Humboldt University Berlin

The Backward Silicon Track Trigger for the HERA Experiment H1

I. Tsurin DESY Zeuthen

- Physics Motivation
- System Design and Test
- First Luminosity Data
- Radiation Monitor
- Summary

eP collider HERA

H1 experiment

HERA-II

P-beam: 920 GeV e-beam: 27.6 GeV

$$\sqrt{s} \approx 318 \, GeV$$

P-beam: 130 mA e-beam: 55 mA

 $\boldsymbol{L} \approx 7 \cdot 10^{31} \ \boldsymbol{cm}^{-2} \boldsymbol{s}^{-1}$

Deeply Inelastic Scattering

DIS kinematics

 $Q^2 = -q^2 = -(k-k')^2$

$$x = -\frac{q^2}{2P \cdot q}; \quad y = \frac{Q^2}{sx}$$

$$\frac{\partial^2 \sigma(x, Q^2)}{\partial x \partial Q^2} \propto \frac{1}{Q^4} \left(F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2) \right)$$

eP cross-section measurements

DIS Measurements

BST acceptance in the x, Q^2 kinematic plane $Q^2 \approx 2 E_e E'_e \cos^2 \frac{\theta_e}{2}$ Low Q², extended x F_2 measurements Low Q², high y F_L measurements

Data quality improvement

- DIS low Q² trigger with no rate scaling
- Efficient electron trigger at low energies
- Online reduction of the beam background

Backward Silicon Tracker

Main tasks

Detector system

- U-V strip detectors (number of readout strips = 92.160)
- Pad detectors (number of trigger channels = 1536)

Detector Layers

Strip detectors

Pad detectors

Trigger Mask Concept

Longitudinal positions

$$Z_{n+1} = Z_n \sqrt[8]{\frac{r_{max}}{r_{min}}}$$

Trigger patterns

Vertex spread

Beam offset

Detector Module

PRO/A readout chip

Front-end Electronics

Pad Readout System

Low noise power supply system

Radiation monitor

Radiation monitor (interrupted during the raw data transmission and corrected afterwards)

Beam Test + Calibration

Threshold scan

$$N_{trigger}(V) = \int_{0}^{V} N_{tracks} \cdot P(V - \varepsilon) d\varepsilon$$

Plateau width

Detector evaluation

BST installation

Timing scheme:

- Delay with respect to the HERA bunches
- Offset with respect to the unique T0 of H1

T0 (L1 decision time)

BST Trigger Signal

Single plane efficiency $\varepsilon_s = (90 \pm 2)\%$ Estimate $\varepsilon_{tot} = \varepsilon_s^4 + 4 \varepsilon_s^3 (1 - \varepsilon_s) = (95 \pm 2)\%$

First luminosity data taken prior 2003 shutdown

Raw data taking

Needs full detector and more data to estimate the rejection efficiency

HERA Background

Intense components

- Synchrotron radiation
- p-gas, e-gas scattering

Dose rate measurement with Pads

Radiation Monitor for H1

Indicating "turn on" conditions for the trackers

Monitoring beam-gas scattering

Cumulative dose

$$\dot{D} = \frac{N}{t[s]} \cdot \frac{\varepsilon}{S[cm^2]}$$

$$\varepsilon \approx 2 MeV \cdot cm^2 / g$$

$$\dot{D} \approx 7,5 Gy / year$$

Radiation Monitor for HERA

Reaction to the beam currents

Correlation with scintillation counter rates

Summary

- The BST pad is a new level-one trigger of H1 with the fast timing response (50ns) and the online coherent noise suppression;
- Reprogrammable logic devices allow for the combined track trigger + veto functionality of this detector;
- The BST trigger system is being integrated into higher trigger levels of H1 to imply the granularity of the trigger hardware;
- In addition to the original plan, the BST pad detector is used as the main radiation monitor of H1 for understanding HERA backgrounds;
- With the repaired trigger electronics and improved background conditions the pad detector is becoming an essential device for low Q² physics.

Acknowledgments

Ulrich Gensch [©] Peter Kostka [©] Thomas Naumann Hans Henschel [©] Wolfgang Lange [©] Wolfgang Eick Joachim Meiβner [©] Olaf Gräber [©] Wolfgang Philipp Sabine Baer [©] Martina Mende [©] Christine Joithe Jan Kretschmar [©] Ulrich Harder [©] Milan Janata Wladimir Arkadov [©] Anatoly Astvatsatourov Dirk Hoffmann [©] Nick Malden [©] H.-C.S.-C. Ekaterina Kouznetsova [©] Katerina Lipka Maxim Lukyanov [©] Mikhail Kalmykov

