space
135  // around the resonance peak
136  if (fNormBW) {
137  if (W > MR + fN0ResMaxNWidths * WR && IR==0) return 0.;
138  else if (W > MR + fN2ResMaxNWidths * WR && IR==2) return 0.;
139  else if (W > MR + fGnResMaxNWidths * WR) return 0.;
140  }
141 
142  // Compute auxiliary & kinematical factors
143  double E = init_state.ProbeE(kRfHitNucRest);
144  double Mnuc = target.HitNucMass();
145  double W2 = TMath::Power(W, 2);
146  double Mnuc2 = TMath::Power(Mnuc, 2);
147  double k = 0.5 * (W2 - Mnuc2)/Mnuc;
148  double v = k - 0.5 * q2/Mnuc;
149  double v2 = TMath::Power(v, 2);
150  double Q2 = v2 - q2;
151  double Q = TMath::Sqrt(Q2);
152  double Eprime = E - v;
153  double U = 0.5 * (E + Eprime + Q) / E;
154  double V = 0.5 * (E + Eprime - Q) / E;
155  double U2 = TMath::Power(U, 2);
156  double V2 = TMath::Power(V, 2);
157  double UV = U*V;
158 
159 
160  //JN parameter from the KUZMIN et al.
161 
162  // bool is_RS = true;
163  bool is_KLN = false;
164  if(fKLN && is_CC) is_KLN=true;
165 
166  bool is_BRS = false;
167  if(fBRS && is_CC) is_BRS=true;
168 
169  double ml = interaction->FSPrimLepton()->Mass();
170  double Pl = TMath::Sqrt(Eprime*Eprime - ml*ml);
171 
172  double vstar = (Mnuc*v + q2)/W; //missing W
173  double Qstar = TMath::Sqrt(-q2 + vstar*vstar);
174  double sqrtq2 = TMath::Sqrt(-q2);
175  double a = 1. + 0.5*(W2-q2+Mnuc2)/Mnuc/W;
176 
177  double KNL_Alambda_plus = 0;
178  double KNL_Alambda_minus = 0;
179  double KNL_j0_plus = 0;
180  double KNL_j0_minus = 0;
181  double KNL_jx_plus = 0;
182  double KNL_jx_minus = 0;
183  double KNL_jy_plus = 0;
184  double KNL_jy_minus = 0;
185  double KNL_jz_plus = 0;
186  double KNL_jz_minus = 0;
187  double KNL_Qstar_plus =0;
188  double KNL_Qstar_minus =0;
189 
190  double KNL_K = Q/E/TMath::Sqrt(2*(-q2));
191 
192  double KNL_cL_plus = 0;
193  double KNL_cL_minus = 0;
194 
195  double KNL_cR_plus = 0;
196  double KNL_cR_minus = 0;
197 
198  double KNL_cS_plus = 0;
199  double KNL_cS_minus = 0;
200 
201  double KNL_vstar_plus = 0;
202  double KNL_vstar_minus = 0;
203 
204  if(is_CC && (is_KLN || is_BRS)){
205 
206  LOG("BSKLNBaseRESPXSec2014",pINFO) "costh1="<<costh;
207  costh = (q2 - ml*ml + 2.*E*Eprime)/2./E/Pl;
208  //ml=0;
209  LOG("BSKLNBaseRESPXSec2014",pINFO) "q2="<<q2<< "m2="<<ml*ml<<" 2.*E*Eprime="<<2.*E*Eprime<<" nom="<< (q2 - ml*ml + 2.*E*Eprime)<<" den="<<2.*E*Pl;
210  LOG("BSKLNBaseRESPXSec2014",pINFO) "costh2="<<costh;
211 
212  KNL_Alambda_plus = TMath::Sqrt(E*(Eprime - Pl));
213  KNL_Alambda_minus = TMath::Sqrt(E*(Eprime + Pl));
214  LOG("BSKLNBaseRESPXSec2014",pINFO)
215  << "\n+++++++++++++++++++++++ \n"
216  << "E="<<E << " K= "<<KNL_K << "\n"
217  << "El="<<Eprime<<" Pl="<<Pl<<" ml="<<ml << "\n"
218  << "W="<<W<<" Q="<<Q<<" q2="<<q2 << "\n"
219  << "A-="<<KNL_Alambda_minus<<" A+="<<KNL_Alambda_plus << "\n"
220  << "xxxxxxxxxxxxxxxxxxxxxxx";
221 
222  KNL_j0_plus = KNL_Alambda_plus /W * TMath::Sqrt(1 - costh) * (Mnuc - Eprime - Pl);
223  KNL_j0_minus = KNL_Alambda_minus/W * TMath::Sqrt(1 + costh) * (Mnuc - Eprime + Pl);
224 
225  KNL_jx_plus = KNL_Alambda_plus/ Q * TMath::Sqrt(1 + costh) * (Pl - E);
226  KNL_jx_minus = KNL_Alambda_minus/Q * TMath::Sqrt(1 - costh) * (Pl + E);
227 
228  KNL_jy_plus = KNL_Alambda_plus * TMath::Sqrt(1 + costh);
229  KNL_jy_minus = -KNL_Alambda_minus * TMath::Sqrt(1 - costh);
230 
231  KNL_jz_plus = KNL_Alambda_plus /W/Q * TMath::Sqrt(1 - costh) * ( (E + Pl)*(Mnuc -Eprime) + Pl*( E + 2*E*costh -Pl) );
232  KNL_jz_minus = KNL_Alambda_minus/W/Q * TMath::Sqrt(1 + costh) * ( (E - Pl)*(Mnuc -Eprime) + Pl*( -E + 2*E*costh -Pl) );
233 
234  if (is_nu || is_lminus) {
235  KNL_Qstar_plus = sqrtq2 * KNL_j0_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
236  KNL_Qstar_minus = sqrtq2 * KNL_j0_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
237  }
238 
239  else if (is_nubar || is_lplus){
240  KNL_Qstar_plus = sqrtq2 * KNL_j0_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
241  KNL_Qstar_minus = sqrtq2 * KNL_j0_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
242  }
243 
244  if (is_nu || is_lminus) {
245  KNL_vstar_plus = sqrtq2 * KNL_jz_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
246  KNL_vstar_minus = sqrtq2 * KNL_jz_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
247  }
248  else if (is_nubar || is_lplus) {
