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Let us start by surveying some of the basic ideasatehecessary for us to have mastered.. We can
describe any quantum mechanical system by a set t&fsstdiscrete or continuous) which are
occupied with calculable probabilities. The state ofstesn changes under the influence of external
forces and we represent these forces by operatoradhah the states. The inner product of two states
defines a quantum mechanical amplitude and the absolute sifuheeamplitude is interpreted as a
probability. To perform calculations we use represértatof the states that are vectors in a linear

vector space. We expand on these ideas below.

1.1 Dirac Notation
Up to this point we have usually written down a wavefiomcto represent the state of a system where

the wavefunction was explicitly a complex function ofipos and time. Often these wavefunctions
are abbreviated to a form such |a,ls) This has the advantage of generalising our notatiamases

involving spin (see Chapter 11) . With spin we cannotengibwn a simple wavefunction and have to
expand simple wave mechanics to include matrices. Howthis abbreviation masks an important
reason for using the Dirac formalism, which is thatontains a very important physical insight. We
have become accustomed to the idea that wavefunaitmsa linear superposition principle. Dirac

recognised that it is not just the wavefunctions tlagisfy the superposition principle, but the states
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themselves. He postulated that the linear superpositistates is a feature of nature. | Uf) and|v)

are states, Dirac called thekets, and if a and b are complex constants, then if Wdﬂ@.i{éW) by

(w)=4du+hvy 11
then |W) is also a ket. In other wordsv) , which is made up of a superposition [af) and|V), is
also a state of the system. We may draw an analogy wi¢h three dimensional Euclidean space
(called by conventiofis) . In Ez we know that any point in space may representeakpy bx, + cx3
where thex; are the unit vectors in the x,y and z directionswvéi@r we should be careful when
using this analogy. liE; a,b,care real (not complex) and the numbers of dimens®lisited to 3.

In our ket “space” the dimensionality reflects the nurals# linearly independent states necessary to
describe the system and can easily be infinite. Tisizace” of linearly independent state vectors is

called aHilbert Space

1.2 Linear Independence

A set of states is said to be linearly independetheifeé is no solution to

Gl)+ 6 )+ & W= F ¢ 1) =0 12

i=1n

exceptc;=c,=C3=C;=0.

1.3 Completeness
A set of kets is said to be complete if we can const@oyg state| u> from a linear superposition of

linearly independent kets, i.e.

u=2cly). 1-3

i=ln



Note that this requirement is not the same as thiheér independence (Eqg. 1-2). For examgle,

andy are independent directions but we cannot describe ak gpcts without using thedirection.

1.4 Orthonormality

Dirac also defined the inner product (or scalar productyvofkets, saya)and |b), writing it as

(a|b). The inner product has the following property

(bla)" =(alb) 1-4
The objects occurring on the left side of the innedpob are calledra vectors and are an entirely

equivalent set of states with which to describe aesysin our usual wavefunction notation this is

identical to the following: we define the inner prodast

Jun .y 15

and the equivalent of Eq.1.4 is

(Jerw ) = fo.ew, et 16
However Eq. 1-6 will not apply to systems that contpin whereas our more general notation, Eg.
1-4 does. We can describe our system by the complex ctmjoigdne wavefunction just as well as by
the wavefunctions themselves, i.e. the set of statés equivalent to the set of states)(. We can
replace all wavefunctions by their complex conjugatesveadiill always get the same answer for the
expectation values. We say that the bra space istaslgequivalent representatioof the system as

the ket space.

The kets (or bras) may be normalised so that

(ala)=1 17

if two kets have the property
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(a|b)=(b/& =0 18
then they are called orthogonal. Kets satisfying E@.ahd Eqg. 1-8 are said to be orthonormal. The

complete set (dbasi9 of kets that span our Hilbert Space is chosen so that

(ulu)=g, -

wheredjis the Kronecker delta and equald i=j, andO otherwise.

We can determine the coefficiertsin the general decomposition of a state (Eq. 1-3) mgube
orthonormality of the basis kets. We take the innedpct of the ket| u> and the bra<uj ‘ to getc;

i.e.

<uj‘u>=2q1<q‘q>=g GOn=¢ 1-10

n=1,m

We can use Eqg. 1-10 to rewrite the stateds

W=2alu)=2(ulgw=X]uu b 111
I I

1.5 Operators

We have already discussed that states describe quanturmamitadhsystems. The forces on the

system, its interactions, and indeed the effects gf agbservation of the system are described by

operators. We are familiar with the ways in whichrapars can be used to calculate quantities like

the average position or momentum. In the Dirac natdti@ action of an operator is as followsAlf

acts on a statgu) it will produce another state)

Au) =|V). 112

The operatoA is said to be a linear operator if



w)=du+dv
Aw =cAy+ dAy

wherec andd are complex constants. We will usually be concernel Jiihear operators. A useful

1-13

operator, that we have already implicitly introducedh&s projection operatdr

| = zn:|un><un|. 1-14

This has the useful property (see Eq. 1-11) kthat=|u).

1.6 Hermitian Operators

An operator A is defined as Hermitian if it satisfiee condition that for any two kets

(V| Au) = ( AJ 4 1-15
Hermitian operators (also calleélf adjointoperators) have many useful properties. Perhaps the most

useful is that the eigenvalues of a Hermitian operatoreal. This can be proved as follows.

(ulAu=4ddd=a
(ulAu=(Ad Y= a(lu=a= a

where we have used Eq. 1-15. The condition #fak means thaa is real. This is very important

1-16

since all measurements we make yield real values.

1.7 Expectation Values and Probability Amplitude
The kets contain all the information about the stathe system. Let us assume that we can calculate

the expectation value of some observabia a statel u>

(A) = (u A .

Projecting|u) into its eigenstates (Eq. 1-11) we find
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2
(A= (AT u)(u[ 0= aldu(d p=3 &y W 118
The correct interpretation of Eq. 1-18 is vital. It givie® value of the expectation value of a

2
measurement ok on the system. If we start in a mixed sthﬂé then Kui |u>‘ is the probability of

finding that state in an eigenstaltlai > Remember that the result of making a measurement on a
mixed state with an operator is to put the system imewa state whose eigenket corresponds to the

eigenvalue measured. The quantityt [U) is known as therobability amplitude
1

1.8 Problems

11 If [i>,i=1,2,3,...n compose a set of states, write dewvd explain the conditions they must

satisfy so they berthonormalandcomplete.

12 Integration is a vital part of quantum mechanics. Make shat you can evaluate the

00

following integrals: ajr"e "2dr b) _FCOSz &Q over all the solid angle.
0



Solutions to Schrédinger’s equation are the key to dakguantum mechanics. Unfortunately very

few problems have an analytical solution and almostenaf the cases that do permit an analytical
approach bear detailed comparison with reality. To magel predict the behaviour of realistic
quantum systems we need to develop a method of solving toesplicated problems. One of the
most important methods is callpdrturbation theoryFor some problems the potential is very similar
to the potential in a problem that we can solvdyaigally. In perturbation theory we start with

these known solutions, and by making small changes attersptve more complicated problems.

2.1 First Order Perturbation Theory

The simplest example of Perturbation Theory solves enoblthat do not explicitly depend on time
and in which there are no states that are degerfetateus assume that an unperturbed system of
which we know the eigenstates is described by the ltan@n Hy. The eigenstates (labelled 1,2,...,n)

that describe this system satisfy

Ho‘(”?] >: E.

@’ > 2-1

! Two states are said to be degenerate if, although des@yjtteo orthogonal eigenkets, their energy
eigenvalues are identical.
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and the perturbed system, described by the Hamiltoniast, H

H|¢)=E,|#,) 22

where the perturbed Hamiltonian is different from theerturbed system by a small potentid;

H=H,+AV 2-3
The crucial factor that enables us to perform pertiobdheory, ighe perturbation parametér By
settingA = 0 we have the fully unperturbed system. By setfingd we have a fully perturbed system.
With the unperturbed system we assume that we can flotdoss to the wave equation. Therefore
our method of solution for the perturbed system will &g/ similar to the power series methods used
to solve differential equations. We are going expand our wmksion a power series in the

perturbation parameter:

E, = E’+AE' + A*E*+...
80) =[ )+ Al6h) + A 00) ...

As in a power series solution we match the coeffisiém different powers ofl to guarantee that the

2-4

solutions holds for all arbitrary values.AfSubstituting Eq. 2-4 into Eq. 2-2 yields

(e )+ ) ) ,
(Er? + AE} +/]2Ef+...)(‘go2>+/]‘goﬁ>+/] 21¢)§>+) =0

Comparing the zeroeth order coefficients in the pertiohaparameter yields the unperturbed

2-5

equations and the first order terms yield

(Ho —E9)| ) = ~(v - ED| ) 26

taking the inner product with thd'minperturbed state gives:

(4

Ho - Er

) =~

V|oh)+ EX ol @) 27



The left hand side of Eq. 2-7 can be seen to be zere s Hermitian

(& |Ho - EZ @) = (F]EL - Edol) =0
which gives the very important result:
Er = (A V|¢h) 2-9

Eq. 2-9 gives the first order energy correction to nhéh state due to a perturbatidh The
calculation of the shifts to the states is a littlere subtle. To evaluate these we take the expression

for the first order coefficients Eq. 2-6 and take thaer product with an unperturbed stpte

<¢D‘H0 - B (”}1> = _<¢p’\/ - Ejo,) 2-10

If we assume that there is no admixture of the orlgitede into the perturbed state i.e.

¢}1> :Zajn

j#n

qoj> 2-11

Eq. 2-10 becomes

<§0p ‘(Ho - Eg)z ajn

jZn

0)= (M) =V,

Using the Hermitian properties B and the orthonormality of the eigenkets yields

EC - E?

and we can now substitute 2-13 into 2-11 to give the gefeenalthe modified states

Vo

(”}1> =Zﬁ‘¢p> 2-14
n p

p#n




10 TimeIndependent Perturbation Theory Chap. 2

Note that the changes to the states become large thileedenominator becomes small oMV, is

large.