249  KNL_vstar_minus = sqrtq2 * KNL_jz_plus / TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
250  KNL_vstar_plus = sqrtq2 * KNL_jz_minus / TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
251  }
252 
253  if(is_nu || is_lminus){
254  KNL_cL_plus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus - KNL_jy_plus);
255  KNL_cL_minus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus - KNL_jy_minus);
256 
257  KNL_cR_plus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus + KNL_jy_plus);
258  KNL_cR_minus = TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus + KNL_jy_minus);
259 
260  KNL_cS_plus = KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_plus *KNL_j0_plus - KNL_jz_plus *KNL_jz_plus ) );
261  KNL_cS_minus = KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
262  }
263 
264  if (is_nubar || is_lplus) {
265  KNL_cL_plus = 1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus + KNL_jy_minus);
266  KNL_cL_minus = -1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus + KNL_jy_plus);
267 
268  KNL_cR_plus = 1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_minus - KNL_jy_minus);
269  KNL_cR_minus = -1 * TMath::Sqrt(0.5)* KNL_K * (KNL_jx_plus - KNL_jy_plus);
270 
271  KNL_cS_plus = -1 * KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_minus*KNL_j0_minus - KNL_jz_minus*KNL_jz_minus) );
272  KNL_cS_minus = 1 * KNL_K * TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
273  }
274  }
275 
276  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"j0-="<<KNL_j0_minus<<" j0+="<<KNL_j0_plus;
277  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"jx-="<<KNL_jx_minus<<" jx+="<<KNL_jx_plus;
278  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"jy-="<<KNL_jy_minus<<" jy+="<<KNL_jy_plus;
279  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"jz-="<<KNL_jz_minus<<" jz+="<<KNL_jz_plus;
280 
281  LOG("BSKLNBaseRESPXSec2014",pINFO) "sqrt2="<<sqrtq2<<" jz+=:"<<KNL_jz_plus<<" j0+="<<KNL_j0_plus<<" denom="<<TMath::Sqrt(TMath::Abs(KNL_j0_plus*KNL_j0_plus - KNL_jz_plus*KNL_jz_plus) );
282 
283  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"vstar-="<<KNL_vstar_minus<<" vstar+="<<KNL_vstar_plus;
284  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"Qstar-="<<KNL_Qstar_minus<<" Qstar+="<<KNL_Qstar_plus;
285 
286 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
287  LOG("BSKLNBaseRESPXSec2014", pDEBUG)
288  << "Kinematical params V = " << V << ", U = " << U;
289 #endif
290 
291  // Calculate RES Correction factor for neutrinos [ F.Ravndal, Nuovo Cim. A 18, 385 (1973) ]
292  double Go = TMath::Power( 1 - 0.25 * q2 / Mnuc2, 0.5 - IR ) ;
293 
294  // For EM, the correction factor is different [ F. Ravndal, Phys. Rev. D 4, 1466 (1971) ]
295  if( is_EM ) Go = TMath::Power( 1 - 0.25 * q2 / W2, 0.5*(1-IR) ) ;
296 
297  double GV = Go * TMath::Power( 1./(1-q2/fMv2), 2);
298  double GA = Go * TMath::Power( 1./(1-q2/fMa2), 2);
299 
300  if(fGVMiniBooNE){
301 
302  LOG("BSKLNBaseRESPXSec2014",pDEBUG) <<"Using new GV tuned to ANL and BNL data";
303  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"fCv3= " << fCv3 << ", fCv4= " << fCv4 << ", fCv51= " <<fCv51 << ", fCv52= " << fCv52;
304  double CV0 = 1./(1-q2/fMv2/4.);
305  double CV3 = fCv3 * CV0 * TMath::Power( 1-q2/fMv2,-2);
306  double CV4 = -1. * fCv4 * CV0 * TMath::Power( 1-q2/fMv2,-2);
307  double CV5 = fCv51* CV0 * TMath::Power( 1-q2/fMv2/fCv52, -2);
308 
309  double GV3 = 0.5 / TMath::Sqrt(3) * ( CV3 * (W + Mnuc)/Mnuc
310  + CV4 * (W2 + q2 -Mnuc2)/2./Mnuc2
311  + CV5 * (W2 - q2 -Mnuc2)/2./Mnuc2 );
312 
313  double GV1 = - 0.5 / TMath::Sqrt(3) * ( CV3 * (Mnuc2 -q2 +Mnuc*W)/W/Mnuc
314  + CV4 * (W2 +q2 - Mnuc2)/2./Mnuc2
315  + CV5 * (W2 -q2 - Mnuc2)/2./Mnuc2 );
316 
317  GV = 0.5 * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5-IR)
318  * TMath::Sqrt( 3 * GV3*GV3 + GV1*GV1);
319 
320  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"GV= " <<GV << " CV3= " <<CV3 << " CV4= " << CV4 << " CV5= " << CV5 << " GV3= " << GV3 << " GV1= " <<GV1;
321  } else if(fGVSaritaSchwinger){
322  // PhysRevD.77.053001
323  LOG("BSKLNBaseRESPXSec2014",pDEBUG) <<"Using GV Sarita-Schwinger model";
324  double CV0 = 1./(1-q2/fMv2/4.);
325  double CV3 = fCv3 * CV0 * TMath::Power( 1-q2/fMv2,-2);
326  double CV4 = -1. * fCv4 * CV0 * TMath::Power( 1-q2/fMv2,-2);
327  double CV5 = fCv51 * CV0 * TMath::Power( 1-q2/fMv2/fCv52, -2);