11

2.2 Problems
21 Prove that the states in Eqg. 2-14 remain normed.
2.2 A time independent system is represented by the Hanailidty with eigenstate ¢¢. Show
how if we introduce a small perturbing potential V wa calculate theshift in energy of
this state and the change in the eigenstate. You ssayre the eigenstate is not degenerate.
2
2.3 A simple harmonic oscillator has a Hamiltonidn= P + = Kx?
2m 2
The first two eigenstates are claimed to be of dinen f
12 2,2
a -a°x/12
0=(-5)
a 12
1) = [—] 2axe” "X
| > 2773/2
Find the condition thatt has to satisfy for this to be true and show that=ifk/m)*? then
the energies of these states are givelegy= Ra / 2, E, = Ra [ 2
24 Show that if we add a small perturbation to the harmostillator in Qu. 2.3 of the form

bx?/2 then the change in energy of the ground state is appratimat

Show that this is consistent with the analyticaluBon by replacingK with K+b in the

solution to Qu 2.3.

You may use the following two integrals:
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Fxpe‘axz dx= (p=9 ix P2gat gy

2a
[ [
_Fe > dx= |
T a
25 Use first order non-degenerate perturbation theorgpltulate the change in binding energy
of an ion consisting of a nucleus charge Ze and a skilgldron when the nuclear charge

changes to +(Z+1)e.



In our last lecture we examined non-degenerate perturbttemry. Unfortunately the diversity of
problems to which one can apply non-degenerate pertunbigmry is limited by the fact that many
physical systems exhibit degeneracy. A degenerate systeme where two or more states satisfy the
same eigenvalue equation (Schrédinger’s Equation) witbahee eigenvalue (energy) but are distinct
states. If there anelinearly independent that share the same eigenvaluetila¢ set of states is said

to ben-fold degenerate.

Degenerate systems do not lend themselves readilg tie¢hniques we discussed in the last chapter.
This should be evident from studying Eq. 2-14. When twestate degenerate the denominator is

zero and the expression is meaningless. The only waycan attempt to rescue the technique is to

require that the matrix element in Eq. 2-14,) also vanishes for the degenerate states. Thisaiill

be possible unless we choose a different set of btiss. Let us assume that this is possible and that

(to begin with) we havelinearly dependent eigenkets that belong to the eigenvakieere

<una un,8> = Jaﬁ
a,f=12,...,s

3-1

The first task is to find the correct states with ethiperform the perturbation theory. Let us write

these states as
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|¢m>=ﬁqa\um>- 32
a=1

The condition that we can attempt our perturbation thkas to be that for states part of the same s-

fold degenerate eigenvalue (n) that

<¢7ni IV ¢nj> = <§0ni |V| §0ni>5ij : 3-3

This condition is often loosely referred to as thated beingdiagonalizedwith respect to the

perturbation.
The equations for the first order perturbation thediytstld so that (for example) Eq. 2-9 becomes
1
Eni_'<¢%d\q¢%0' 3-4

If we know the right states to use we can easily cateuhow the energy shifts. How do we pick the

states? If we take the degenerate version of Eq. 2-6

(HO_Er?) ¢7}1i>:_(v_ E.ql)‘§0ni>- 35

Using Eqg. 3-2 we can write this as:

(Ho - Er?) (0}u> =—=(V- Enl) z Qa‘ LAa>- 3-6

a=1s

Taking the inner product of Eq. 3-6 with another (gy eigenstate in the s-fold degenerate level

gives:

(H-E)

7=~ (V- B E 6| w) 37

a=1s

(Uhe
In an identical fashion to our previous results the-Heftd side of Eq. 3-7 is zero since the

Hamiltonian is Hermitian and the sta®das energ¥, Thus equation 3-7 may be rewritten

Z<unﬁ‘v| qwa>Qa = E & 3-8

a=1s
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which can also be written as

(V,Ba - Eiidaﬁ)(;a =0. 3-9

a=1s

This is a system of homogenous equations for the unknowns (fBE It possesses solutions (other

than all thec’s being zero) when
de(vﬁa - E,fidaﬁ) =0 . 3-10

3.1 Examples
At first sight our degenerate perturbation theory seetiger complicated. Let us see how in practice
the mathematics is sometimes a little less intinmdgatFirst we will consider a system where we are

given the normed eigenstates to use. In the secondlinget@rmine these states.

3.1.1 Threefold degenerate system in a magnetic field.
First let us see how simple calculating the changegdogees in a degenerate state can be when we

know the appropriate eigenstates. Let us assume thaeweodking with a spin-1 particle bound in a
radially symmetric potential. The degenerate states dtescribe the system are |+>, |0>, |->
corresponding to angular momentum orbital angular momenampanents +1,0,-1 along the z-

direction. Let us assume that we apply a perturbation diyen

v=H B, [L, 3-11
k
We know that
L,[+) =#+)
L|0)=0 3-12

L,l-)=-#-)
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and Eq. 3-3 is satisfied. As our conditions for doing pertiobatheory are met (our states are
diagonal with respect to the perturbation) we can rigiatyavrite down the energy shifts from Eq. 3-

4 to the states

AE, = uB
AE, =0 3-13
AE_=-uB

3.1.2 Twofold degenerate system - the general solution
If we take a level with a two-fold degeneracy we cdlofothrough the algebra we performed above

and see exactly how the determination of the eigermsstabeks. Let us assume that there are two
linearly independent eigenkelis;>,|u,> belonging to the" state. Let us assume that the two states

with which we want to perform our perturbation theary ealled|v,> and|v,> i.e.

v)=clw+adu)

3-14
Vo) = Gl w) + e u)
Our sole aim here is to determine the constanisom Eq. 3-9 we can then write
1 —
(V11 - Eni)q'l +V,6,= 0
3-15

1 —
Vzlql"'(vzz_ E’uj) &= 0
For thei’'th degenerate state (either 1 or 2 here) we have ommbenous equations fag, G,. These

only have a non-zero solution when the determinattietoefficients of the's is zero, that is

1 1 —
(V11 - Em)(vzz - Em) A 0 3-16
This is a quadratic equation for the energy shifts wiietds two solutions, one for each degenerate

state. If in addition one wants the normed states3Hd can be solved.

Finding these eigenkets is a cumbersome and laboriousspratle will leave this subject here and

move onto other approximate methods for stationaryigmuh
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3.2 Problems

31 Show that the normed states which can be obtaimad frq. 3-15 are diagonal with respect

to the perturbing potential.
32

In time-independent perturbation theory the first oraerections to the wavefunctions are given by
the expression

Vn
MF;WDE;@WJ

i) Explain carefully the meaning of the symbols i #guation above
and discuss the significance of the inequality undesthemation sign

i) Discuss briefly the problems of applying first orgerturbation theory to a
degeneratesystem .

iii) Calculate the shift(s) in energy to a spinlesgipke in a spherically symmetric
potential exposed to a weak uniform magnetic fielmlong the z directianYou
may assume that the interaction is of the formveeand that the particle is in an L=1
state.

H=auBO
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Before the arrival of fast computers it was often isgole to calculate the ground state of various
systems. This was often due to the difficulty of remiédly applying the perturbation techniques of

the last chapters.

The Rayleigh-Ritz method was developed to address thisepmolt does not assume that one has to
find the eigenstates of the system but rather thdtneer some general features of the wavefunction.

We will show here how it is used to calculate the grastate energy of a system.

4.1 Rayleigh-Ritz Technique
Let us assume that a system may be described by atbiaianil that possesses a number of energy

eigenvalues which we can write in order of ascendingggménat is

E, <E, < E,.. 4-1

Any state if the system can be expanded (at leastmeipte) in terms of the appropriate eigenstates

4= 2l o). 42

The expectation value of the energy of the mixed stajén by:
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ceo @9 _ThlE,

(o Xo

4-3The smallest value that this can have is the lowest energy tleerefor

Mg

w9

This means the expectation valuetbfvith respect to any normalised state forms an upperdotiun

the energy of the ground state. To estimate this eralgye have to do is to find a sensible way to
vary the wavefunctions sufficiently to get an estimafténis bound. We do this by assuming that we
have a trial wavefunction that depends on several paessn@and that we can calculate the

expectation value:

|wT> = ‘wT(al,az,O’3,“.)>
E(al,az,as,...)zw' 45

(Wrlys)

We can then minimise the expectation value of theggneith respect to our parameters

XE(a,a,,..)
aa,

=0. 4-6

The minimum corresponds to our estimate for the uppet imthe ground state wavefunction.

The entire success of the Rayleigh-Ritz method dependshonsing wavefunctions that are
qualitatively similar to the “real” wavefunctions farhich the integrals can be done. Although the
variational method is very elegant and surprisingly adeuitahas been superseded by numerical

analysis techniques.

4.2 Problems

4.1 A particle of mass m is bound in the ground state @bquonential potential
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2

V(r):_Sma

Use a simple trial function to obtain an upper boundhferground state energy.

21
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Not all the problems with which we are confronteditbynature are of the type we have discussed
above. In many cases, for example, there may becatiitapplied to the system that is not constant.
To predict the behaviour of such time-varying systenis fitot possible to use the Time Independent

Schrodinger Equation and instead we have to use theDémendent Schrédinger Equation.

5.1 Time-Dependent Schrodinger Equation

The Time Dependent Schrodinger Equation (TDSE) is giyen b

L,
|ﬁa|t/l> = H|y) 5-1

where the energy (in the Time Independent Schrddinger BguaTTISE) has been replaced by the
first derivative of the wavefunction with respect iimé. If the Hamiltonian is time independent it is
relatively easy to find a solution to the TDSE, namel

iEt

() =|u)e * 52
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where theu, are solutions to the TISE. For stationary eigenstdbgés simply introduces an

unobservable phase into the wavefunction.

5.2 Time Evolution of States
For a system composed of many stationary states we alaeady seen that we can in general
construct a total wavefunction
@)= 2.clu). 53
n=1,m
If the Hamiltonian is time independent we expect this to evateerding to
iEqt

() = ¥ .cl u)e * 5-4

n=1m

Thus for any stateg0) whose composition we know at tirteD we can find the/t) by finding the
values of c that are appropriate &0 and then letting the phases of each eigenstate eatteeding

to Eq. 5.2.

5.3 Perturbations
However useful we may find the formalism described byd4, it does not address the problem of
how a system that starts off in a known state wiiat to a Hamiltonian that depends explicitly (or

implicitly) on time.