328 
329  double GV3 = 0.5 / TMath::Sqrt(3) * ( CV3 * (W + Mnuc)/Mnuc
330  + CV4 * (W2 + q2 -Mnuc2)/2./Mnuc2
331  + CV5 * (W2 - q2 -Mnuc2)/2./Mnuc2 );
332 
333  double GV1 = - 0.5 / TMath::Sqrt(3) * ( CV3 * (Mnuc2 -q2 +Mnuc*W)/W/Mnuc
334  + CV4 * (W2 +q2 - Mnuc2)/2./Mnuc2
335  + CV5 * (W2 -q2 - Mnuc2)/2./Mnuc2 );
336 
337  GV = 0.5 * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + Mnuc), -IR);
338 
339  if( is_EM ) GV = 0.5 * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), -0.5*IR);
340  GV *= TMath::Sqrt( 3 * GV3*GV3 + GV1*GV1);
341 
342  } else {
343  LOG("BSKLNBaseRESPXSec2014",pDEBUG << "Using dipole parametrization for GV") ;
344  }
345 
346  if(fGAMiniBooNE){
347  LOG("BSKLNBaseRESPXSec2014",pDEBUG) << "Using new GA tuned to ANL and BNL data";
348 
349  double CA5 = fCa50 * TMath::Power( 1./(1-q2/fMa2), 2);
350  // GA = 0.5 * TMath::Sqrt(3.) * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5-IR) * (1- (W2 +q2 -Mnuc2)/8./Mnuc2) * CA5/fZeta;
351  GA = 0.5 * TMath::Sqrt(3.) * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5-IR) * (1- (W2 +q2 -Mnuc2)/8./Mnuc2) * CA5;
352  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"GA= " <<GA << " CA50= " <<fCa50 << " C5A= " <<CA5;
353 
354  } else if(fGASaritaSchwinger){
355  LOG("BSKLNBaseRESPXSec2014",pDEBUG) << "Using GA Rarita-Schwinger model";
356 
357  double CA5 = fCa50 * TMath::Power( 1./(1-q2/fMa2), 2) * ( 1./(1 - fcII * q2/fMb2) );
358  GA = 0.5 * TMath::Sqrt(3.) * TMath::Power( 1 - q2/(Mnuc + W)/(Mnuc + W), 0.5) * TMath::Power( 1 - q2/(4*Mnuc2), -IR) * (1- (W2 +q2 -Mnuc2)/8./Mnuc2) * CA5;
359 
360  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"GA= " <<GA << " C5A= " <<CA5;
361 
362  } else {
363  LOG("BSKLNBaseRESPXSec2014",pDEBUG << "Using dipole parametrization for GA") ;
364  }
365 
366  if(is_EM) {
367  GA = 0.; // zero the axial term for EM scattering
368  }
369 
370  double d = TMath::Power(W+Mnuc,2.) - q2;
371  double sq2omg = TMath::Sqrt(2./fOmega);
372  double nomg = IR * fOmega;
373  double mq_w = Mnuc*Q/W;
374 
375  fFKR.Lamda = sq2omg * mq_w;
376  fFKR.Tv = GV / (3.*W*sq2omg);
377  fFKR.Rv = kSqrt2 * mq_w*(W+Mnuc)*GV / d;
378  fFKR.S = (-q2/Q2) * (3*W*Mnuc + q2 - Mnuc2) * GV / (6*Mnuc2);
379  fFKR.Ta = (2./3.) * (fZeta/sq2omg) * mq_w * GA / d;
380  fFKR.Ra = (kSqrt2/6.) * fZeta * (GA/W) * (W+Mnuc + 2*nomg*W/d );
381  fFKR.B = fZeta/(3.*W*sq2omg) * (1 + (W2-Mnuc2+q2)/ d) * GA;
382  fFKR.C = fZeta/(6.*Q) * (W2 - Mnuc2 + nomg*(W2-Mnuc2+q2)/d) * (GA/Mnuc);
383  fFKR.R = fFKR.Rv;
384  fFKR.Rplus = - (fFKR.Rv + fFKR.Ra);
385  fFKR.Rminus = - (fFKR.Rv - fFKR.Ra);
386  fFKR.T = fFKR.Tv;
387  fFKR.Tplus = - (fFKR.Tv + fFKR.Ta);
388  fFKR.Tminus = - (fFKR.Tv - fFKR.Ta);
389 
390  //JN KNL
391  double KNL_S_plus = 0;
392  double KNL_S_minus = 0;
393  double KNL_B_plus = 0;
394  double KNL_B_minus = 0;
395  double KNL_C_plus = 0;
396  double KNL_C_minus = 0;
397 
398  if(is_CC && is_KLN){
399  KNL_S_plus = (KNL_vstar_plus*vstar - KNL_Qstar_plus *Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2; //possibly missing minus sign ()
400  KNL_S_minus = (KNL_vstar_minus*vstar - KNL_Qstar_minus*Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2;
401 
402  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"KNL S= " <<KNL_S_plus<<"\t"<<KNL_S_minus<<"\t"<<fFKR.S;
403 
404  KNL_B_plus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_plus + KNL_vstar_plus *Qstar/a/Mnuc ) * GA;
405  KNL_B_minus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_minus + KNL_vstar_minus*Qstar/a/Mnuc ) * GA;
406  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"KNL B= " <<KNL_B_plus<<"\t"<<KNL_B_minus<<"\t"<<fFKR.B;
407 
408  KNL_C_plus = ( (KNL_Qstar_plus*Qstar - KNL_vstar_plus*vstar ) * ( 1./3. + vstar/a/Mnuc)
409  + KNL_vstar_plus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
410 
411  KNL_C_minus = ( (KNL_Qstar_minus*Qstar - KNL_vstar_minus*vstar ) * ( 1./3. + vstar/a/Mnuc)
412  + KNL_vstar_minus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
413 
414  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"KNL C= "<<KNL_C_plus<<"\t"<<KNL_C_minus<<"\t"<<fFKR.C;
415  }
416  double BRS_S_plus = 0;
417  double BRS_S_minus = 0;
418  double BRS_B_plus = 0;
419  double BRS_B_minus = 0;
420  double BRS_C_plus = 0;
421  double BRS_C_minus = 0;
422 
423 
424  if(is_CC && is_BRS){
425 