Let us consider how to analyse such a problem. We liggéplitting the Hamiltonian into two parts,

one that is time independent and one that depends on time

H(t) = H, +V(1). 5-5
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This does not make the Schrddinger Equation any simpbaive, but if we assume that V(t) is small
we may try to solve the TDSE by using a form of pemtidm theory. If we guess that the eigenstates
at any timet will be close to the unperturbed eigenstates then westith expand the wavefunction

with the unperturbed eigenstates but with time varyingficmants:

iEqt

() =¥ c,(b) uje * . 5-6

n=1,m

This should be contrasted with Eq. 5.4 where the cosfisic were constant with time. Simply

substituting this into the TDSE gives:

BYC,(O]u, )™ = F V(0] y) 65 g } 57

and hence taking the inner product with an arbitrary &efdo,> yields

iR, (1) = ¥V, (D€ ¢.(1 5.8
where we have defined
V(1) = <up‘V( 9| u,) 5-9
and
a)pn:(Ep—En)/H. 5-10

The values of the coefficientsatt=0 may be determined from equation 5.6:

¢, (0) = {u,|¢(0)

5-11

For the special case where the system is in a unigtes st t=0 i.e.

c,(0) =9, 5-12

we see that Eq. 5.8 becomes



26  Time-Dependent Perturbation TheoryChap. 5

i, () =V, () 513

This is easily soluble for the case tipds the initial state

¢ (1) = 1+i%_c[vii (t)dt 514

and where is another state
1 T
- = . iwpit B
c,(7) m_OFVpl(t)e dt 5-15

5.4 Implicit Time Dependent Perturbation
In the special case that the perturbation does not depgtiditly on time but is applied to the system

for some interval of time (say

t=0 =t

Figure -5-1

then Eqg. 5.15 immediately yields the result

Vi i, T
c,(7) = Haz (1-€e*"). 5-16

pi

The probability for the transition is from state p based on a potentiglapplied for period is
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» sin] “07 2
p @ =l = el A 2 ) Ml g, ) 517
i-p P - 2 Y pi, ' ;
] wsi B
Where the functionD is defined by
D(a)pi , r) = gﬁrd(Ep -E) 5-18

so that the rate of change of probability itee transition rateis given by

- 27, |2
P (D) =?‘Vpi‘ o(E, - B). >

If we have a distribution of final states (which isealistic assumption) with densiyE) then the

rate of transition to these sta{€) is obtained by integrating over Eq. 5.19

P e :jZ_:\vpi\za( E, - E)o(E,) dE :%U i E’)L s

5.5 Problems

51 A system of hydrogen atoms in the ground state isaoued between the plates of a parallel
plate capacitor. A voltage pulse is applied to the capasitas to produce a homogenous electric

field
E=0 t<0 E=Eexpt/r) t>0
Show that, after a long time, the fraction of atamthe2p (m=0)state is, to first order,

215 a2e2 EJZ
= 0
3w nz(wz +1/ rz)
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wherea, is the Bohr radius antc is energy difference between tReand the ground state. You

may assume that the ground state of hydrogen is given by

1
—57 expEr fa,)

2
00>= —
g JATT &

and the 2p state by

|210>= 1t v exper /2a, )co®
0

\/ET (2a0)3/2 a



A system that is of particular importance to study iat tof an atom exposed to electromagnetic

radiation. Let us suppose that we apply an electrit jizlen by:

E = E, cos(kx— wt). 6-1

If we assume that this field is applied in thdirection then the perturbing potential will be:

V(t) = eE:cosat. 6-2
Using the results in the last chapter if we start Biagei the probability of making a transition to a

statep can be calculated by first evaluating the quantity:

e e R e

) = 52 (Pl

W, +w W, —w

o'——-qm

6-3

To calculate the probability of being in the stitave simply have to find the absolute magnitude

(squared) of Eq. 6-3.

Note how in the presence of radiation the probabdftynaking the transition becomes very large

(and perturbation theory may break down) when the frequefithe radiation matches either +/- the
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energy of the transition. In contrast, the transitwobability is zero if the matrix element is zero.

This is an example of selection ruldn quantum mechanics.

6.1 Emission and Absorption of Radiation

It should now be clear that the transition probdbgithat can be calculated from Eq. 6.3 are large
when the frequency of the driving oscillation matches df the transition. The probabilities diverge
when @ =#w. The positive frequencies are viewed as those wkgrE&; . If the final state is of
higher energy than the initial state then we haveorgbion of radiation. Negative frequencies where

E.< E; correspond to the emission of radiation.

) E E,
>0 <0
E | E,
Absorption of photon Emission of a photon
Figure 6-1

To compute the probabilities for emission and absorptiencan take the part of Eq. 6.3 that
dominates. For absorption the term that contaipso in the denominator dominates; for emission

the term that contains,+w dominates.

The probability of absorption is then given by:

6-4

PLo(0) = (ol &
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and the probability of emission is given by:

6-5

R0 =z |(pldif B

We can repeat the above calculation in a more gefeshion if we do not have a monochromatic

source of radiation. We do this by first noting theg €nergy density of an electric field is given by:

1
,O(E):EEOES. 6-6

The energy density in @ncoherent wave containing many frequencies - is of the form

Thus the transition probabilities in Eq. 6.4 and 6.5 become

sinz[;(a)pi + w) r} |

2 3]
Rop (1) = {(pl41] [ dwEF (@) ; o0
0 (wpi t w)
Referring back to Eq. 5.18 we see that Eq. 6.8 becomes
e’ .
P.,(1)= TEH_ZKpM |>‘2 Eé(‘wpi‘) . 6-9

We can convert Eg. 6-9 to an expression containing a phig. If N(wdw is the number of
photons in the frequency rangeto wt+dw normal to the direction of wave propagation per unietim

then the energy density of the photons in this range is

Hw% N(w)dw. 6-10
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Remembering that the energy density is given by Eq. é.6an then put

E*(w) = i:Picol\l(a)) 6-11
£,C

0

which means that the transition probability becomes:

2
P = 12wy |N(@o, (Pl " 612

0

Thus the transition rate is simply

2
P, :%‘wpi‘Npriu( p|2 i}‘2 . 6-13

0

6.2 Problems

6.1 Show that Eq. 6-13 may be extended to the case wheratbms (or the radiation) are

randomly oriented and that this gives rise to the t¢seé Mandl Sec. 9.5)

B, = g ealo, | Nw, D A &



To use Fermi's Golden Rule we need to be able to ewathat density of states. In many cases the
density may be approximated by the density of final st&te a free particle (for example if the

particle is weakly bound or weakly interacting) which bencalculated. The density of states refers to
the number of available states in the space spannbdtlhynomentum and position co-ordinates -

and is known aphase space

To make this more explicit let us consider a particlmomentump inside a cubic volume with sides

of lengthL. The allowed values of the momentum (in Xhdirection) are given by:

278n,
L

p, =Bk, = 7-1

and likewise for p, andp,. The numbers,, n, n, are all positive integers. Every combination of ¢hes
integers represents a different state. The numberatdssin one dimensionx)(in an intervaldp is
given by the differential of Eq. 7-1 namely
27Hh
dp, =——dn,. 7-2
L

In three dimensions the total numbers of stdi¢gs thus given by:

3
dN =dn dn dp = (ﬁ] dp,dp, dp, 7-3
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where if we set the volume of the confining cubegdthen:

3
dN =dn dn dp = \E%] dp dp dp 7-4

we can interpret the above equation as

volum
N - hq;hase space 7.5
where Eq. 7.5 is read as stating that the number o&sstatailable equals the phase space volume

scaled by Plank’s constant.

In spherical co-ordinates (that we often use becaugsbeofpherical symmetry inherent in many

problems in nature) we know that

d°p=dpdpdp= P dp@= D drdosd) gl 7-6

so that now we may rewrite Eq. 7.4 as:

dN =%p2dpc{2. 7-7

We can convert this to an energy density by dividingugh bydE :

dN _ vV pzﬁdQ. 7-8

E)=-—=—
PE) = e P g

Remembering that classical8=p%2mthen if we let the velocity of the particle e

@:E 7_9
dE v

then equation 7.8 can simply be rewritten as
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2
lap—dQ. 7-10
h® v

This is an extremely useful formula, as we shall sehémext chapter. As it stands Eq. 7-10 contains

P(E) =

an arbitrary quantization volumey. We will see that the matrix element, when calculdte a real

process, also contains a corresponding fatidt This leads to the cancellation of the arbitrary
factor. It is vital that this volume does not appeathia final answer. We would like to use Fermi’s
Golden Rule to calculate real transition rates fof peacesses, and it would be inconsistent if the

final answer depended on the artefdct Sometimes Eq. 7-10 is written in the entirely eqanal

form
V
P(E) = ——— pmd 7-11
(27m)
7.1 Problems
7.1 If an eigenstate of a system is given by

(r) =constx &*

then determine the constant of normalisation ¢nlzc box of side L.
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Our method for understanding Physics on the sub-macraskayal is usually to collide a beam or
particles (photons, electrons, protons, etc.) ontrget and study the products that are scattered into

different directions.

In the next few chapters we will learn how a detailed of these scattering processes can yield
information about the nature of the scatter and héheenature of the scattering potential. For
example, if the target or the colliding particles, camtaubstructure we may observe a different
distribution of collision products than we may have oilige expected. The classic example of this is
Rutherford’s famous experiment where alpha particles seatered off a gold foil. To develop our
scattering theory we first need to define several $eirat we are going to use when a measurement is

made.

8.1 Cross-Section

Consider a beam of particles of massand momentunp scattering off an infinitely massive
scattering centre located at the origin. Without thetedng potential the system is simply that of a
plane wave with wave vectdée=p/m and flux|. Theflux specifies the number of particles crossing a
unit area per unit time. If we assume thas the number of particles scattered into a spedifid s
angle @2 per unit time (see Figure 8-1) then the differential &s&ction is defined by the following

equation
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dQ 8-1

of0.g)aa = 102)

i.e. the differential cross-section is defined by itaigo of the scattered particles to the incoming flux.
If we double the incoming flux then we expect to doublerthmber of scattered products observed
per unit time. In this way the cross-section is indejgen of the incoming intensity and reflects only

the nature of the underlying scattering process.

statép>
ng,¢)dQ
o -+
(‘ I/unit area/unit time
% e

state]i>

Figure 8-1

The total cross-section (i.e. we look at all scgpreducts over all directions) is simply the integral of

the differential cross-section i.e.

O ol = _Fa(é?,go)dQ . 8-2
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A typical cross-section that we shall calculate Iésee Problem 8.5) is shown below:

Differential cross section

L L
120 150 i80

L L
[u} 30 [An]

o0
theta <(deg)

Figure 8-2: Differential cross section for the scattering of antebecoff a hard sphere.