426  KNL_S_plus = (KNL_vstar_plus*vstar - KNL_Qstar_plus *Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2;
427  KNL_S_minus = (KNL_vstar_minus*vstar - KNL_Qstar_minus*Qstar )* (Mnuc2 -q2 - 3*W*Mnuc ) * GV / (6*Mnuc2)/Q2;
428 
429 
430  KNL_B_plus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_plus + KNL_vstar_plus *Qstar/a/Mnuc ) * GA;
431  KNL_B_minus = fZeta/(3.*W*sq2omg)/Qstar * (KNL_Qstar_minus + KNL_vstar_minus*Qstar/a/Mnuc ) * GA;
432 
433 
434  KNL_C_plus = ( (KNL_Qstar_plus*Qstar - KNL_vstar_plus*vstar ) * ( 1./3. + vstar/a/Mnuc)
435  + KNL_vstar_plus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
436 
437  KNL_C_minus = ( (KNL_Qstar_minus*Qstar - KNL_vstar_minus*vstar ) * ( 1./3. + vstar/a/Mnuc)
438  + KNL_vstar_minus*(2./3.*W +q2/a/Mnuc + nomg/3./a/Mnuc) )* fZeta * (GA/2./W/Qstar);
439 
440  BRS_S_plus = KNL_S_plus;
441  BRS_S_minus = KNL_S_minus;
442  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"BRS S= " <<KNL_S_plus<<"\t"<<KNL_S_minus<<"\t"<<fFKR.S;
443 
444  BRS_B_plus = KNL_B_plus + fZeta*GA/2./W/Qstar*( KNL_Qstar_plus*vstar - KNL_vstar_plus*Qstar)
445  *( 2./3 /sq2omg *(vstar + Qstar*Qstar/Mnuc/a))/(kPionMass2 -q2);
446 
447  BRS_B_minus = KNL_B_minus + fZeta*GA/2./W/Qstar*( KNL_Qstar_minus*vstar - KNL_vstar_minus*Qstar)
448  *( 2./3 /sq2omg *(vstar + Qstar*Qstar/Mnuc/a))/(kPionMass2 -q2);
449  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"BRS B= " <<KNL_B_plus<<"\t"<<KNL_B_minus<<"\t"<<fFKR.B;
450 
451  BRS_C_plus = KNL_C_plus + fZeta*GA/2./W/Qstar*( KNL_Qstar_plus*vstar - KNL_vstar_plus*Qstar)
452  * Qstar*(2./3.*W +q2/Mnuc/a +nomg/3./a/Mnuc)/(kPionMass2 -q2);
453 
454  BRS_C_minus = KNL_C_minus + fZeta*GA/2./W/Qstar*( KNL_Qstar_minus*vstar - KNL_vstar_minus*Qstar)
455  * Qstar*(2./3.*W +q2/Mnuc/a +nomg/3./a/Mnuc)/(kPionMass2 -q2);
456  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"BRS C= " <<KNL_C_plus<<"\t"<<KNL_C_minus<<"\t"<<fFKR.C;
457  }
458 
459 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
460  LOG("FKR", pDEBUG)
461  << "FKR params for RES = " << resname << " : " << fFKR;
462 #endif
463 
464  // Calculate the Rein-Sehgal Helicity Amplitudes
465  double sigL_minus = 0;
466  double sigR_minus = 0;
467  double sigS_minus = 0;
468 
469  double sigL_plus = 0;
470  double sigR_plus = 0;
471  double sigS_plus = 0;
472 
473  const RSHelicityAmplModelI * hamplmod = 0;
474  const RSHelicityAmplModelI * hamplmod_KNL_minus = 0;
475  const RSHelicityAmplModelI * hamplmod_KNL_plus = 0;
476  const RSHelicityAmplModelI * hamplmod_BRS_minus = 0;
477  const RSHelicityAmplModelI * hamplmod_BRS_plus = 0;
478 
479 
480  double g2 = kGF2; // NC
481  if(is_CC) g2 *= fVud2;
482 
483  if(is_EM)
484  {
485  double q4 = q2*q2;
486  g2 = 8*kAem2*kPi2/q4;
487  }
488 
489  double sig0 = 0.125*(g2/kPi)*(-q2/Q2)*(W/Mnuc);
490  double scLR = W/Mnuc;
491  double scS = (Mnuc/W)*(-Q2/q2);
492 
493  double sigL =0;
494  double sigR =0;
495  double sigS =0;
496 
497  double sigRSL =0;
498  double sigRSR =0;
499  double sigRSS =0;
500 
501  if(is_CC && !(is_KLN || is_BRS) ) {
502 
503  hamplmod = fHAmplModelCC;
504  }
505  else
506  if(is_NC) {
507  if (is_p) { hamplmod = fHAmplModelNCp;}
508  else { hamplmod = fHAmplModelNCn;}
509  }
510  else
511  if(is_EM) {
512  if (is_p) { hamplmod = fHAmplModelEMp;}
513  else { hamplmod = fHAmplModelEMn;}
514  }
515  else
516  if(is_CC && is_KLN ){
517  fFKR.S = KNL_S_minus; //2 times fFKR.S?
518  fFKR.B = KNL_B_minus;
519  fFKR.C = KNL_C_minus;
520 
521  hamplmod_KNL_minus = fHAmplModelCC;
522 
523  assert(hamplmod_KNL_minus);
524 
525  const RSHelicityAmpl & hampl_KNL_minus = hamplmod_KNL_minus->Compute(resonance, fFKR);
526 
527  sigL_minus = (hampl_KNL_minus.Amp2Plus3 () + hampl_KNL_minus.Amp2Plus1 ());
528  sigR_minus = (hampl_KNL_minus.Amp2Minus3() + hampl_KNL_minus.Amp2Minus1());
529  sigS_minus = (hampl_KNL_minus.Amp20Plus () + hampl_KNL_minus.Amp20Minus());
530 
531 
532  fFKR.S = KNL_S_plus;
533  fFKR.B = KNL_B_plus;
534  fFKR.C = KNL_C_plus;
535  hamplmod_KNL_plus = fHAmplModelCC;
536  assert(hamplmod_KNL_plus);
537 
538  const RSHelicityAmpl & hampl_KNL_plus = hamplmod_KNL_plus->Compute(resonance, fFKR);
539 
540  sigL_plus = (hampl_KNL_plus.Amp2Plus3 () + hampl_KNL_plus.Amp2Plus1 ());
541  sigR_plus = (hampl_KNL_plus.Amp2Minus3() + hampl_KNL_plus.Amp2Minus1());
542  sigS_plus = (hampl_KNL_plus.Amp20Plus () + hampl_KNL_plus.Amp20Minus());
543 
544  }
545  else
546  if(is_CC && is_BRS ){
547  fFKR.S = BRS_S_minus;
548  fFKR.B = BRS_B_minus;
549  fFKR.C = BRS_C_minus;
550 
551  hamplmod_BRS_minus = fHAmplModelCC;
552  assert(hamplmod_BRS_minus);
553 
554  const RSHelicityAmpl & hampl_BRS_minus = hamplmod_BRS_minus->Compute(resonance, fFKR);
555 
556  sigL_minus = (hampl_BRS_minus.Amp2Plus3 () + hampl_BRS_minus.Amp2Plus1 ());
557  sigR_minus = (hampl_BRS_minus.Amp2Minus3() + hampl_BRS_minus.Amp2Minus1());
558  sigS_minus = (hampl_BRS_minus.Amp20Plus () + hampl_BRS_minus.Amp20Minus());
559 
560  fFKR.S = BRS_S_plus;
561  fFKR.B = BRS_B_plus;
562  fFKR.C = BRS_C_plus;
563  hamplmod_BRS_plus = fHAmplModelCC;
564  assert(hamplmod_BRS_plus);
565 
566  const RSHelicityAmpl & hampl_BRS_plus = hamplmod_BRS_plus->Compute(resonance, fFKR);
567 
568  sigL_plus = (hampl_BRS_plus.Amp2Plus3 () + hampl_BRS_plus.Amp2Plus1 ());
569  sigR_plus = (hampl_BRS_plus.Amp2Minus3() + hampl_BRS_plus.Amp2Minus1());
570  sigS_plus = (hampl_BRS_plus.Amp20Plus () + hampl_BRS_plus.Amp20Minus());
571  }
572 
573  // Compute the cross section
574  if(is_KLN || is_BRS) {
575 
576  sigL_minus *= scLR;
577  sigR_minus *= scLR;
578  sigS_minus *= scS;
579  sigL_plus *= scLR;
580  sigR_plus *= scLR;
581  sigS_plus *= scS;
582 
583  LOG("BSKLNBaseRESPXSec2014", pINFO)
584  << "sL,R,S minus = " << sigL_minus << "," << sigR_minus << "," << sigS_minus;
585  LOG("BSKLNBaseRESPXSec2014", pINFO)
586  << "sL,R,S plus = " << sigL_plus << "," << sigR_plus << "," << sigS_plus;
587  }
588  else {
589  assert(hamplmod);
590 
591  const RSHelicityAmpl & hampl = hamplmod->Compute(resonance, fFKR);
592 
593  sigL = scLR* (hampl.Amp2Plus3 () + hampl.Amp2Plus1 ());
594  sigR = scLR* (hampl.Amp2Minus3() + hampl.Amp2Minus1());
595  sigS = scS * (hampl.Amp20Plus () + hampl.Amp20Minus());
596  }
597 
598 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
599  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{0} = " << sig0;
600  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{L} = " << sigL;
601  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{R} = " << sigR;
602  LOG("BSKLNBaseRESPXSec2014", pDEBUG) << "sig_{S} = " << sigS;
603 #endif
604 
605  double xsec = 0.0;
606 
607  if(is_KLN || is_BRS) {
608  xsec = TMath::Power(KNL_cL_minus,2)*sigL_minus + TMath::Power(KNL_cL_plus,2)*sigL_plus
609  + TMath::Power(KNL_cR_minus,2)*sigR_minus + TMath::Power(KNL_cR_plus,2)*sigR_plus
610  + TMath::Power(KNL_cS_minus,2)*sigS_minus + TMath::Power(KNL_cS_plus,2)*sigS_plus;
611  xsec *=sig0;
612 
613  LOG("BSKLNBaseRESPXSec2014",pINFO) << "A-="<<KNL_Alambda_minus<<" A+="<<KNL_Alambda_plus;
614  // protect against sigRSR=sigRSL=sigRSS=0
615  LOG("BSKLNBaseRESPXSec2014",pINFO) <<q2<<"\t"<<xsec<<"\t"<<sig0*(V2*sigR + U2*sigL + 2*UV*sigS)<<"\t"<<xsec/TMath::Max(sig0*(V2*sigRSR + U2*sigRSL + 2*UV*sigRSS),1.0e-100);
616  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"fFKR.B="<<fFKR.B<<" fFKR.C="<<fFKR.C<<" fFKR.S="<<fFKR.S;
617  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"CL-="<<TMath::Power(KNL_cL_minus,2)<<" CL+="<<TMath::Power(KNL_cL_plus,2)<<" U2="<<U2;
618  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"SL-="<<sigL_minus<<" SL+="<<sigL_plus<<" SL="<<sigRSL;
619 
620  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"CR-="<<TMath::Power(KNL_cR_minus,2)<<" CR+="<<TMath::Power(KNL_cR_plus,2)<<" V2="<<V2;
621  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"SR-="<<sigR_minus<<" SR+="<<sigR_plus<<" sR="<<sigRSR;
622 
623  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"CS-="<<TMath::Power(KNL_cS_minus,2)<<" CS+="<<TMath::Power(KNL_cS_plus,2)<<" UV="<<UV;
624  LOG("BSKLNBaseRESPXSec2014",pINFO) <<"SS-="<<sigL_minus<<" SS+="<<sigS_plus<<" sS="<<sigRSS;
625  }
626  else {
627  if (is_nu || is_lminus) {
628  xsec = sig0*(V2*sigR + U2*sigL + 2*UV*sigS);
629  }
630  else
631  if (is_nubar || is_lplus) {
632  xsec = sig0*(U2*sigR + V2*sigL + 2*UV*sigS);
633  }
634  xsec = TMath::Max(0.,xsec);
635  }
636  double mult = 1.0;
637  if ( is_CC && is_delta ) {
638  if ( (is_nu && is_p) || (is_nubar && is_n) ) mult=3.0;
639  }
640  xsec *= mult;
641 
642  // Check whether the cross section is to be weighted with a Breit-Wigner distribution
643  // (default: true)
644  double bw = 1.0;
645  if ( fWghtBW ) {