Note how in Figure 8-2 the cross-section only varigh whe outgoing polar angle. There is no

dependence on the azimuthal angle due to spherical symmetry

8.2 The Born Approximation
We can now use our time dependent perturbation theoldolate the cross-sections. If we combine
Fermi's Golden Rule (Eqg. 5-20) with our expression for plspsee (Eq. 7-11) we get for a state
scattering to a stafeas in Figure 8-1 via a time independent poter&il
vV p

(27ﬁ)3 Vv Q |Ep:Ei

Note that in Eq. 8- is the arbitrary quantization volume not the potenfidle wavefunction for a

n(6,$)0Q = 2?” CECDE 8.3

single free particle travelling in a directiorwith momentunp is given by

ei;S.r'/l
| p> = VZIJZ 8-4
(see Problem 7.1) where this gives a density of ondcfgper volumeV. Then Eq. 8-3 may be

rewritten
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. 2
[EREGER N 8-5

Pp=h

n(é, ¢)dQ =

daQ p’
() W

If the velocity of the particle isv=p/m a volumep/m of beam crosses unit area normaptim unit

time. Therefore the flux is

/'m
| = p_ 8-6
\
Substituting Eq. 8-6 into Eq. 8-5 we can extract the diffésboross-section
m’ (- y)T/m|?
0(6,9) = —— |Jd°rs(f)e® " . 8.7
(27m?) Po=

Note that Eq. 8-7 is independent of the arbitrary nogatiin volume - which is what we expect
since a physical quantity cannot depend on the norniatisptocedure. This equation was derived by

Max Born and is known as thigorn Approximation

8.3 Matrix Element in The Born Approximation

The matrix element itself has an interesting featiimaay be written

S(K =J &g 1 &° 8-8

where we have put

BK = g - p, 8-9

For a central potential we first write

K [T = Kr cosd 8-10

then

S(K) = rdrd gy & 8-11
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and thus integrating over @&we have

S(K) = ZHI%drS( r)[eiKr - " ] = 4?”_[8( rsin(Kr)rdr . 8-12

The scattering matrix element only depends on the modtikisvbere we remind the reader that

(ﬁK)Z =(p, - B) =2PA-cos)= 4 sirfg 8-13

8.4 Time Independent Approach
Another very useful way to calculate the scatteringna particle is a time independent approach. In
this method we assume that we have an infinite beather than a single wavepacket) of particles.

This is very like an experiment. The incoming wavefiomccan be written

Y, (r)=e* 8-14

where the wavenumbdéris given by

v2
k = (ZmE/ﬁz) . 8-15
This wavefunction represents a particle moving alongztd&ection with uniform intensity and

energy. Without any perturbing potential the Schrodingertemueeads (see problem 8.3)

(D2 + kz)(/lo =0 8-16

and in the presence of a time independent potential we ha

(D2 + kz)z// = ]2&_21le 8-17

As we switch off the potential gradually we expect tHatgmn of Eq. 8-17 to tend to Eq. 8-14 i.e.
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Wy, =€ 8-18

To proceed we need to solve Schrodinger’s Equation in-H#4d. 8

8.5 Formal Solution of Schrédinger’s Equation
Let us solve the Schrédinger equation by reference pooblem we understand well, that of an
electrostatic potential from a distributed charge. Td¢lat®ns to Poisson’s Equation (which looks a

little like Eq. 8-17)

0%y = —gi,o(r) 8-19

0

are easy. They are obtained by considering thetrestatic potential from a point unit chargesat

i.e.

1
0% =—-—9(r -3). 8-20
50
We know the solution to this is:
1
[/j = 8-21
AT |1~

as we know the potential due to a point charge! The patehte to a distributed charge is then given

by the integral:
1 3
Y(r) = f———p(9ds. 8-22
AT |1 ~ |
Let us now consider the problem we are interestedaimety that of solving Schrédinger’s Equation.

Let us rewrite Eq. 8-17 as

(D2 + kz)z//(r') =F(r). 8-23

By analogy with our solution of Poisson’s Equation westfsolve:



(0% +K?)g(r) = o(r -9). 8-24

We can verify by direct substitution (see problem 8k} the solution is

e_|_|kr

W=-

: 8-25
a4

This corresponds to spherical incoming and outgoing wWaeesa point “source”. From an extended

source:
_ 1 elk‘lr 3| 3
W)= T S|F(S)d 8-26
where
F(s) = V(s)z//(s) 8-27

To get the general solution of the Schrodinger Equatieg. 8-17) we can add the solution to the
unperturbed part (Eq. 8-18) to the “scattered” wavefunctibasarise from solutions to Eq. 8-26. In
physical terms we are adding to the incoming wavefun@icomponent that represents the scattered
wave

1 |k\r’ 3|

N =e"“-—— F(S)d®s. 8-28
Yy =e* -~ j'| 3

8.6 Scattered Waves

Equation 8-28 is especially important. The second terrtherright is very similar to Eq. 8-25 and

represents an outgoing wave whose amplitude is modulatexm®gyfanctionf(6,9).

ikr

Y(r)=e" +eT f(6,¢). 8-29
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The functionf(8,¢ is known as the scattering amplitude and is related tedatering cross-section

by

o(3,9 =|f 6,9 8-30
Note that the scattering amplitude can be complex. Thesuned quantity (the cross-section) is
determined by taking the square of the absolute magnitude.nféans that when we have one or
more scattering amplitudes contributing to a physical potieat we will need to add the scattering

amplitudesheforecomputing the cross-section . This leads to interfereffects.

In the case that we are observing the system a laygaway from the scattering centre we note that

if r>>s then:

r-s

2 @ T1” 3
=r 1—r—2r'Eﬂ§+r—2 =r[1— 2 ] 8-31

The exponential term in the integral 8-28 can thenbeldied

oklrs| ikr

e _
_ . o~ e ikr'S/r 8-32
rr—s r
which if we put
K'=kr/r 8-33
becomes
ikr .
—e—lkB. 8-34

r

Substituting the form Eq. 8-34 into Eg. 8-28 yields

ikr

e v(op(y d % = K+ eT £(6,9) 835

ikr
i e 2m
;!, r :eIkZ + _

") r [ 4ATH?
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(8,0 =- e ¥E(9w(y ds 8-36

m
271'12-F
8.7 Scattering Amplitude for Small Perturbations
We can take Eq. 8-36 and apply to the very important caseenthe potential is very weak. This

means that the incident wave is only slightly distbri&/e can put

w(s) - &° 8-37

in Eq. 8-35 yielding

m
27H°

FO.0) = fe ™ v(9¢ d's- 1 fdse“ (Y

278 8-38

K=K-k'
This is the Born Approximation for the scattering amylé and yields our previous result for the
cross-section when we take the absolute magnitude ofstadtering amplitude ( c.f. Eq. 8-7). The

advantage of the form Eq. 8-36 is that if we have a numibeifferent scattering amplitudes we can

now sum then to obtain the correct cross-section.

8.8 Probhlems

8.1 Particles are incident on a spherically symmetriemibl

V(r) = gex;(—y)

where andy are constants. Show that in the Born approximattom differential scattering

cross-section for the scattering vedtois given by
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2
2m,
o6.g=1_ 2P
HZ(KZ + yz)

Use this result to derive the Rutherford formula foe tcattering of alpha particles.
Although this gives the right result, see if you camkhof any reasons why this might not be
a rigorous result.

8.2 Obtain in the Born approximation the differential s-ggction for the scattering of the
particles of mase by the potential
V(r)=V,e”
8.3 Show that Eq. 8-16 is the Schroédinger Equation in 3 diroessi
84 Prove that Eq. 8-25 is a solution of Eq. 8-24.
8.5 Calculate the differential cross-section for thettecang of a particle of enerdy with mass
m by a hard sphere of radias
8.6 A uniform beam of particles with momentyrare scattered by a potentialr)y/(The number

scattered into a solid angl€ds given by

n(é,p)dQ = Z?IT[K Uy, ‘V( r)‘ up>‘2(§nl 3 p'mCQ:|

p'=p
i) Explain very briefly the origin of the arbitralgngthL and the meaning op’
i) Assuming that the flux of incoming particles is givenlbg (p / m) L* write
down an expression for the differential cross section.
iii) Defining BK = p— ' show that the cross-section only depends on the Fourier
transform of the scattering potential
iii) Calculate the differential cross-section for thestitascattering of a charged
particle off a Coulomb potential.[You may assume that

jsinbxdx: 1/b].
0

V) What are the limitations of this calculation?



In the last chapter we saw that the scattering dirdicle (or a beam of particles) off a scattering
centre resulted in a solution of the Schrédinger Equatidine form

ikr

W=+ f(9,§0)éT 91

where we separated the final wavefunction into twosparhe forwards going (unscattered part) of
the amplitude and spherical waves. The spherical wavesatm from the scattering centre and are
modulated by the scattering amplitude. We discovered we aalddilate the scattering amplitude
from the total cross-section. There is an extrerasbful way of determining the scattering amplitude
that attempts to resolve the scattering componentqi@ivn angular momentum. This method of

partial waves is what we shall discuss below.

Let us assume that we can expand the angular part ofdbmiimg wave using as set of orthonormal

solutions (spherical harmonics) to the Schrédinger Eguatentred around the scattering centre i.e.

I=co
eikz — eikrcose — L,I( kl) Y)(e’go) 9-2
=0

where the functions; can be determined by taking the inner product of Eq. 9tB wamother

spherical harmonic
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u(kn = fdaY (6,9 & .

9-3

Note that the expansion Eqg. 9-2 has only been perforwedtioez=0 components of the spherical

harmonics. If we assume the scattering potential dsalig symmetric there can be no azimuthal

dependence of the scattering.

At very low energies of the incident scattering pagtigbe expect that only the lower angular

momentum states will contribute to the expansion. & limit let

us consider the case of s-wave

scattering where only the angular momentum zero séatecan contribute. Using the fact that

1
= an
we find
u (kr) = L-Fd(coseﬁ'krcose Ct”: @.”)1/2 sinkr
O (4m)™ Kr

i.e. at very low energies the incoming wave is given b

o ~ sinkr
kr

9-5

9-6

If we compare this with our general form for the et and scattered form of the wavefunction

namely:

ikr

p=e"+=-1(6.9)

we can then write using our s-wave approximation

9-7

(1+ zkfo)] 9-8
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We note that Eq. 9-8 has a total wavefunction made ap @icoming wave and an outgoing wave.
As long as no particles are destroyed or created duringctteer the incoming flux must equal the

outgoing flux i.e.

1+ 2ikfo| =1 9-9

or expressing this as an exponential may be written as

1+ 2ikf,, = % 9-10

where the scattering amplitude is therefore

2i4, ;
e’ -1 s sinod
f,=""—=¢€% 0 9-11
2ik Kk

and (if we wish) we can write the total amplitude

ikr ikr H
[/j = i —e- + e_ezwo = éao —Sln(kr * 50) . 9-12

2ik r r kr

Comparing this with Eq. 9-6 we see the effect of ttedter has been to change the phase of the
scattered wave by, and the amplitude by an amount that depends on this ghi#seWe can
calculate the differential cross-section for the svapproximation by taking the square of the s-

wave amplitude (Eq. 9-11)

. 2
singd,
9-13

0(9,¢?)=[ .

9.1 Scattering off a hard sphere
A particularly simple and illuminating example is given hg toroblem of calculating the s-wave
scattering off an impenetrable sphere. This is reptedeby an infinite potential at some radius a.

The wavefunction must therefore be zero within, andhenboundary of, the sphere. Assuming we
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can use the low energy s-wave approximation (Eq. 9-12)cduis only be the case if ka=-&.

Inserting this into Eq. 9-13 gives

. 2
sinka
o(6,¢ = [ ] 9-14
Kk
and the total cross-section is
_ 4sin’ ka o1
tot k2

which in the limit thak becomes very small indeed becomes

o, =4m? 9-16

tot

This is very close to the classical result but demratet that quantum mechanics does not always

predict what we might expect from classical arguments.

9.2 Problems

9.1 Find the s-wave phase shift for an attractive squaneewotentiaV=-Vyr<a, andV=0 for
r>a. Show that the cross-section for s-wave scatteramished if the scattering enerfyis

such that

tanKa _
Ka

1

where

This is called the Ramsauer-Townsend effect and odoutise scattering of electrons by rare gas

atoms.



To make any further progress in Quantum Mechanics beylactdlculational level we have to
investigate, in a little more depth, some of the niquantum” like features of the wavefunction. In
particular we are going to be interested in the propediighe wavefunction that have no clearly

defined classical analogue. We begin this with a shtwdduction to the idea of identical particles.

10.1 Classically Identical Particles

In classical mechanics the idea of identical partidess exist. One can imagine two objects, for
example apples, which have exactly the same appearamaps, steight etc. These apples would be
labelled in normal usage “identical” insofar as if avere presented with one apple one could not say
which one it was. This linguistic concept of “identicéd howevernot the same as our physics

concept.

Consider two apples in a large space. One could, at igypartinstant, label one (at least in one’s
mind) A and the otheB. Even though there is no discernible difference betw&eandB one could
then - for all subsequent times - be sure which appleAwasd which wa8. This could be achieved
by very carefully following each apple. Since therel#ssically a unique and smooth trajectory in E
as a function of time all one would have to do is appé/Newton’s laws at a particular instartd
predict (and label) the position of an apple at tiadt. Thus one can differentiate betwe@nandB

for all time.
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10.2 Quantum Mechanically Identical Particles

Quantum mechanically the differentiation betwéeandB is no longer possible. This is because at
any instant the wavefunctions are non-localised. §gaial extent of a wavefunction in free space is
normally infinite. Thus if we have two particlés and B that share identical properties (quantum
numbers) we are not able to follow their wavefundianambiguously for all times. Suppose we were
able to localise the wavefunction Afto some region of space, to xa+dx, andB to Xg to Xg+dXg . If

at some small instant of time later on we calcultdie probability, PA(y), that particleA is in another
volumey toy+dy and the probabilitiPg(y), that particle B may be observed at the same pointilive
general find that botla(y), Pa(y) are non-zero. Namely, if we do observe a particlpoit y we
cannot be sure whether it was the partiler the particleB. One might argue that one could on the
basis of probability assign a likelihood of one partibking A and the otheB: for example an
electron that started out in a cathode ray tube orhEsithore likely to be observed on earth than in
Alpha Centauri. However likelihood is not the sametees absolute certainty that we had in the

classical example above.
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10.3 Wavefunction for Identical Particles
With state vectors we can examine indistinguishabditittle more carefully. We assume that we

have two particles which we can lab@but not distinguish) as 1 and 2. Let us also assumehhat t

particles can be in statefi;(/m> and |l//n> which are distinguishable because they have different

quantum numbers. If our particles are indistinguishable therstate{ l//in>‘l//r21> must be entirely

equivalent to‘ l//i>‘ l//f]> i.e. it won't affect the outcome of any measureniewe interchange labels

1 and 2 because we cannot tell experimentally which paigcin which state. Thus for the total

wavefunction for two-particles we have a linear supétiposof the two possibilities

W?)=c,,

S R (A TS 101

This mixture contains equal proportions of each produat gsaice they are equally likely) thus

|Conn| = | Conl- 10-2

In addition since the total wavefunction in Eq. 10-1 nloieshormalised we see that

ol *[Ce]* =1 10-3
so that
1

|Cmn| = |Cnm| = 10-4

-5

 The reader may wonder how we can write down a state viecter particle that we cannot distinguish for
another. Does this not imply that we have somehow diffetedtiane particle from another by labelling one
particle differently from another? This not an easy questi@nswer. Here on may simply assert that there
is a reality associated with a particular particle, and this realitycrilesd by its wavefunction. Each
wavefunction develops according the Schrédinger Equation. Howseercannot directly access this
wavefunction. We have to make an observation on the systenwasle and in making the observation the
“information” about which wavefunction (or particle) was olvseris lost.
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10.4 Fermions and Bosons
There are two ways of enforcing Eq. 10-4. Eitlegf=Cnm OF Cni=-Cnm. We can write down explicitly

what Eq. 10-1 becomes in either case. For the caseth&, we have

)=o) lwilws)
In this case if we exchange particles 1 and 2 the wagtbn (Eg. 10-5) remains identical and is
said to be symmetric on the exchange of particlesidRartwhose two-particle state vectors possess
this property are known dmsons Whency,=-C,m We have

W)= (wnled)-le)

1 2
== 7] ) : 10-6
V2 o
The reader will notice that if we now exchange partickend 2 the wavefunction changes sign. It is

said to be anti-symmetric on the exchange of parti®®esticles whose two-particles state vectors

possess this property are knowrfersnions.

10.5 Pauli Exclusion Principle
Perhaps one of the most important distinction betweasons and fermions is evident in the
comparison of Eqg. 10-5 and 10-6. In the case that the twiiwlpa are in an identical eigenstate the

bosonic two particle wavefunction becomes

‘HJ12> = ‘t//j1 >‘l//r2n> 10-7
This is evidently non-zero and is simply the productestéthe two separate particles in state~or

fermions the product wavefunction is altogether morerasting:

w2)= 2 (unei)-lunlen) =0
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This means that the particles whose two particle fuaetions are antisymmetric (i.e. fermions) are
forbidden from occupying the same state, i.e. themiprobability that they can be found in the
same state. This is often referred to as the PauliuBirn Principle. The exclusion - that two
fermions are forbidden from being in the same statbould be thought of as consequence of our
ideas about indistinguishability. In the next chapter algevisit bosons and fermions and see their

relation to the spin of the particles.

10.6 Problems

10.1  Explain why Eq. 10-5 becomes Eq. 10-7 when the two statexin are identical.
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One of the most puzzling features of the Quantum Wortleégphenomenon of “spin”. The idea, as
always, is motivated by experiment: if we put an electrdo a magnetic field we will see that it will
be in one of two distinct states. If we were perfiogna spectroscopic experiment we would see the
line “split” from the field free value with one band witag down and the other moving up. Classically
we could understand this if the electron were to hawegnetic momenty) which could interact
with the magnetic field giving an energy to the electron E Oy B. For there to be only two
levels it means that the magnetic moment must beedigm just two directions antiparallel to one
another. It is natural pick the B field direction asthkis of quantization. Thus in our semi-classical
picture we envisage two cases - one with the electrement aligned parallel and in the other with it

aligned anti-parallel to the magnetic field.

Y7,

Figure 11-1: Semi-Classical view of an “electron” interacting wétimagnetic field.

In this simple picture we can easily understand how weeaat the nomenclature spin. Classically a

charged object that spins creates a magnetic momeats(ttall magnetic field produced by the



58 Spin  Chap. 11

moving charge) which interacts with the externally aplmagnetic field. From this we clearly

expect spin to be related (somehow) to angular momentdrotaer rotational effects.

But there are problems with this semi-classical picthiest there is no evidence that the electron has
any spatial dimension. Second there is the issue of thlay‘spin” is quantized. To tackle these

problems we will first review the quantum mechanicalwbf angular momentum.

11.1 Angular Momentum Commutation Relations

Classically the angular momentum of a particle abouirat given by

L=rxp 11-1
and in qguantum mechanics we postulate that there wadhbangular momentum operatordefined

by

L=rxp=-ifrx0 11-2
where we have replaced the momentum by its quantum nieehaperator. In Cartesian co-

ordinates it is then easy to explicitly write down tben of the angular momentum operator

ror K P K
L={x vy z|=-Rx y z| 11-3

. P, P, AN

| X dy Jz]

which gives us the three forms for the angular momerpenators
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,{ Y, 0"]

L,=—-Ry—-z—

oL .

L, = —ii{zi—xg 11-4
oX

L, = —u&[x% - y%]

These are our familiar forms for the angular momentperators and, as we have done before, we

can also define

2 _ 12 2 2
L =L, +L,+L;. 11-5

From these definitions (Eq. 11-4 and Eq. 11-5) it is &apyove that

[L.L]=inL,
[Ly, LZ] =inL, 11-6
[L.L]=in,

and that using these commutation relations that

[ L]=[ L) =[5 L] =0
11-7

These are very important commutation relations takvhive will return later.

11.2 Angular Momentum in Spherical Co-ordinates
In spherical (rather than Cartesian) co-ordinates a@hgular momentum operators are easy to

identify. First we define the relationship betweendpkerical co-ordinates and the Cartesian ones:

Tcosgo sing + Tsingosine +Kkcosd

(D=
1

-

Tcosp co@+ jsingcod - ksind

N

&, = —ising+ jcosp
11-8
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where the quantitiesér,ég,'% are unit vectors in the radial, polar and azimuthal ctivas

respectively. The inverse can also be written down:

| =& sind cosp+ &,cosd cop- & sing
j =& singsing+ &, cosd sinp+ € cosp.
k =& cosd- & sind

In spherical co-ordinates

J. .10 . 1 0O

O] =6 —tE—+€,—F —
o r 00 r sind dg

so the components of the angular momentum may be nvritieg

L = —ihr x [ = —i#ré, x[érgﬂégliﬂ‘a 1 d]

rd0 “rsinddg
= _Ii{éwi_égii]
o6 siné dg,

The components of the angular momentum may be written

ar o . 0 V74
L. = ild=iH singp— + cotd co
' ’{ T s‘o"go]

L, =] = —il{cowo%— co® sirrpi] .

o
L, =k = e
I

11-9

11-10

11-11

11-12

It is important to note that we have done nothing pExexpress the operators in spherical co-

ordinates. An expression fdr? may be found from Eq. 11-11 noting that from Eq. 11-9 the

derivatives of the unit vectors with respect to theesighl co-ordinates are not constant. Fom Eq. 11-

8



61

I ——=6,c08
o . 4 11-13
8 0 % —& sind - &,cosd
0 dp '
Hence
[ g , 1 o"]EE- g . 1 0"]
L>=-n’|8 —-&——|l—-&——
? 00 siné@ Jg. o6 siné o,
: 11-14

o 12 J 1 29°?
=-h sind— +T 5
sing J6 260+ sin” 8 dp

In the case that we have a central force (wherssidally the angular momentum is conserved) we

can write down the time independent Schrddinger Equation

HW(r,0,¢) = EWY(r,6,¢) 11-15

where the HamiltoniarH) is given by

HZ
H = —2—D2 +V(1)

100,10 ) 1 92 110
=0 r? (s 6 ] +V(r)
dr & sme o6 26s  sin’ Ho"go

It is very important to note that in Eq. 11-16 the opmfrﬂ2 has been expressed in spherical co-

ordinates. The second part b is simply proportional to the angular momentum operatqr (H-

14) so we can write

_ ¥ 7,0, U
2mr? o"r o"r 2mr?

From examination of Eq. 11-17 we can deduce the Hamiliomith commute will commute with.?,

+V(r). 11-17

Lx Ly, and L. This is because all the terms (exdePtcontain terms im only andL? commutes with
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all the angular momentum operators. From Ehrenfestsrémi this automatically means thit is a

constant of motion as atg, Ly, L,.

11.3 Simultaneous Determination of the Componentso  f
Angular Momentum

Ehrenfest’s theorem tells us thatis a constant of motion, as atg, L, and L,. However this does
not mean that we can determine all of these compsrsmtultaneously. In fact the commutation
relations Eqg. 11-6 tell us that ttkxey,zcomponents of the angular momentum do not commute with
each other. We know that in cases such as thiegmple withx andp,) we do not expect to be
able to simultaneously observe both variables. Bhisfeature of quantum mechanics. We will show
that we can simultaneously obseiveand one directional component (which by conventian i

usuallyL,).

We will discuss simultaneous eigenfunctions in Chapter 12 lmitvorthwhile here to prove that the
commutation relations Eqg. 11-6 do embody a very impoffeattire of quantum mechanics. Let us
assume we have two operatédrandB that both commute with the Hamiltonian. The conditibat

either A or B commute with the Hamiltonian is that their eigenfimts are also eigenfunctions of the

Hamiltonian: this may be seen (non rigorously) from

11-18

therefore

! Ehrenfest's Theorem tells us that if an operator commwitts the Hamiltonian the observable which it
represents is a constant of motion. This may be proved @asilis done so in Chapter 12.
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[AH]=0 11-19
if Eq. 11-19 is zero it must be that the last line of El318 holds and that is only possibléliandA
have simultaneous eigenfunctions. NowAiandB both commute with the Hamiltonian we have only
two choices. If they commute with each other theyehaill both have the same eigenfunctions which

are also eigenfunction of the Hamiltonian. If they dot commutethenB will have another set of

eigenfunctions|v> i.e.

such tha{B,H]=0 but these will not be same as the same functiottzseds>.

Thus if we make a measurement in a particular directmmekamplez) we select (put) the system
into a simultaneous eigenfunction of bathandL,. The corresponding eigenfunction will not be an

eigenfunction of both the Hamiltoniab? and the componeit, (where a is any other direction).

11.4 Angular Momentum and Rotation

There is a very deep connection between angular momestdnnotation. This is most obvious from
the form of the angular momentum operaktgrthat we wrote down in Eq. 11-12. If there is no
dependence of the state on the azimuthal angle(i.eg almme particular direction) the expectation
value of the angular momentum along that particular doectiill be zero i.e<L,>=0. However if

the state has an eigenva@ with respect td_, we know that

—iﬁi|u> = | u) 11-20
op
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which of course is trivially solved by

lu) =|u(r,8))e™ 11-21
Now Eqg. 11-21 embodies a very interesting feature. Underattgular momenturh, operator the
state is only changing by a fixed factor (the eigenvalaled thepdependence is only a phase factor,

albeit one that depends on the value of the angular ntameprojectionm.

Let us consider what happens to a vectavhen it is rotated about a small angle around the z

direction

I r+dr 11-22

where

dr = ﬂrdgo 11-23
op

which, if we wished, we could write in terms of comgots from Eq. 11-9. Comparing Eqg. 11-20
and Eqg. 11-23 we see that the angular momentum opérdsofresponsible” for generating rotations
about thez axi€. To be more formal Eq. 11-22 can be expressed in termasrofation operator

(which of course can be applied to states as weleet®ss ). For an infinitesimal rotatian

r-Dr=01-2L)r
an 11-24
|
D =a-2L
,=a-'91)

Repeated application of the operdigrgives for a finite angler,

D, = exp{—g LZ] 11-25
B

2 In factL, is often call the generator of infinitesimal rotations.
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i.e. the finite rotation operator in quantum mecharg simple function of the angular momentum

operator.

11.5 Eigenvalues of Angular Momentum Operators

The eigenvalues corresponding to the operattasdL, are well known. They are given by

L?|1,m) = (1 + )&l m)
L,|l,m)=n#l,m 11-26
m=-I-l+1...,1 = 1]

where the values in 11-26 can be derived by an expliditieol to the differential equation 11-14

with the spherical harmonit$.(6,@ . However here we will use a somewhat more elegahtigue

to obtain the eigenvalues of the angular momentum apsrat

Let us define two operators

L, =L, +iL,
L =L, -iL,

11-27

where L and L are known as the raising and lowering operators ofattgular momentum. The

commutation relations for these operators are:

LL =2+12-i[L,L|=L7-L2+nL,
11-28
LL =2+2-i[L,L]=L7-L2-n,

which yields

[L..L]=28L, 11-29

We also have
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[L.L]=[L L]+, | =in -ie ) =n,

(L. L] =L L) -i[L,L ) =inlL +iL )=

The two sets of commutator relations Eqg. 11-29 and Eq. Hre3@ll we need to extract the values of

11-30

the eigenvalues of the angular momentum. Let us rest@ateroblem. We have the equations

L?|u) = a]u)
L,[u) = Au)

and we need to find the simultaneous eigenvalygs This is done as follows. First we take the

11-31

second of the equation in Eq. 11-31 and multiply both sigéisebraising operatdr.:
L,.L,Juy=BL,|u).

We note that from Eq. 11-30
L,L,=L,L, —BL,

SO

(L,L, —BL,)u)= B L,|u) 11-32
which may be rewritten as

L,L,|uy=(B+B)L,|u).. 11-33
Similarly

L,L|uy=(8-B)L_|u). 11-34

Equations 11-33 and 11-34 are interpreted as telling us tlfaﬁ ifis an eigenfunction df, with
eigenvaluef then L+|u> is also an eigenfunction df, with eigenvalue 5+ k. L_|u> is an

eigenfunction of L, with eigenvalue3—R. This is whyL. andL. are known as the raising and

lowering operators.
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We can also apply the same method to the total angwaremtum. Starting with

L?|u) = alu) 11-35

we multiply by the raising operator

LU w=al,|u. 11-36
We have not explicitly calculated the commuts{tbl?‘, L+] but we note that sind€ commutes with

both L, andL, it must also commute with the raising and lowering dpesaEq. 11-36 can then be

written as

L’L,|u)=a L,|u) 11-37

and we can find a similar relation for the lowerinmpator

L’L_|uy=a L_|u). 11-38
This shows that the statds+|u> and L_|u> are also simultaneous eigenstates of the total angular

momentum.
We can now calculate the eigenvalwe8. The eigenvalues df, are limited by the condition
,32 < a. There must then exist some maximum valug @aynay and a minimum valugy,,. If

|umin> and | umax> are the corresponding eigenfunctions we must have

L. |Upe) = O

Luy)=0 11-39

i.e. we cannot get any higher than the highest stad@ylower than the lowest state. Thus operating

on the first of Eq. 11-39 by the lowering operator ands#nd by the raising operator we see:
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L— L+|umax> = O
L,L_|u,,) =0

Now we can use Eq. 11-28 that we derived before to give:

L L, |Upe) = (12 = L2 =L, ) ) =0
(- +nL)u,,) =0

I-+ L— | umin>

a_/Bzmax_E/Bmax:O
a_lgﬁﬂn +ﬁ18min :O

Eliminatinga gives

ﬂzmax + ﬁﬂ max = ﬂzmin - nﬂ min'

We can write down the solution

ﬂmin = _ﬂmax'

Now from Eq. 11-34 we know values Bfare separated by stepsibf.e.

ﬂmax_ﬂmin = nﬁ

SO

_nh
IBmax_ 2

The value ofx can be found from Eq. 11-42 and Eq. 11-46.

o-r{2)

11-40

11-41

11-42

11-43

11-44

11-45

11-46

11-47
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Note that the minimum value of (when n=0) is 0, then 3?!2(,6’ = —g,g ,2112(,8: —E,O,ﬁ)

and so on. The solutions where n is even lead to anmal” angular momentum states and we are
left with the “unexpected” half integer solutions (spin)I#hich we would like to connect to the
intrinsic spin. It vital to note that while the @ger solutions to spin have normal spatial

wavefunctionsno such wavefunctions can be found that correspond to thinteger case.

11.6 Intrinsic Angular Momentum

That we cannot find spatial wavefunctions that cornedpto the half-integer spin eigenvalues does
not necessarily mean that they do not exist. Rememhia¢ our problem was formulated in a way
(using kets) that dictated the form of the ket. Rathan define angular momentum specifically
with components, we generalise the operators and dafigelar momentum with the commutation

relations Eqg. 11-6 and 11-7. We will show how this caddree for spin-1/2 particles.

11.7 Matrix Representation
For particles that we would like to occur in two eigetestgspin up and spin down) it is natural to

write the eigenstates of the z-component as columiongec

[(ﬂ =|1)spin Up,((])] =1 ) spin down.

Any operator operation will have to be a 2x2 matrixotder that this representation of spin yield the

“right” eigenvalues we need to guarantee that
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L

z

D=2

=20

In order to make it explicit that we are worried abowt phoblem of intrinsic angular momentum and

11-48
L

z

that the operators are distinct from the ones we baga dealing with before we will replace thby

anSi.e.

B
s|1)=3l1) s
R
S[)=-34)
This may be satisfied i, is given by
S, = 1Haz
11-50

1 o
o, = 0 -
If we wished to find a set of operatch%S(,S/&that satisfy Eq. 11-6 and 11-7 it is natural to do it

from matrices similar to these in Eq. 11-50. Such aobetatrices does exist and they were first

discovered by W. Pauli. They are named after him andalled the Pauli Spin Matrices. These are
0 1 0 -i 1 0
o, = T, =1. O, = 11-51
“ 11 of Y [i Oof * |0 -

These three matrices form the x,y,z, componentsvector o which is related to the spin operators

by

S=2¢. 11-52
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Using the definitions of the Pauli Spin Matrices ie&sy to show that the matrix version of Eq. 11-6

and 11-7 does hold i.e.

[S.. §] = 2 Setc 1163

and that

10
S=g5+3$+ § %HZ[O 1] 11-54

1770
Clearly the eigenstateEO] ,[J have total angular momentum eigenvaluef.é/énd a spin

projection eithertf/ 2 in the z direction. Note that the corresponding braoveare

(1= 9(:]=(0 3

11.8 Spin and Angular Momentum

From the discussion above it should be clear thatnisittiangular momentum is a very different
object than the spatial angular momentum. Being repreddnt the Pauli Matrices (for spin 1/2

particles) it does not contain any of the normap operators or their components. The spatial

degrees of freedom will commute with the intrinsic sSgppmponents.

[é, r] :[S, }}:[ 5 '1,: 0, 11-55
This means we can specify simultaneously the spatidl iatrinsic components of a particles

wavefunction and that the total wavefunction may bigtewr as

luy=W(r,6,9)|4) 11-56

Where|/1> is the spin wavefunction.



72 Spin  Chap. 11

Despite all this abstraction the intrinsic spin igeay real property of an electron. It does couple to a
magnetic field and one can see this even with faithpke experiment. Let us take a moment to see
how we can write down the mathematics for an elecinside a magnetic field. Let us choose the

applied magnetic field to be along the z-direction. We krbat the spin part of the electron
) ) ) ) 110
wavefunction will be composed of the spin up and spin daates 0’ . In analogy to the

classical case the Hamiltonian will be perturbed bgigount proportional to the magnetic moment

. € < ¢ e
AH=-4B=9g—S.B= g—S B 11-57
2m, 2m,
We can then use perturbation theory to calculate enshits. All we need to be able to do to

compute energy shifts is to calculate our usual matrix exésn.e.

AE, = giB<T‘SZ‘T>: giB(l o)g[; _0]]@ =

e BB N e Br
Iom 2 =057

11-58

Eq. 11-58 gives the energy shifts. The factor of propaatin(g) between the spin and the magnetic

momentg. This is the Landg-factor for the electron - which is almost exactly 2.

11.9 Spin and Statistics

Finally we return to the question of spin and statisti¢e saw that particles that have anti-symmetric

wavefunctions obey the Pauli exclusion principle. We atated that fermions (spin 1/2 particles)
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have anti-symmetric wavefunctions and bosons (spin Bl symmetric wavefunctions. Why

should this be?

If we return to our generalised angular momentum disquss® see that the angular momentum
operator is related to the rotation operator (Eq. 11-28)nmight believe that the exchange properties
arise trivially from the rotation operators. It igr@inly true, for example, that if we take the
generator of spin rotations to Bgthen, just as derived above, the generator of afiotttion is
Jag _
D,=e" =¢w”? 11-59

which if we expand the exponential in termsgbecomes

D, =€? 11-60
and Eq. 11-60 shows that a fermion system is only iddntiicéts original configuration after a
rotation of 4tradians. It can be shown that spin 0 and spin 1 syseumsre only a rotation ofr2to
return to their original configuration. Since exchanddsgentical particles can be considered similar

to rotations (in a classical two body system) weusthanot thus be surprised that the exchange

properties of fermions and bosons are different.

However a “proof” of these properties lies beyond tb@pe of this course as it requires a detailed

understanding of relativistic wave equations.

11.10 Problems

111 Prove the commutation relations 11-6. Prove Eq 1¢4Ising the commutation relations

11-6.
11.2 Perform the calculation to show the final form of BE1-14 is correct.

11.3 Prove the equation 11-34.
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114 Prove by explicit matrix multiplication that the Pa8lpin Matrices give rise to Equations

11- 53 and 11-54.

115 Show that the following matrices obey the appropri@mimmutation rules and have the

correct eigenvalues to represent the three compookatgyular momentum of a spin-one particle

010 Jo-i o 100
LX=%1 0 1fL,=71i 0 < |L,=A0 0 O
010 0 i 0 00 -1

Verify that the matrix representing the square of ttal tangular momentum also has the

correct eigenvalues

. R
11.6  The spin operatorss , may be related to the Paul Spin Matricessby EJ. Where

O IR L P

i) Show that the Pauli matrices have the correctroatation properties to be
identified with spin

i) A beam of spin 1/2 particles are placed in a sisgia eigenstate aligned along the
z direction. Calculate the average value of the spiaitoéd by making

repeated measurements of the spin along a dire@itmthe z direction.
iii) What result would you expect from a single measargm



Let us take a few moments to review what have |ehateut Quantum Mechanics and in particular
about operators. We have used operators in Schrodirigguation and are quite familiar with most
of their properties. However it is important to rememlthe following points that are really

postulates. They embody what we know about nature aslksstryy the Schrédinger Equation:

Postulate 1: Every dynamical variable may be represented by a Hermitian operator
(see Chapter 1) whose eigenvalues represent the possible resudtsyaigcout a
measurement of the value of the dynamical variable. Immediately saftér a
measurement, the system will be in a state of the systenc@datihe eigenstate

corresponding to the eigenvalue obtained as a result of the measurement.

Postulate 2: The operators representing the position and momentum of a particle

are ' and —iB[] respectively. Operators representing other dynamical quantities
bear the same functional relation to these as do the corresponding classical

quantities to the classical position and momentum variables.

In Chapter 1 we already looked at many of the properfieperators under these assumptions and
the reader is urged to remind themselves of how the @tjmcvalue of an observable is related to

the probability amplitude. Here we will be concerndtththe relationship between operators.
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12.1 Compatible Observables

Two observables are said to be compatible if the ¢peraepresenting them have a common set of
eigenfunctions. This means that if one quantity is mmegs then the system will be left in an
eigenfunction of that observable. Another measurerakttie other observable will leave system in
the samestate. If one wished the system could be measured withirihe first observable with the
identical result as the first time, and so on. Werpri this as saying that the two observables are
compatible, and that the system can have both measmatibiguously. This may be expressed
mathematically as follows. Let us assume our two opesatreQ andR. If a system is originally in a

State

|u>=zi'ra,.|i> 12-1

then measurement with the opera€@r will put the system into one of the eigenstdtesith an

eigenvalugy i.e.

Qu=Qxalh=2adql} 12-2

and a subsequent operation WRlyields
RQU>=F£MI)=E arg ) 12-3
QRy=C ari=X aanb 12-4

thus combining Eq. 12-3 and 12-4 by subtracting we arrive at

(QR-RQ u=[ Q R ’“:E i4 iq iq)Hi:O 12-5

which since|U) is not trivially zero implies

[QR=0 12-6
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Thus in the case that the two operators are simultshemeasurable their commutator vanishes.

12.2 Commutation Relations and the Uncertainty Prin  ciple
Things are not quite as simple when the commutator dategamish. We will examine this case in
more detail. Let us take two Hermitian operatérdB. Let us also assume that their commutator can

be calculated and is given by

[A B =iC 12-7
The first observation we make is th@tis also a Hermitian operator( see Problem 12.1). As the
commutator does not vanish they two variables witlhmve simultaneous eigenstates. To study their

effect on a stata let us form an arbitrary mix of the two operators agieg on this state:

\w) = (A+AB) u. 12-8
Now by definition
(u[(A-NB)(A+ NB) 4= (w W= 0 12:9
so expanding Eq. 12-9 gives
(UA+N[AB+A°B|y=0 12-10

which can be rewritten in terms of expectation values

(A%)+A(C)+ A*(B?) 2 0. 12-11

For this to be true for all arbitrary values/hit is necessarily the case that

(A*)(B*) = (C)*/ 4. 12-12
The quantities on the left-hand side of Eq. 12-12 arexpectation values of the operatgksandB

squared. What do they represent? The interpretationesétis relatively straightforward. Take the
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operatorA—(A). This operator gives the deviation of the observébfeom its expectation value

and its expectation value is by definition zero. Theeplable (A—<A> )? is the variable that gives

the square of the deviation from the meardoffhus we state that its expectation value is the mean

square i.e.

(AA)2:<(A—<A>)2>:<A2—2P(A+<A2>:<,&>—< N 1213
We can always define our co-ordinate systems suchthleagxpectation value of A is zero and in

such a case we can easily see that Eq. 12-12 becomes:

(AA)?(AB)* = (C)% 1 4 12-14

AAAB=(C)/ 2. 1215
For the case of position and momentum we note thatlLE45 becomes the famous uncertainty

relation

AxXAp=R/ 2. 12-16
Let us summarise. We have argued that when two Herndparators commute their observables are
simultaneously and precisely observable. When the ausrdd not commute a measuremenA efe
will leave the system in an eigenstatefoivhich isnot an eigenstate d8. Operating on the system

with A gives

Au =3 ali),. 12-17
The system is will be left in a particular staig, . The statdi), is not an eigenstate Bfbut can

of course be expanded in terms of the eigenstat®s of

[1)a = 22051105 12-18
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A measurement d will put the system into one of the eigenstates Bofith probabilityl; . The

state| J> can be expanded in terms of the eigenstatés of

B

1i)s =Ea:B|i> 12-19
When we remeasurg we can measure anyone of its eigenstates and nothesbriginal state that
we measured in Eg. 12-14. From the point of view of theraxgatalist a measurement Bfspoils
our knowledge oA and vice versa. There is no way we can predict froeasurement of one variable

what measurement we will make of the other variditlee operators do not commute.

12.3 Ehrenfest’s Theorem

We include here a theorem that is very important.t kbes show that if an operator commutes with

the Hamiltonian then it is associated with an oleglies/that is a constant in time of the system.

This may be proved easily:

9 1oy 9 _/d 2 J ]
;[<Q>_;[<LPQLP>_<;[LPQLP>+<LP;[QLP>+<LPQ;[ Lp> . 12-20

Using the Schrddinger equation

H W) = ”’gt' W) 1221
and its Hermitian Conjugate
(WH = —iﬁ%(lﬂ 12-22

yields
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2 (Q) = (W] HQ W) + = (WQH W) + (W[ 2 Q)

= S (W[Q H]w)+ (v 2.Qw)

12-23

Thus the expectation value of any time independent opésatonstantf the operator commutes
with the Hamiltonian.

We next consider the commutator of the position opersitbrthe Hamiltonian

[r) H]—[r 2m+v} %[r,ﬂz]z—%(rﬂz—Dzr)z—%(rDZ—D(lﬂﬂ)):

;*:n(rm2 0-0r0)=- ;i:n(rm2 0-r0%-0)=- %D—%p
12-24

Thus the rate of change of the expectation value gbdkition is closely related to its classical form

DGt

Similarly we can show

M:<a_p>+_i<[p,|-|]> :—<DV> 12-26

Equationsd<r> = <0_r> + i([r, H ]> = <%> 12-25

nolM <ap> |<[p H])=—(0OV) 12-26

dt ot

embody Ehrenfests theorem. They show that the expmttedlues in quantum mechanical systems

obey the classical laws of motion.

12.4 Problems

121 Prove that the commutator of a pair of Hermitian afs is also a Hermitian Operator.
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12.2  Show that if an operator commutes with the Hamiliarthen it is associated with an
observable of the system that is constant in.time

Using the result derived above determine which of theWiing are constants of motion of
the 1-dimensional Hamiltonian

_(_# o°
H —[ 0_,X2+V(x)]

2m
i) momentum
iii) position
iv) energy

12.3 Prove 12-26
124 In the Library look up th€orrespondance PrincipleHow does Ehrenefest’'s Theorem relate
to this?
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125



In the last chapter we investigated the properties ising and lowering operators for angular
momentum. Operators that exhibit the “raising” and “lomg’ feature are not limited to angular
momentum. There is another very important example wreatvill look at now. This concerns the

harmonic oscillator.

13.1 Harmonic Oscillator
Let us consider the harmonic oscillator in one dim@msiThe Hamiltonian of a particle in the

oscillator potential is

2

1
H=P 4+ 2me?x 13-1

2m 2

where w is the classical oscillator frequency. Rather talve the problem of determining the
eigenvalues by explicitly determining the eigenstatesdaise the following technique. Let us define

two operators

- =;(n‘wx+ ip
2mBw
. 132
a’ :;(nwx— ip)
2mBw

Wherea" anda are Hermitian conjugates. Let us also define the HeExmoperator
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N=a"a . 13-3

The definition ofa* anda’ is such that

[a' , a*] =1 13-4

and

H ::ﬂa(N +%]. 13-5

Clearly if we know the eigenvalues of the operatbmwe will also know the eigenvalues bf.

Therefore let us assume th{all> is an eigenfunction dfl with the eigenvalud, then

N|A) =A|A) 13-6.

Taking the inner product of Eq. 13-6 Wi(bﬂ| yields

A=(AN|A)=(Ala*a’[A)=(al|a)=0 13-7
where we have used the Hermitian propertiea’aginda’. According to Eq 13-7 there must exist a

smallest eigenvalué,. From Eq’s 13-3, 13-4 and 13-6 we get

Na'|A)=a'a a|A)= a(d a+1)A)=(1+1) 4]A) 138

and similarly
Na™|A) = (1 -1)1). 13-9

In exactly the same way that we interpreted the rgisind lowering operators acting on angular

momentum states (Eq 11-34) we can understand Eq 13-8 and ]134? i an eigenstate of with

quantum numbed, then a+|/l> and a‘|/l> are eigenstates of with eigenvaluesi+1 and A-1.

Operating on the state with lowest eigenvaly@ith a must give zero
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I
o

a’|Ao)

thus

N[A,)=a"a’|A,)=0. 13-10

Equations 13-8 and 13-9 together with Eq 13-10 imply that ttenealues of N are given by

N/n)=rn, n=012... 13-11

The eigenvalues of the Hamiltonian are then given by
1
En = Ea)(n + E)

allowing us to place the following interpretation on teeratorN. N is called the number operator
because it counts the number of quanta of en#gyin our oscillator system. The operatafsand
a acting on the states raise and lower the number oftguarthe system. They are called creation

and annihilation operators.

13.2 The Vacuum

The lowest energy sta1ef10> = |O> is termed the vacuum state and is the state with naayirait.

1
Note that the vacuum is not “void” - the lowest eneste has &acuum energyof Eﬁw.

13.3 Annihilation and Creation Operators
The annihilation and creation operatafsanda deserve a little more discussion. Since the effect of

a+ is to create an extra quantum

a’|ny=¢|n+1) 13-12
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and similarly

a’|n)=¢|n-1) 1313

Taking the Hermitian conjugates of Eq 13-12 gives:

(nfa” = ¢ (1

(nfaa’[ =i N+3 p=(¢) (g m=(f) = 1

) ) 13-14
(nfaa | =(g) (w1 D =(g)" = n
which means that we can write formally
+ —
4 |I’l>— n+1| n+]> 13-15

a’[m=+nn
We have seen for the harmonic oscillator how we ca@ate and destroy particles of a particular
energy. This clearly lends itself to detailed calculaiof nature in which the number of particles is
not necessarily conserved. All fields are represebyea superposition of annihilation and creation

operators for particles of particular energy and momentum.

13.4 Problems

13.1 Prove the commutation relation Eq 13-4.

13.2 Ifx andp are the position and momentum operators of a one diamaihrarmonic

oscillator the Hamiltonian may be written
2 22
Mo~ X
H= p_ + =
2m 2

If we define the operators



i)

87

mow ip
a= X+
2h 2miw
ot = mwx_ ip
2R 2miw

show that[a, a*] =1

also show thatifN = a'a then

i)

iii)

iv)
| n> show

V)
and

Na=a(N -1
Na'=a'(N+1).

If the eigenvalues of N are n and the correspandiormalized eigenstates
that with an appropriate choice of phase

afr) =i n-1)
al| ) = e e 1

Expressé in terms ofa anda’ and use first order perturbation theory to calculate

expression for the shift in th® state energy due to an additional teri in the
Hamiltonian.
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For the precursor to this lecture please see the fioltpWRL:

http://www.science-spirit.org/nonlocality/nonlocal.Htm

We now wish to investigate in a quantitative fashioa hon-local features of the wavefunction. In
order to do this we will show how specific predictiorss de made that show a distinct difference
between local and non-local theories. The methodiéimg this outlined below is due to John Bell
and is one of the most important pieces of Classicalnfum Mechanics to have been discovered in

the last 25 years.

14.1 Bell’'s Inequality

Let us suppose that we have two spin 1/2 particles producediiglet state. Further let us assume
that these two particles move apart. At points A analddig the trajectory of these particles we can
put two Stern-Gerlach magnets capable of measuring thepspjection of the electrons along

arbitrary directions, b (see Fig. 15-1).
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Figure 14-1

We know from the last chapter that when we measure afp# this will affect our outcome at B.

There are two possible interpretations. First thegdre is a non-local effect, that is, the measurémen
at A directly effects what is happening at B through a&temjous action-at-a-distance mechanism.
Second the measurement of the particle at A regeat®ething about the particle at B - i.e. we are

uncovering a hidden variable.

Let us work with the second assumption that there idddeh variableh, which contains the
information about the orientation of the spin. Thebatility of measuring spin up (+1) or spin down
(-1) along any particular direction will given by a fumctiof the orientation of the Stern-Gerlach

Magnets and the variablei.e. the measurements of the spins are given by

A(a,A) =1, B(bA)==1 14-1
Now since we know that if we measure a spin up in ongneta(along a specific direction) if the

other magnet is set to same direction we have touneapin down this means that

A(8,4) =-B(&A). 14-2
The probability of measuring a particular pair of valuedliie spin is given by the product of the two

probability functions integrated over the density oftidden variabla,

P(&.b) = [o(1)d Ka) BhA)=-[ d1) 4 Aal) A'D) 143
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where we have used Eq 15-1. The “trick: is to introdutterd directionc. If this is done we can

compute the difference between two probabilities
P(a,B)- P& 9=-[o(A) d| Aah) AD)- A'al) Ka) 144
which may be written as
P(4,5) - P(d.€) = | pA)A |A@E, A) A, ) (A, M) AC, 1) -1)| 145
Now since
A&, 1) AbA)<1 14-6
Equation 15-4 becomes an inequality

P(d.b) - P(d,€) = [ o(A)dA|A®B, 1) AC, ) -1 = -P(5,¢) -1 147

1+P(5,(’:)2—P(ab)+ Ra'0 14-8

Now in classical quantum mechanics there exists ateskd prediction for R(b)
P(a,b)=-cosd, =—-cosf, -6, ) 14-9

So Equation 15-7 becomes
1-cos@,-6.) =- cog_+ cob, 14-10

Where we have defined angles relativa.thet us take the special case where both angles ale sm

then
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= - 14-11

which on further expansion yields
14-12

Clearly this is not true for all angles so there @dash between a Hidden variable theory and the

predications from Standard Quantum Mechanics.

14.2 Problems

15-1 Prove Equation 15-12.

15-2 Prove Equation 15-9
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