646  bw = utils::bwfunc::BreitWignerL(W,LR,MR,WR,NR);
647  }
648 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
649  LOG("BSKLNBaseRESPXSec2014", pDEBUG)
650  << "BreitWigner(RES=" << resname << ", W=" << W << ") = " << bw;
651 #endif
652  xsec *= bw;
653 
654 #ifdef __GENIE_LOW_LEVEL_MESG_ENABLED__
655  LOG("BSKLNBaseRESPXSec2014", pINFO)
656  << "\n d2xsec/dQ2dW" << "[" << interaction->AsString()
657  << "](W=" << W << ", q2=" << q2 << ", E=" << E << ") = " << xsec;
658 #endif
659 
660  // The algorithm computes d^2xsec/dWdQ2
661  // Check whether variable tranformation is needed
662  if ( kps != kPSWQ2fE ) {
663  double J = utils::kinematics::Jacobian(interaction,kPSWQ2fE,kps);
664  xsec *= J;
665  }
666 
667  // Apply given scaling factor
668  if (is_CC) { xsec *= fXSecScaleCC; }
669  else if (is_NC) { xsec *= fXSecScaleNC; }
670  else if (is_EM) { xsec *= fXSecScaleEM; }
671 
672  // If requested return the free nucleon xsec even for input nuclear tgt
673  if ( interaction->TestBit(kIAssumeFreeNucleon) ) return xsec;
674 
675  int Z = target.Z();
676  int A = target.A();
677  int N = A-Z;
678 
679  // Take into account the number of scattering centers in the target
680  int NNucl = (is_p) ? Z : N;
681  xsec*=NNucl; // nuclear xsec (no nuclear suppression factor)
682 
683  if ( fUsePauliBlocking && A!=1 )
684  {
685  // Calculation of Pauli blocking according references:
686  //
687  // [1] S.L. Adler, S. Nussinov, and E.A. Paschos, "Nuclear
688  // charge exchange corrections to leptonic pion production
689  // in the (3,3) resonance region," Phys. Rev. D 9 (1974)
690  // 2125-2143 [Erratum Phys. Rev. D 10 (1974) 1669].
691  // [2] J.Y. Yu, "Neutrino interactions and nuclear effects in
692  // oscillation experiments and the nonperturbative disper-
693  // sive sector in strong (quasi-)abelian fields," Ph. D.
694  // Thesis, Dortmund U., Dortmund, 2002 (unpublished).
695  // [3] E.A. Paschos, J.Y. Yu, and M. Sakuda, "Neutrino pro-
696  // duction of resonances," Phys. Rev. D 69 (2004) 014013
697  // [arXiv: hep-ph/0308130].
698 
699  double P_Fermi = 0.0;
700 
701  // Maximum value of Fermi momentum of target nucleon (GeV)
702  if ( A<6 || ! fUseRFGParametrization )
703  {
704  // look up the Fermi momentum for this target
706  const FermiMomentumTable * kft = kftp->GetTable(fKFTable);
707  P_Fermi = kft->FindClosestKF(pdg::IonPdgCode(A, Z), nucpdgc);
708  }
709  else {
710  // define the Fermi momentum for this target
712  // correct the Fermi momentum for the struck nucleon
713  if(is_p) { P_Fermi *= TMath::Power( 2.*Z/A, 1./3); }
714  else { P_Fermi *= TMath::Power( 2.*N/A, 1./3); }
715  }
716 
717  double FactorPauli_RES = 1.0;
718 
719  double k0 = 0., q = 0., q0 = 0.;
720 
721  if (P_Fermi > 0.)
722  {
723  k0 = (W2-Mnuc2-Q2)/(2*W);
724  k = TMath::Sqrt(k0*k0+Q2); // previous value of k is overridden
725  q0 = (W2-Mnuc2+kPionMass2)/(2*W);
726  q = TMath::Sqrt(q0*q0-kPionMass2);
727 
728  if ( 2*P_Fermi < k-q )
729  FactorPauli_RES = 1.0;
730  if ( 2*P_Fermi >= k+q )
731  FactorPauli_RES = ((3*k*k+q*q)/(2*P_Fermi)-(5*TMath::Power(k,4)+TMath::Power(q,4)+10*k*k*q*q)/(40*TMath::Power(P_Fermi,3)))/(2*k);
732  if ( 2*P_Fermi >= k-q && 2*P_Fermi <= k+q )
733  FactorPauli_RES = ((q+k)*(q+k)-4*P_Fermi*P_Fermi/5-TMath::Power(k-q, 3)/(2*P_Fermi)+TMath::Power(k-q, 5)/(40*TMath::Power(P_Fermi, 3)))/(4*q*k);
734  }
735 
736  xsec *= FactorPauli_RES;
737  }
738  return xsec;
739 }
bool IsDelta(Resonance_t res)
is it a Delta resonance?
bool fNormBW
normalize resonance breit-wigner to 1?
string fKFTable
table of Fermi momentum (kF) constants for various nuclei
double fOmega
FKR parameter Omega.
double W(bool selected=false) const
Definition: Kinematics.cxx:157
bool IsWeakCC(void) const
bool IsNeutrino(int pdgc)
Definition: PDGUtils.cxx:110
bool fUsingDisResJoin
use a DIS/RES joining scheme?
double fXSecScaleNC
external NC xsec scaling factor
double J(double q0, double q3, double Enu, double ml)
Definition: MECUtils.cxx:147
double Rminus
Definition: FKR.h:50
double Q2(const Interaction *const i)
Definition: KineUtils.cxx:1077
int HitNucPdg(void) const
Definition: Target.cxx:304
double Ra
Definition: FKR.h:42
double Amp2Plus3(void) const
int A(void) const
Definition: Target.h:70
double Amp2Minus3(void) const
virtual const RSHelicityAmpl & Compute(Resonance_t res, const FKR &fkr) const =0
double HitNucMass(void) const
Definition: Target.cxx:233
double fN0ResMaxNWidths
limits allowed phase space for n=0 res
static FermiMomentumTablePool * Instance(void)
Generated/set kinematical variables for an event.
Definition: Kinematics.h:39
double Lamda
Definition: FKR.h:37
double Mass(Resonance_t res)
resonance mass (GeV)
double R
Definition: FKR.h:45
A table of Fermi momentum constants.
double Width(Resonance_t res)
resonance width (GeV)
double Amp2Plus1(void) const
double Amp2Minus1(void) const
return |helicity amplitude|^2
double BreitWignerL(double W, int L, double mass, double width0, double norm)
Definition: BWFunc.cxx:99
double BWNorm(Resonance_t res, double N0ResMaxNWidths=6, double N2ResMaxNWidths=2, double GnResMaxNWidths=4)
breit-wigner normalization factor
enum genie::EResonance Resonance_t
const RSHelicityAmplModelI * fHAmplModelEMp
const RSHelicityAmplModelI * fHAmplModelCC
double W(const Interaction *const i)
Definition: KineUtils.cxx:1101
double fVud2
|Vud|^2(square of magnitude ud-element of CKM-matrix)
bool IsNeutron(int pdgc)
Definition: PDGUtils.cxx:341
bool IsPosChargedLepton(int pdgc)
Definition: PDGUtils.cxx:148
double Tv
Definition: FKR.h:38
virtual bool ValidKinematics(const Interaction *i) const
Is the input kinematical point a physically allowed one?
double q2(bool selected=false) const
Definition: Kinematics.cxx:141
A class holding the Rein-Sehgal&#39;s helicity amplitudes.
bool IsProton(int pdgc)
Definition: PDGUtils.cxx:336
bool IsWeakNC(void) const
const TLorentzVector & FSLeptonP4(void) const
Definition: Kinematics.h:65
Singleton class to load &amp; serve tables of Fermi momentum constants.
#define LOG(stream, priority)
A macro that returns the requested log4cpp::Category appending a string (using the FILE...
Definition: Messenger.h:96
bool fWghtBW
weight with resonance breit-wigner?
static constexpr double A
Definition: Units.h:74
const FermiMomentumTable * GetTable(string name)
A class encapsulating an enumeration of interaction types (EM, Weak-CC, Weak-NC) and scattering types...
Definition: ProcessInfo.h:46
const double a
double T
Definition: FKR.h:46
double Rv
Definition: FKR.h:39
bool IsAntiNeutrino(int pdgc)
Definition: PDGUtils.cxx:118
double fXSecScaleCC
external CC xsec scaling factor
A Neutrino Interaction Target. Is a transparent encapsulation of quite different physical systems suc...
Definition: Target.h:40
int ProbePdg(void) const
Definition: InitialState.h:64
bool fUsePauliBlocking
account for Pauli blocking?
double fWcut
apply DIS/RES joining scheme &lt; Wcut
int OrbitalAngularMom(Resonance_t res)
orbital angular momentum
const RSHelicityAmplModelI * fHAmplModelEMn
int Z(void) const
Definition: Target.h:68
#define pINFO
Definition: Messenger.h:62
Pure abstract base class. Defines the RSHelicityAmplModelI interface.
double Amp20Minus(void) const
bool IsEM(void) const
double fGnResMaxNWidths
limits allowed phase space for other res
double C
Definition: FKR.h:44
double FermiMomentumForIsoscalarNucleonParametrization(const Target &target)
bool fUseRFGParametrization
use parametrization for fermi momentum insted of table?
const RSHelicityAmplModelI * fHAmplModelNCp
double Tplus
Definition: FKR.h:47
double B
Definition: FKR.h:43
double Rplus
Definition: FKR.h:49
const UInt_t kIAssumeFreeNucleon
Definition: Interaction.h:49
double Tminus
Definition: FKR.h:48
int IonPdgCode(int A, int Z)
Definition: PDGUtils.cxx:71
double Jacobian(const Interaction *const i, KinePhaseSpace_t f, KinePhaseSpace_t t)
Definition: KineUtils.cxx:130
double Amp20Plus(void) const
const char * AsString(Resonance_t res)
resonance id -&gt; string
bool ValidProcess(const Interaction *i) const
Can this cross section algorithm handle the input process?
double FindClosestKF(int target_pdgc, int nucleon_pdgc) const
const RSHelicityAmplModelI * fHAmplModelNCn
const Target & Tgt(void) const
Definition: InitialState.h:66
double fN2ResMaxNWidths
limits allowed phase space for n=2 res
double fZeta
FKR parameter Zeta.
double ProbeE(RefFrame_t rf) const
bool IsNegChargedLepton(int pdgc)
Definition: PDGUtils.cxx:139
double S
Definition: FKR.h:40
double fXSecScaleEM
external EM xsec scaling factor
double Ta
Definition: FKR.h:41
int ResonanceIndex(Resonance_t res)
resonance idx, quark model / SU(6)
Initial State information.
Definition: InitialState.h:48
#define pDEBUG
Definition: Messenger.h:63

Member Data Documentation

bool genie::BSKLNBaseRESPXSec2014::fBRS
protected
double genie::BSKLNBaseRESPXSec2014::fCa50
protected

CA5_0.

Definition at line 94 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fcII
protected

Definition at line 128 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fCv3
protected

Definition at line 120 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fCv4
protected

Definition at line 121 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fCv51
protected

Definition at line 122 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fCv52
protected

Definition at line 123 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fFermiConstant2
protected

Definition at line 86 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig().

double genie::BSKLNBaseRESPXSec2014::fFineStructure2
protected

Definition at line 87 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig().

FKR genie::BSKLNBaseRESPXSec2014::fFKR
mutableprotected

Definition at line 78 of file BSKLNBaseRESPXSec2014.h.

Referenced by XSec().

bool genie::BSKLNBaseRESPXSec2014::fGAMiniBooNE
protected

Definition at line 116 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fGASaritaSchwinger
protected

Definition at line 126 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fGnResMaxNWidths
protected

limits allowed phase space for other res

Definition at line 102 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fGVMiniBooNE
protected

Definition at line 117 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fGVSaritaSchwinger
protected

Definition at line 127 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::BSKLNBaseRESPXSec2014::fHAmplModelCC
protected

Definition at line 80 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::BSKLNBaseRESPXSec2014::fHAmplModelEMn
protected

Definition at line 84 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::BSKLNBaseRESPXSec2014::fHAmplModelEMp
protected

Definition at line 83 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::BSKLNBaseRESPXSec2014::fHAmplModelNCn
protected

Definition at line 82 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

const RSHelicityAmplModelI* genie::BSKLNBaseRESPXSec2014::fHAmplModelNCp
protected

Definition at line 81 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

string genie::BSKLNBaseRESPXSec2014::fKFTable
protected

table of Fermi momentum (kF) constants for various nuclei

Definition at line 103 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fKLN
protected
double genie::BSKLNBaseRESPXSec2014::fMa2
protected

(axial mass)^2

Definition at line 95 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fMb2
protected

Definition at line 129 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fMv2
protected

(vector mass)^2

Definition at line 96 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fN0ResMaxNWidths
protected

limits allowed phase space for n=0 res

Definition at line 101 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fN2ResMaxNWidths
protected

limits allowed phase space for n=2 res

Definition at line 100 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fNormBW
protected

normalize resonance breit-wigner to 1?

Definition at line 91 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fOmega
protected

FKR parameter Omega.

Definition at line 93 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fUsePauliBlocking
protected

account for Pauli blocking?

Definition at line 105 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fUseRFGParametrization
protected

use parametrization for fermi momentum insted of table?

Definition at line 104 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fUsingDisResJoin
protected

use a DIS/RES joining scheme?

Definition at line 98 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fVud2
protected

|Vud|^2(square of magnitude ud-element of CKM-matrix)

Definition at line 97 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fWcut
protected

apply DIS/RES joining scheme < Wcut

Definition at line 99 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

bool genie::BSKLNBaseRESPXSec2014::fWghtBW
protected

weight with resonance breit-wigner?

Definition at line 90 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

const XSecIntegratorI* genie::BSKLNBaseRESPXSec2014::fXSecIntegrator
protected

Definition at line 131 of file BSKLNBaseRESPXSec2014.h.

Referenced by Integral(), and LoadConfig().

double genie::BSKLNBaseRESPXSec2014::fXSecScaleCC
protected

external CC xsec scaling factor

Definition at line 107 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fXSecScaleEM
protected

external EM xsec scaling factor

Definition at line 109 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fXSecScaleNC
protected

external NC xsec scaling factor

Definition at line 108 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().

double genie::BSKLNBaseRESPXSec2014::fZeta
protected

FKR parameter Zeta.

Definition at line 92 of file BSKLNBaseRESPXSec2014.h.

Referenced by LoadConfig(), and XSec().


The documentation for this class was generated from the following files: