
Contents 

CONTENTS...................................................................................................................................... I 

1 REVIEW OF QUANTUM MECHANICS ...............................................................................1 

1.1 DIRAC NOTATION .................................................................................................................1 
1.2 LINEAR INDEPENDENCE.........................................................................................................2 
1.3 COMPLETENESS....................................................................................................................2 
1.4 ORTHONORMALITY ...............................................................................................................3 
1.5 OPERATORS..........................................................................................................................4 
1.6 HERMITIAN OPERATORS........................................................................................................5 
1.7 EXPECTATION VALUES AND PROBABILITY AMPLITUDE ...........................................................5 
1.8 PROBLEMS............................................................................................................................6 

2 TIME INDEPENDENT PERTURBATION THEORY ...........................................................7 

2.1 FIRST ORDER PERTURBATION THEORY..................................................................................7 
2.2 PROBLEMS..........................................................................................................................11 

3 DEGENERATE PERTURBATION THEORY .....................................................................13 

3.1 EXAMPLES..........................................................................................................................15 
3.1.1 Threefold degenerate system in a magnetic field. .......................................................15 
3.1.2 Twofold degenerate system - the general solution ......................................................16 

3.2 PROBLEMS..........................................................................................................................17 

4 VARIATIONAL TECHNIQUES............................................................................................19 

4.1 RAYLEIGH-RITZ TECHNIQUE...............................................................................................19 
4.2 PROBLEMS..........................................................................................................................20 

5 TIME-DEPENDENT PERTURBATION THEORY .............................................................23 

5.1 TIME-DEPENDENT SCHRÖDINGER EQUATION .......................................................................23 
5.2 TIME EVOLUTION OF STATES...............................................................................................24 
5.3 PERTURBATIONS.................................................................................................................24 
5.4 IMPLICIT TIME DEPENDENT PERTURBATION.........................................................................26 
5.5 PROBLEMS..........................................................................................................................27 

6 INTERACTION OF MATTER WITH RADIATION ...........................................................29 

6.1 EMISSION AND ABSORPTION OF RADIATION .........................................................................30 
6.2 PROBLEMS..........................................................................................................................32 



ii      Contents 

7 PHASE SPACE....................................................................................................................... 33 

7.1 PROBLEMS......................................................................................................................... 35 

8 SCATTERING THEORY ...................................................................................................... 37 

8.1 CROSS-SECTION................................................................................................................. 37 
8.2 THE BORN APPROXIMATION ............................................................................................... 39 
8.3 MATRIX ELEMENT IN THE BORN APPROXIMATION............................................................... 40 
8.4 TIME INDEPENDENT APPROACH.......................................................................................... 41 
8.5 FORMAL SOLUTION OF SCHRÖDINGER’S EQUATION.............................................................. 42 
8.6 SCATTERED WAVES............................................................................................................ 43 
8.7 SCATTERING AMPLITUDE FOR SMALL PERTURBATIONS........................................................ 45 
8.8 PROBLEMS......................................................................................................................... 45 

9 PARTIAL WAVES ................................................................................................................. 47 

9.1 SCATTERING OFF A HARD SPHERE........................................................................................ 49 
9.2 PROBLEMS......................................................................................................................... 50 

10 IDENTICAL PARTICLES ................................................................................................. 51 

10.1 CLASSICALLY IDENTICAL PARTICLES................................................................................... 51 
10.2 QUANTUM MECHANICALLY IDENTICAL PARTICLES .............................................................. 52 
10.3 WAVEFUNCTION FOR IDENTICAL PARTICLES........................................................................ 53 
10.4 FERMIONS AND BOSONS......................................................................................................54 
10.5 PAULI EXCLUSION PRINCIPLE.............................................................................................. 54 
10.6 PROBLEMS......................................................................................................................... 55 

11 SPIN..................................................................................................................................... 57 

11.1 ANGULAR MOMENTUM COMMUTATION RELATIONS............................................................. 58 
11.2 ANGULAR MOMENTUM IN SPHERICAL CO-ORDINATES.......................................................... 59 
11.3 SIMULTANEOUS DETERMINATION OF THE COMPONENTS OF ANGULAR MOMENTUM ............... 62 
11.4 ANGULAR MOMENTUM AND ROTATION ............................................................................... 63 
11.5 EIGENVALUES OF ANGULAR MOMENTUM OPERATORS.......................................................... 65 
11.6 INTRINSIC ANGULAR MOMENTUM....................................................................................... 69 
11.7 MATRIX REPRESENTATION.................................................................................................. 69 
11.8 SPIN AND ANGULAR MOMENTUM ........................................................................................ 71 
11.9 SPIN AND STATISTICS ......................................................................................................... 72 
11.10 PROBLEMS ..................................................................................................................... 73 

12 OPERATORS...................................................................................................................... 75 

12.1 COMPATIBLE OBSERVABLES............................................................................................... 76 
12.2 COMMUTATION RELATIONS AND THE UNCERTAINTY PRINCIPLE ........................................... 77 
12.3 EHRENFEST’S THEOREM..................................................................................................... 79 
12.4 PROBLEMS......................................................................................................................... 80 

13 ANNIHILATION AND CREATION ................................................................................. 83 

13.1 HARMONIC OSCILLATOR..................................................................................................... 83 
13.2 THE VACUUM..................................................................................................................... 85 
13.3 ANNIHILATION AND CREATION OPERATORS......................................................................... 85 
13.4 PROBLEMS......................................................................................................................... 86 

14 LOCALITY AND NON-LOCALITY IN QUANTUM MECHANICS.............................. 89 

14.1 BELL’S INEQUALITY ........................................................................................................... 89 



iii 

14.2 PROBLEMS..........................................................................................................................92 

INDEX.............................................................................................................................................93 

 



iv      Contents 



1 Review of Quantum Mechanics 

Let us start by surveying  some of the basic ideas that are necessary for us to have mastered.. We can 

describe any quantum mechanical system by a  set of states (discrete or continuous) which are 

occupied with calculable probabilities. The state of a system changes under the influence of external 

forces and we represent these forces by operators that act on the states. The inner product of two states 

defines a quantum mechanical amplitude and the absolute square of the amplitude is interpreted as a 

probability. To perform  calculations we use representations of the states that are vectors in a linear 

vector space. We expand on these ideas below. 

1.1 Dirac Notation 

Up to this point we have usually written down a wavefunction to represent the state of a system where 

the wavefunction was explicitly  a complex function of position and time. Often these wavefunctions 

are abbreviated to a form such as u . This has the advantage of generalising our notation to cases  

involving spin (see Chapter 11) . With spin we cannot write down a simple wavefunction and have to 

expand  simple wave mechanics to include matrices. However, this abbreviation masks an important 

reason for using the Dirac formalism, which is that it contains a very important  physical insight. We 

have become accustomed to the idea that wavefunctions obey a linear superposition principle. Dirac 

recognised that it is not just the wavefunctions that satisfy the superposition principle, but the states 
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themselves. He postulated that the linear superposition of states is a feature of nature.  If u  and v  

are states,  Dirac called them  kets,  and if a and b are complex constants,  then if we  define w  by 

     w a u b v= +      -1-1 

then w  is also a ket.  In other words w , which is made up of a superposition of  u  and v , is 

also a state of the system. We may draw an analogy here with three dimensional Euclidean space 

(called by convention E3) . In E3  we know that any point in space may represented by ax1 + bx2 + cx3 

where the xi  are the unit vectors in  the x,y and z directions. However we should be careful when 

using this analogy. In E3  a,b,c are real (not complex) and the numbers of  dimensions is limited to 3. 

In our ket “space” the dimensionality reflects the numbers of linearly independent states necessary to 

describe the system and can easily be infinite. This  “space” of linearly independent state vectors is 

called a Hilbert Space. 

1.2 Linear Independence  

A set of states is said to be linearly independent if there is no solution to 

  c u c u c u c ui i
i n

1 1 2 2 3 3
1

0+ + + = =
=

�
�

,

     1-2 

 except c1=c2=c3=c i=0.  

1.3 Completeness 

A set of kets is said to be complete if we can construct any state u  from a linear superposition of 

linearly independent kets, i.e. 

    u c ui i
i n

=
=

�

1,

.      1-3 
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Note that this requirement is not the same as that of linear independence (Eq. 1-2). For example, x 

and y are independent directions but we cannot describe all space points without using the z direction. 

1.4 Orthonormality 

Dirac also defined the inner product (or scalar product) of two kets, say a and b , writing it as 

a b . The inner product has the following property 

    b a a b
* =        1-4 

The objects occurring on the left side of the inner product are called bra vectors and are an entirely 

equivalent set of states with which to describe a system. In our usual wavefunction notation this is 

identical to the following: we define  the inner product as 

    ψ ψb ar r d r* ( ) ( )
� ���

3
      1-5 

and  the equivalent of Eq.1.4 is 

  ( )ψ ψ ψ ψb a a br r d r r r d r*
*

*( ) ( ) ( ) ( )
� �� � ��� �

=3 3
.     1-6 

However Eq. 1-6 will not apply to systems that contain spin whereas our more general notation,  Eq. 

1-4 does. We can  describe our system by the complex conjugate of the wavefunction just as well as by 

the wavefunctions themselves, i.e. the set of states ψi is equivalent to the set of states (ψi)
*. We can 

replace all wavefunctions by their complex conjugates and we will always get the same answer for the  

expectation values. We say  that the bra space is an entirely equivalent representation of the system as 

the ket space. 

The kets (or bras) may be normalised so that  

     a a = 1     1-7 

if two kets have the property 
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    a b b a= = 0     1-8 

then they are called orthogonal. Kets satisfying Eq. 1-7 and Eq. 1-8 are said to be orthonormal. The 

complete set (or basis) of kets that span our Hilbert Space is chosen so that 

    u ui j ij= δ       1-9 

where δ ij  is the Krönecker delta and equals 1 if i=j,  and 0 otherwise. 

We can determine the coefficients ci in the general decomposition of a state (Eq. 1-3)  by using the 

orthonormality of the basis kets. We take the inner product of  the ket  u  and the bra  u j  to get cj 

i.e. 

   u u c u u c cj n j n n jn j
nn m

= = =
��

=

δ
1,

   1-10 

We can use Eq. 1-10 to rewrite the state |u> as  

  u c u u u u u u ui i i i i
ii

i= = =���    1-11 

1.5 Operators 

We have already discussed that states describe quantum mechanical systems. The forces on the 

system, its interactions, and indeed the effects of any observation of the system are described by 

operators. We are familiar with the ways in which operators can be used to calculate quantities like 

the average position or momentum. In the Dirac notation the action of an operator is as follows. If A 

acts on a state u  it will produce another state v    

    A u v= .      1-12 

The operator A is said to be a linear operator if  
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w c u d v

A w cA u dA v

= +
= +

     1-13 

where c and d are complex constants. We will usually be concerned with  linear operators. A useful  

operator, that we have already implicitly introduced, is the projection operator I 

    I u un n
n

=�.     1-14 

This has the useful property (see Eq. 1-11) that I u = u . 

1.6 Hermitian Operators 

An operator A is defined as Hermitian if it satisfies the condition that for any two kets  

    v Au Av u=      1-15 

Hermitian operators (also called self adjoint operators) have many useful properties. Perhaps the most 

useful is that the eigenvalues of a Hermitian operator are real. This can be proved as follows. 

  
u Au a u u a

u Au Au u a u u a a

= =
= = = =* *

    1-16 

where we have used Eq. 1-15. The condition that a*=a  means that a is real. This is very important 

since all measurements we make yield  real values. 

1.7 Expectation Values and Probability Amplitude 

The kets contain all the  information about the state of the system. Let us assume that we can calculate 

the expectation value of some  observable A in a state u   

    A u A u= .     1-17 

Projecting u  into its eigenstates (Eq. 1-11) we find 
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 A u A u u u a u u u u a u ui i
i

i i i i i
i

= = =
�� � 2

.  1-18 

The correct interpretation of Eq. 1-18 is vital. It gives the value of the expectation value  of a 

measurement of A on the system. If we start in a mixed state u  then  u ui

2
 is the probability of 

finding that state in an eigenstate ui . Remember that the result of making a measurement on a 

mixed state with an operator is to put the system into a new state whose eigenket corresponds to the 

eigenvalue measured.  The quantity  u ui  is known as the probability amplitude. 

1.8 Problems 

1.1 If |i>,i=1,2,3,...n compose a set of states, write down and explain the conditions they must 

 satisfy so they be orthonormal and complete. 

1.2 Integration is a vital part of quantum mechanics. Make sure that you can evaluate the 

 following integrals: a) r e drn r a

0

∞
−
�

/     b) cos2 θ
�

dΩ  over all the solid angle.



 

2 Time Independent Perturbation 
Theory 

Solutions to Schrödinger’s equation are the key to classical quantum mechanics. Unfortunately very 

few problems have an analytical solution and almost none of the cases that do permit an analytical 

approach bear detailed comparison with reality. To model and predict the behaviour of realistic 

quantum systems we need to develop a method of solving these complicated problems. One of the 

most important methods is called perturbation theory. For some problems the potential is very similar 

to the  potential in a problem  that we can solve analytically. In perturbation theory we  start  with 

these known solutions, and by making small changes attempt to solve more complicated problems. 

2.1 First Order Perturbation Theory 

The simplest example of Perturbation Theory solves problems that do not explicitly depend on time 

and in which there are no states that are degenerate.1 Let us assume that an unperturbed system of 

which  we know the eigenstates is described by the Hamiltonian H0. The eigenstates (labelled 1,2,...,n) 

that describe this system satisfy 

    H En n n0
0 0 0φ φ=       2-1 

                                                        
1  Two states are said to be degenerate if, although described by two orthogonal eigenkets, their energy 

eigenvalues are identical. 
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and the perturbed system, described by the Hamiltonian, H is: 

    H En nϕ ϕ=       2-2 

 where the perturbed Hamiltonian is different from the unperturbed system by  a small potential, λV: 

    H H V= +0 λ        2-3 

The crucial factor  that enables us to perform perturbation theory, is the perturbation parameter λ. By 

setting λ = 0 we have the fully unperturbed system. By setting λ =1 we have a fully perturbed system. 

With the unperturbed system we assume that we can find solutions to the wave equation. Therefore 

our method of solution for the perturbed system will be very similar to the power series methods used 

to solve differential equations. We are going expand our unknowns in a power series in the 

perturbation parameter: 

   
E E E En n n n

n n n n

= + + +

= + + +

0 1 2 2

0 1 2 2

λ λ
ϕ φ λ φ λ φ

�

�

     2-4 

As in a power series solution we match the coefficients in different powers of λ to guarantee that the 

solutions holds for all arbitrary values of λ. Substituting Eq. 2-4 into Eq. 2-2 yields 

 
( )( )

( )( )
H V

E E E

n n n

n n n n n n

0
0 1 2 2

0 1 2 2 0 1 2 2 0

+ + + + −

+ + + + + + =

λ φ λ φ λ φ

λ λ φ λ φ λ φ

�

� �

.  2-5 

Comparing the zeroeth order coefficients in the perturbation parameter yields the unperturbed 

equations and the first order terms yield 

   ( )H E V En n n n0
0 1 1 0− = − −φ φ( )     2-6 

taking the inner product with the nth unperturbed  state gives: 

  φ φ φ φ φ φn n n n n n n nH E V E0
0

0 1 0 0 1 0 0− = − +      2-7 
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The left hand side of Eq. 2-7 can be seen to be zero since H0 is Hermitian 

  φ φ φ φn n n n n n nH E E E0
0

0 1 0 1 0 1 0− = − =       2-8 

which gives the very important result: 

    E Vn n n
1 0 0= φ φ      2-9 

 

Eq.  2-9 gives the first order  energy correction to the n-th state due to a perturbation V. The 

calculation of the shifts to the states is a little more subtle. To evaluate these we take the expression 

for the first order coefficients Eq. 2-6 and take the  inner product with an unperturbed state p: 

   φ φ φ φp n n p n nH E V E0
0 1 1− = − −     2-10 

If we  assume that there is no admixture of the  original state into the  perturbed state i.e. 

    φ φn jn j
j n

a1 =
≠

�
     2-11 

Eq. 2-10 becomes 

  ( )φ φ φ φp n jn j
j n

p n pnH E a V V0
0− = − = −

≠

�
    2-12 

Using the Hermitian properties of H0 and the orthonormality of the eigenkets yields 

    a
V

E Enp
pn

n p

=
−0 0      2-13 

and we can now substitute 2-13 into 2-11 to give the general form the modified states 

    φ φn
pn

n p
p

p n

V

E E
1

0 0=
−≠

�
    2-14 
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Note that the changes to the states become large when the denominator becomes small or if Vpn is 

large. 
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2.2 Problems 

2.1 Prove that the states in Eq. 2-14 remain normed. 

2.2 A time independent system is represented by the Hamiltonian H0 with eigenstate φ0. Show 

 how if we introduce a small perturbing potential V we can calculate the shift in energy of 

this  state and the change in the eigenstate. You may assume the eigenstate is not degenerate. 

2.3 A simple harmonic oscillator has a HamiltonianH
p

m
Kx= +

2
2

2

1

2
 

 The first two eigenstates are claimed to be of the form: 

0

1
2

2

1 2

1 2 2

1 2

1 2
2

2 2

2 2

=
�
�� ���

=
�
�� ���

−

−

α
π

α
π

α

α

α

/

/ /

/

/
/

e

xe

x

x

 

 Find the condition that α has to satisfy for this to be true and show that if ω=(K/m)1/2 then 

the  energies of these states are given by E E0 12 3 2= =
� �ω ω/ , / . 

2.4 Show that if we add a small perturbation to the harmonic oscillator in Qu. 2.3 of the form  

 bx2/2 then the change in energy of the ground state is approximately 

∆E
b

mK
0

4
≈ �  . 

 Show that this is consistent with the analytical solution by replacing K with K+b in the 

 solution to Qu 2.3. 

 You may use the following two integrals: 
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x e dx
p

a
x e dx

e dx
a

p ax p ax

ax

− − −

−∞

∞

−∞

∞

−

−∞

∞

= −

=

��

�

2 2

2

1

2
2( )

π
 

2.5 Use first order non-degenerate perturbation theory to calculate the change in binding energy 

of  an ion consisting of a nucleus charge Ze and a single electron when the nuclear charge 

changes  to +(Z+1)e. 



 

3  Degenerate Perturbation 
Theory 

In our last lecture we examined non-degenerate perturbation theory. Unfortunately the diversity of 

problems to which one can apply non-degenerate perturbation theory is limited by the fact that many 

physical systems exhibit degeneracy. A degenerate system is one where two or more states  satisfy the 

same eigenvalue equation (Schrödinger’s Equation) with the same eigenvalue (energy) but are distinct 

states. If there are n linearly independent that share the same eigenvalue then that set  of states is said 

to be n-fold degenerate. 

Degenerate systems do not lend themselves readily to the techniques we discussed in the last chapter. 

This should be evident from studying Eq. 2-14. When two states are degenerate the denominator is 

zero and the expression is meaningless. The only way one can attempt to rescue the technique is to 

require that the matrix element in Eq. 2-14 (Vpn) also vanishes for the degenerate states.  This will not 

be possible unless we choose a different set of basis states. Let us assume that this is possible and that 

(to begin with) we have s linearly dependent eigenkets that belong to the eigenvalue n where 

    
u u

s

n nα β αβδ

α β

=

=, , , ,1 2�
.      3-1 

The first task is to find the correct states with which  perform the perturbation theory. Let us write 

these states as 



14      Degenerate Perturbation Theory     Chap. 3 

    φ α α
α

ni i n

s

c u=
=

�

1

.     3-2 

The condition that we can attempt our perturbation theory has to be that for states part of the same s-

fold degenerate eigenvalue (n) that 

    φ φ φ φ δni nj ni ni ijV V= .    3-3 

This condition is often loosely referred to as the states being diagonalized with respect to the 

perturbation. 

The equations for the first order perturbation theory still hold so that (for example) Eq. 2-9 becomes 

    E Vni ni ni
1 = φ φ .     3-4 

If we know the right states to use we can easily calculate how the energy shifts. How  do we pick the 

states? If we take the degenerate version of Eq. 2-6  

   ( )H E V En ni n ni0
0 1 1− = − −φ φ( ) .    3-5 

Using Eq. 3-2 we can write this as: 

   ( )H E V E c un ni n i
s

n0
0 1 1

1

− = − −
=

�
φ α

α
α( )

,

.   3-6 

Taking the inner product of Eq. 3-6 with another (say β ) eigenstate in the s-fold degenerate level 

gives: 

  ( )u H E u V E c un n ni n n i
s

nβ β α
α

αφ0
0 1 1

1

− = − −
=

�
( )

,

   3-7 

In an identical fashion to our previous results the left-hand side of Eq. 3-7 is zero since the 

Hamiltonian is Hermitian and the state β has energy En. Thus equation 3-7 may be rewritten 

    u V u c E cn n i ni i
s

β α α β
α

=
=

�
1

1,

    3-8 
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which can also be written as  

    ( )V E cni
s

iβα αβ
α

αδ− =
=

�
1

1

0
,

.    3-9 

This is a system of s homogenous equations for the unknowns (the c’s). It possesses solutions (other 

than all the c’s being zero) when 

    ( )detV Eniβα αβδ− =1 0 .    3-10 

3.1 Examples 

At first sight our degenerate perturbation theory seems rather complicated. Let us see how in practice 

the mathematics is sometimes a little less intimidating. First we will consider a system where we are 

given the normed eigenstates to use. In the second we will determine these states. 

3.1.1 Threefold degenerate system in a magnetic field. 
First let us see how simple calculating the changes to energies in a degenerate state can be when we 

know the appropriate eigenstates. Let us assume that we are working with a spin-1 particle bound in a 

radially symmetric potential. The degenerate states that describe the system are |+>, |0>, |-> 

corresponding to angular momentum orbital angular momentum components +1,0,-1 along the z-

direction. Let us assume that we apply a perturbation given by 

    V B Lz z= ⋅µ�       3-11 

We know that 

    

L

L

L

z

z

z

+ = +
=

− = − −

�

�
�

�
�

�

�
0 0      3-12 
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and Eq. 3-3 is satisfied. As our conditions for doing perturbation theory are met (our states are 

diagonal with respect to the perturbation) we can right away write down the energy shifts from Eq. 3-

4 to the states 

    

∆
∆
∆

E B

E

E B

+

−

=
=
= −

�

�
�

�
�

µ

µ
0 0       3-13 

3.1.2 Twofold degenerate system - the general solution 
If we take a level with a two-fold degeneracy we can follow through the algebra we performed above 

and see exactly how the determination of the eigenstates works. Let us assume that there are two 

linearly independent eigenkets |u1>,|u2> belonging to the nth state. Let us assume that the two states 

with which we want to perform our perturbation theory are called |v1> and |v2>  i.e.  

   
v c u c u

v c u c u

1 11 1 12 2

2 21 1 22 2

= +

= +
      3-14 

Our sole aim here is to determine the constants c. From Eq. 3-9 we can then write 

   
( )

( )
V E c V c

V c V E c

ni i i

i n i

11
1

1 12 2

21 1 22 1
1

2

0

0

− + =

+ − =
     3-15 

For the i’th degenerate state (either 1 or 2 here) we have two homogenous equations for ci1, ci2. These 

only have a non-zero solution when the determinant of the coefficients of the c’s is zero, that is 

   ( )( )V E V E V Vni ni11
1

22
1

21 12 0− − − =     3-16 

This is a quadratic equation for the energy shifts which yields two solutions, one for each degenerate 

state. If in addition one wants the normed states, Eq. 3-15 can be solved.  

Finding these eigenkets is a cumbersome and laborious process. We will leave this subject here and 

move onto other  approximate methods for stationary problems. 
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3.2 Problems 

3.1   Show that the normed states which can be obtained from Eq. 3-15 are diagonal with respect 

to  the perturbing potential. 

3.2     

In time-independent perturbation theory the first order corrections to the wavefunctions  are given by 
the expression 

φ φn
pn

n p
p

p n

V

E E
1

0 0
=

−≠

�
( ) ( )

     

 i) Explain carefully the  meaning of the symbols in the equation above  
   and discuss the significance of the inequality under the summation sign
   
 ii) Discuss briefly the problems of applying first order perturbation theory to a  
  degenerate  system .       
   
 iii) Calculate the shift(s) in energy to a spinless particle in a spherically symmetric  
  potential exposed to a weak uniform magnetic field B along the z direction. You 
may   assume that the interaction is of the form below  and that the particle is in an L=1 
  state. 
 

 H B L= ⋅αµ��  
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4 Variational Techniques 

Before the arrival of fast computers it was often impossible to calculate the ground state of various 

systems. This was often due to the difficulty of realistically applying  the perturbation techniques of 

the last chapters. 

The Rayleigh-Ritz method was developed to address this problem. It does not assume that one has to 

find the eigenstates of the system but rather that we know some general features of the wavefunction. 

We will show here how it is used to calculate the ground state energy of a system. 

4.1 Rayleigh-Ritz Technique 

Let us assume that a system may be described by a Hamiltonian that possesses a number of energy 

eigenvalues which we can write in order of ascending energy, that is 

    E E E1 2 3≤ ≤ �      4-1 

Any state if the system can be expanded (at least in principle) in terms of the appropriate eigenstates  

    φ φ=
�

cn n .      4-2 

The expectation value of the energy of the mixed state is given by: 
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   < >= =
�
�E

H c E

c
n n

n

φ φ
φ φ

2

2 .      

4-3The smallest value that this can have is the lowest energy therefore 

    
φ φ
φ φ
H

E≥ 1  .      4-4 

This means the expectation value of H with respect to any normalised state forms an upper bound to 

the energy of the ground state. To estimate this energy all we have to do is to find a sensible way to 

vary the wavefunctions sufficiently to get an estimate of this bound. We do this by assuming that we 

have a trial wavefunction that depends on several parameters and that we can calculate the 

expectation value: 

   

( )ψ ψ α α α

α α α
ψ ψ
ψ ψ

T T

T T

T T

E
H

=

=

1 2 3

1 2 3

, , ,

( , , , )

�

�
.    4-5 

We can then minimise the expectation value of the energy with respect to our parameters 

    
∂ α α

∂α
E

i

( , , )1 2 0
�

= .     4-6 

The minimum corresponds to our estimate for the upper limit on the ground state wavefunction. 

The entire success of the Rayleigh-Ritz method depends on choosing wavefunctions that are 

qualitatively similar to the “real” wavefunctions for which the integrals can be done. Although the 

variational method is very elegant and surprisingly accurate it has been superseded by numerical 

analysis techniques. 

4.2 Problems 

4.1 A particle of mass m is bound in the ground state of an exponential potential 
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V r
ma

e r a( ) /= − −4
3 2

π
 

 Use a simple trial function to obtain an upper bound for the ground state energy. 
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5 Time-Dependent Perturbation 
Theory 

Not all the problems with which we are confronted by in nature are of the type we have discussed 

above. In many cases, for example,  there may be a potential applied to the system that is not constant.  

To predict the behaviour of such time-varying systems it is not possible to use the Time Independent 

Schrödinger Equation  and instead we have to use the Time Dependent Schrödinger Equation. 

5.1 Time-Dependent Schrödinger Equation 

The Time Dependent Schrödinger Equation  (TDSE) is given by 

    i
�∂

∂
ψ ψ

t
H=       5-1 

 

where the energy (in the Time Independent Schrödinger Equation - TISE) has been replaced by the 

first derivative of the wavefunction with respect to time. If the Hamiltonian is time independent it is 

relatively easy to find a solution to the TDSE, namely:  

    ψ ( )t u en

iE tn

=
−�

      5-2 
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where the un are solutions to the TISE. For stationary eigenstates this simply introduces an 

unobservable phase into the wavefunction. 

5.2 Time Evolution of States  

For a system composed of many stationary states we have already seen that we can in general 

construct a total wavefunction 

    ψ =
=

�
c un n

n m1,

.       5-3 

If the Hamiltonian is time independent we expect this to evolve according to  

    ψ ( )
,

t c u en n
n m

iE t

=
=

−�

1

1�
     5-4 

 

Thus for any state  ψ(0) whose composition we know at time t=0 we can find the ψ(t) by  finding the 

values of  c that are appropriate at t=0 and then letting the phases of each eigenstate evolve according 

to Eq. 5.2. 

5.3 Perturbations 

However useful we may find the formalism described by Eq. 5.4, it does not address the problem of 

how a system that starts off in a known state will react to a Hamiltonian that depends explicitly (or 

implicitly) on time.  

Let us consider how to analyse such a problem. We begin by splitting the Hamiltonian into two parts, 

one that is time independent and one that depends on time 

    H t H V t( ) ( )= +0 .      5-5 
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This does not make the Schrödinger Equation any simpler to solve, but if we assume that V(t) is small 

we may try to solve the TDSE by using a form of perturbation theory. If we guess that the eigenstates 

at any time t will be close to the unperturbed eigenstates then we can still expand the wavefunction 

with the unperturbed eigenstates but with time varying coefficients: 

    ψ ( ) ( )
,

t c t u en n
n m

iE t

=
=

−�
1

1�
.     5-6 

This should be contrasted with Eq. 5.4 where the coefficients c were constant with time. Simply 

substituting this into the TDSE gives: 

  i c t u e V t u e c tn
n

n
iE t

n
E t

n
n

n n
� � ��

( ) ( ) ( )/ /
� �− −=     5-7 

and hence taking the inner product with an arbitrary eigenket |up> yields 

   i c t V t e c tp pn
i t

n
n

pn
��

( ) ( ) ( )=�ω
      5-8 

where we have defined 

    V t u V t upn p n( ) ( )=       5-9 

and 

    ( )ω pn p nE E= − /	.     5-10 

The values of the coefficients c at t=0 may be determined from equation 5.6: 

    c un n( ) ( )0 0= ψ                     

5-11 

For the special case where the system is in a unique state i at t=0 i.e. 

    cn ni( )0 = δ       5-12 

we see that Eq. 5.8 becomes 
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    i c t V t ep pi
i tpi

��
( ) ( )= ω

.     5-13 

This is easily soluble for the case that p is the initial state i 

   c
i

V t dti ii( ) ( )τ
τ

= +
�

1
1

0

�      5-14 

and where p is another state 

   c
i

V t e dtp pi
i tpi( ) ( )τ ω

τ

= �1

0

�                    5-15 

5.4 Implicit Time Dependent Perturbation 

In the special case that the perturbation does not depend explicitly on time but is applied to the system 

for some interval of time (say τ) 

 

                                        V 

                                                    t=0                     t=τ 

Figure -5-1  

 

 then Eq. 5.15 immediately yields the result 

   c
V

ep
pi

pi

i pi( ) ( )τ
ω

ω τ= −� 1 .     5-16 

The probability for the transition is from state i to p based on a potential V applied for period τ is  



27 

 ( )τω
ω

τω

ττ ,2

2

2

2

2

2

2
4

2
sin

4
)()( pi

pi

pi

pi

pi

ppi D
VV

cP �� =

���
�

���
�

==→  .  5-17 

Where the function  D is defined by 

   ( )D E Epi p iω τ π τδ, ( )≈ −
2

�
     5-18 

so that the rate of change of probability i.e. the transition rate  is given by 

   �( ) ( )P V E Ei p pi p i→ = −τ π δ2 2	 .    5-19 

If we have a distribution of final states (which is a realistic assumption) with density ρ(E) then the 

rate of transition to these states (G)  is obtained by integrating over Eq. 5.19 

 [ ]

( ) ( ) ( )P V E E E dE V Ei G pi p i p p pi p

E Ep i

→
=

= − =
�2 22 2π δ ρ π ρ� �   5-20 

 

5.5 Problems 

5.1  A system of hydrogen atoms in the ground state is contained between the plates of a parallel 

plate capacitor.  A voltage pulse is applied to the capacitor so as to produce a homogenous electric 

field 

E t E E t t= < = − >0 0 00, exp( / )τ  

Show that, after a long time, the fraction of atoms in the 2p (m=0) state is, to first order, 

( )
2

3 1

15

10
0
2 2

0
2

2 2 2

a e E



ω τ+ /
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where a0 is the Bohr radius and �ω  is energy difference  between the 2p and the ground state. You 

may assume that the ground state of hydrogen is given by 

| exp( / )
/

100
2

4

1

0
3 2 0>= −

π a
r a  

and the 2p state by 

( )
| exp( / ) cos

/
210

1

4

1

2
2

0

3 2
0

0>= −
π

θ
a

r

a
r a  



 

6 Interaction of Matter with 
Radiation 

A system that is of particular importance to study is that of an atom exposed to electromagnetic 

radiation. Let us suppose that  we  apply an electric field given by: 

    ��E E kx t= −0 cos( )ω .      6-1 

If we assume that  this field is applied in the z direction then the perturbing potential will be: 

    V t eEz t( ) cos= ω .      6-2 

Using the results in the last chapter if we start in a state i the probability of making a transition to a 

state p can be calculated by first evaluating the quantity: 

( ) ( )c t
eE

i
p z i e e e dt

eE
p z i

e e
p

i t i t i t

o

i

pi

i

pi

pi

pi pi

= + = − −
+

�
��� ����+ −

−

�
��� ����

�
�
		



�
��−

+ −

0 0

2 2

1 1� �ω ω ω
τ ω ω τ ω ω τ

ω ω ω ω

( ) ( )

 

            6-3 

To calculate the probability of being in the state k we simply have to find the absolute magnitude 

(squared) of Eq. 6-3.  

Note how in the presence of radiation the probability of making the transition becomes very large 

(and perturbation theory may break down) when the frequency of the radiation matches either +/- the 
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energy of the transition. In contrast, the transition probability is zero if the matrix element is zero. 

This is an example of a selection rule in quantum mechanics. 

6.1 Emission and Absorption of Radiation 

It should now  be clear that the transition probabilities that can be calculated from Eq. 6.3  are large 

when the frequency of the driving oscillation matches that of the transition. The probabilities diverge 

when ωpi=±ω . Τhe positive frequencies are viewed as those where Ep>E i . If the final state is of 

higher energy than the initial state then we have  absorption of radiation. Negative frequencies where 

Ep< Ei correspond to the emission of radiation.  

Figure 6-1 

 

To compute the probabilities for emission and absorption we can take the part of Eq. 6.3 that 

dominates. For absorption the term that contains ωpi-ω in the denominator dominates; for emission 

the term that contains ωpi+ω dominates. 

The probability of absorption is then given by: 

  

( )
( )

P
e

p z i Ei p

pi

pi

→ =
−

�
�� ���

−
( )

sin
τ

ω ω τ

ω ω

2

2

2

0
2

2

2

1

2�     6-4 

 

            Ep                                                                                                  Ei  

                                       ωpi>0                                                          ωpi<0 

            Ei                                                                                                   Ep 

  Absorption of photon   Emission of a photon 
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and the probability of emission is given by: 

   

( )
( )

P
e

p z i Ei p

pi

pi

→ =
+

�
�� ���

+
( )

sin
τ

ω ω τ

ω ω

2

2

2

0
2

2

2

1

2� .   6-5 

We can repeat the above calculation in a more general fashion if we do not have a monochromatic 

source of radiation.  We do this by first noting that the energy density of an electric field is given by: 

    ρ ε( )E E= 1

2 0 0
2

.      6-6 

The energy density in an incoherent wave - containing many  frequencies - is of the form 

    ( )ρ ε ω ω=
∞�1

2 0 0
2

0

E d .     6-7 

Thus the transition probabilities in Eq. 6.4 and 6.5 become 

 

( )
( )

P
e

p z i d Ei p

pi

pi

→

∞

=
±

�
�� ���

±

�
( ) ( )

sin
τ ω ω

ω ω τ

ω ω

2

2

2

0

0
2

2

2

1

2� .    6-8 

Referring back to Eq. 5.18 we see that Eq. 6.8 becomes 

  ( )P
e

p z i Ei p pi→ =( )τ τ π ω
2

2

2

2

0
2	  .    6-9 

We can convert Eq. 6-9 to an expression containing a photon flux. If N(ω)dω is the number of 

photons in the frequency range ω to ω+dω normal to the direction of wave propagation per unit time 

then the energy density of the photons in this range is  

   
ω ω ω1

c
N d( ) .      6-10 



32       Interaction of Matter with Radiation     Chap. 6 

Remembering  that the energy density is given by Eq. 6.6 we can then put 

   E
c

N2

0

2
( ) ( )ω

ε
ω ω= �     6-11 

which means that the transition probability becomes: 

  P
e

c
N p z ii p pi pi→ = τ π

ε
ω ω

2

0

2
� (| |) .     6-12 

 Thus the transition rate is simply 

  � (| |)P
e

c
N p z ii p pi pi→ = π

ε
ω ω

2

0

2
�  .    6-13 

6.2 Problems 

6.1   Show that Eq. 6-13 may be extended to the case where the atoms (or the radiation) are 

 randomly oriented and that this gives rise to the result (see Mandl  Sec. 9.5) 

 

�
(| |)P N p R ii p pi pi→ = 4

3
2 2

π α ω ω
�



 

7 Phase Space 

To use Fermi’s Golden Rule we need to be able to evaluate the density of states. In many cases the 

density may be approximated by the density of final states for a free particle (for example if the 

particle is weakly bound or weakly interacting) which can be calculated. The density of states refers to 

the number of available states  in the space spanned by both momentum and position co-ordinates - 

and is known as phase space. 

To make this more explicit let us consider a particle of momentum p inside a cubic volume with sides 

of length L. The allowed values of the momentum (in the x-direction) are given by: 

    p k
n

Lx x
x= =

� �
2π

     7-1 

and likewise for  py and pz. The numbers nx, ny, nz are all positive integers. Every combination of these 

integers represents a different state. The number of states in one dimension (x) in an interval dpx is 

given by the differential of Eq. 7-1 namely 

    dp
L

dnx x= 2π�
.     7-2 

In three dimensions the total numbers of states dN is thus given by: 

   dN dn dn dn
L

dp dp dpx y z x y z= =
�
�� ���
2

3

π
�     7-3 
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where if we set  the volume of the confining cube to be  V then: 

   dN dn dn dn V dp dp dpx y z x y z= =
�
�� ���1
2

3

π�    7-4 

we can interpret the above equation as 

    dN
volume

h
phase space=
3

     7-5 

where Eq. 7.5 is read as stating that the number of  states available equals the phase space volume 

scaled by Plank’s constant.  

In spherical co-ordinates (that we often use because of the spherical symmetry inherent in many 

problems in nature) we know that 

  d p dp dp dp p dpd p dpd dx y z
3 2 2= = =Ω (cos )θ φ    7-6 

 

so that now we may rewrite Eq. 7.4 as: 

    dN
V

h
p dpd=

3
2 Ω .     7-7 

We can convert this to an energy density by dividing through by dE : 

    ρ( )E
dN

dE

V

h
p

dp

dE
d= =

3
2 Ω .    7-8 

 

Remembering that classically E=p2/2m then if we let the velocity of the particle be v: 

    
dp

dE v
= 1

      7-9 

then equation 7.8 can simply be rewritten as 
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    ρ( )E
V

h

p

v
d=

3

2

Ω .     7-10 

This is an extremely useful formula, as we shall see in the next chapter. As it stands Eq. 7-10 contains 

an arbitrary quantization volume, V. We will see that the matrix element, when calculated for a real 

process, also contains a corresponding factor 1/V. This  leads to the cancellation of the arbitrary 

factor. It is vital that this volume does not appear in the final answer. We would like to use Fermi’s 

Golden Rule to calculate real transition rates for real processes, and it would be inconsistent  if the 

final answer depended on the artefact V.  Sometimes Eq. 7-10 is written in the entirely equivalent 

form 

   
( )

ρ
π

( )E
V

pmd=
2

3� Ω      7-11 

7.1 Problems 

7.1 If an eigenstate of a system is given by 

ψ ( ) . /r const ep r= × ��
�
 

 then determine the constant of normalisation  in a cubic box of side  L. 
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8 Scattering Theory 

Our method for understanding Physics on the sub-macroscopic level is usually to collide a beam or 

particles (photons, electrons, protons, etc.) onto a target and study the products that are scattered into 

different directions. 

In the next few chapters we will learn how a detailed study of these scattering processes can yield 

information about the nature of the scatter and hence the nature of the scattering potential. For 

example, if the target or the colliding particles, contain substructure we may observe a different 

distribution of collision products than we may have otherwise expected. The classic example of this is 

Rutherford’s famous experiment where alpha particles were scattered off a gold foil.  To develop our 

scattering theory we first need to define several terms that we are going to use when a measurement is 

made. 

8.1 Cross-Section 

Consider a beam of particles of mass m and momentum p scattering off an infinitely massive 

scattering centre located at the origin. Without the scattering potential the system is simply that of a 

plane wave with wave vector k=p/m and flux I. The flux specifies the number of particles crossing a 

unit area per unit time. If we assume that n is the number of particles scattered into a specific solid 

angle  Ω per unit time (see Figure 8-1) then the differential cross-section is defined by the following 

equation 
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   ( ) ( )σ θ ϕ
θ ϕ

,
,

d
n

I
dΩ Ω=       8-1 

i.e. the differential cross-section is defined by the ratio of the scattered particles to the incoming flux. 

If we double the incoming flux then we expect to double the number of scattered products observed 

per unit time. In this way the cross-section is independent of the incoming intensity and reflects only 

the nature of the underlying scattering process. 

          state |p> 

          n(θ,ϕ)dΩ 

       dΩ     

                                                              I/unit area/unit time 

 

  state |i>  

Figure 8-1 

 

The total cross-section (i.e. we look at all scatter products over all directions) is simply the integral of 

the differential cross-section i.e. 

    ( )σ σ θ φtotal =
�

, dΩ .     8-2 
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A typical cross-section that we shall calculate later (see Problem 8.5)  is shown below: 

 

Figure 8-2: Differential cross section for the scattering of an electron off a hard sphere. 

Note how in Figure 8-2 the cross-section  only varies with the outgoing polar angle. There is no 

dependence on the azimuthal angle due to spherical symmetry. 

 

8.2  The Born Approximation 

We can now use our time dependent perturbation theory to calculate the cross-sections. If we combine 

Fermi’s Golden Rule (Eq. 5-20) with our expression for phase space (Eq. 7-11)  we get for a state i 

scattering to a state p as in Figure 8-1 via a time independent potential S(r) 

  [ ] ( )
n d p S r i

V p

v
d

E Ep i
( , ) ( )θ ϕ π

π
Ω Ω= =

2

2

2

3

2

� � �  .  8-3 

Note that in Eq. 8-3 V is the arbitrary quantization volume not the potential. The wavefunction for a 

single free particle travelling in a direction r with momentum p is given by 

    p
e

V

ip r

=
���
. /

/1 2
      8-4 

(see Problem 7.1) where this gives a density of one particle per volume V. Then Eq. 8-3 may be 

rewritten 
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( )
n d

d p

vV
d rS r ei p p r

p p

i p

p i

( , ) ( ) ( ) /θ ϕ
π

Ω Ω= − ⋅

=

�
2 2 2

2
3

2� ������ .    8-5 

If the velocity of the particle is  v=p/m  a volume p/m of beam crosses unit area normal to p in unit 

time. Therefore the flux is  

    I
p m

V
= /

.      8-6 

Substituting Eq. 8-6 into Eq. 8-5 we can extract the differential cross-section 

  

( )
σ θ ϕ

π
( , ) ( ) ( ) /= − ⋅

=

�m
d rS r ei p p r

p p

i p

p i

2

2 2
3

2

2� ��
���	

.     8-7 

Note that Eq. 8-7 is independent of the arbitrary normalisation volume - which is what we expect 

since a physical quantity cannot depend on the normalisation procedure. This equation was derived by 

Max Born and is known as the Born Approximation.  

8.3 Matrix Element in The Born Approximation 

The matrix element itself has an interesting feature. It may be written 

    
~

( ) ( )S K d rS r eiK r

 

��

= ⋅
�

3
     8-8 

where we have put 

     
���K p pi p= −       8-9 

For a central potential we first write 

    ��K r Kr⋅ = cosθ      8-10 

then 

    
~

( ) ( ) cosS K r drd S r eiKr
�

=�2 Ω θ
     8-11 



41 

and thus integrating  over cosθ we have  

 [ ]~
( ) ( ) ( )sin( )S K

r

iKr
drS r e e

K
S r Kr rdriKr iKr

�
= − =−
� �

2
42

π π
.  8-12 

The scattering matrix element only depends on the modulus of K where we remind the reader that 

 ( ) ( )�� ��
K p p p pp i

2 2 2 2 22 1 4
2

= − = − =( cos ) sinθ θ
.   8-13 

 

8.4 Time Independent Approach 

Another very useful way to calculate the scattering of one particle is a time independent approach. In 

this method we assume that we have an infinite beam (rather than a single wavepacket) of particles. 

This is very like an experiment.  The incoming wavefunction can be written 

    ψ 0 ( )
�
r eikz=       8-14 

where the wavenumber k is given by 

    ( )k mE= 2 2 1 2
/

/�
.            8-15 

This wavefunction represents a particle moving along the z-direction with uniform intensity and 

energy. Without any perturbing potential the Schrödinger equation reads (see problem 8.3) 

    ( )∇ + =2 2
0 0k ψ      8-16 

and in the presence of a time independent potential we have 

    ( )∇ + =2 2
2

2
k

m
Vψ ψ� .    8-17 

As we switch off the potential gradually we expect the solution of Eq. 8-17 to tend to Eq. 8-14 i.e. 
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     ψ ψ→ =0 eikz
    8-18 

To proceed we need to solve Schrödinger’s Equation in Eq. 8-17. 

8.5 Formal Solution of Schrödinger’s Equation 

Let us solve the Schrödinger equation by reference to a problem we understand well, that of an 

electrostatic potential from a distributed charge. The solutions to Poisson’s Equation (which looks a 

little like Eq. 8-17 ) 

     ∇ = −2

0

1ψ
ε

ρ( )
�
r   8-19 

are easy.  They are obtained by  considering the  electrostatic potential from a point unit charge at s 

i.e. 

     ∇ = − −2

0

1ψ
ε

δ ( )
��
r s .    8-20 

We know the solution to this is: 

     ψ
πε

=
−

1

4 0

��
r s

                  8-21 

as we know the potential due to a point charge! The potential due to a distributed charge is then given 

by the integral: 

    ψ
πε

ρ( ) ( )
� ����r

r s
s d s=

−

� 1

4 0

3
.   8-22 

Let us now consider the problem we are interested in, namely that of solving Schrödinger’s Equation. 

Let us rewrite Eq. 8-17 as 

    ( )∇ + =2 2k r F rψ ( ) ( )
� �

.    8-23 

By analogy with our solution of Poisson’s Equation we first solve: 
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    ( )∇ + = −2 2k r r sψ δ( ) ( )
� ��

.    8-24 

We can verify by direct substitution (see problem 8-4) that the solution is 

     ψ
π

= − ±e

r

ikr

4
.     8-25 

This corresponds  to spherical incoming and outgoing waves from a point “source”. From an extended 

source: 

   ψ
π

( ) ( )
� ����

��
r

e

r s
F s d s

ik r s

= −
−

−�1

4
3

    8-26 

where 

     F s
m

V s s( ) ( ) ( )
����

= 2
2

ψ  .    8-27 

To get the  general solution of the Schrödinger Equation  (Eq. 8-17) we can add the solution to the 

unperturbed part (Eq. 8-18) to the “scattered” wavefunctions that arise from solutions to Eq. 8-26. In 

physical terms we are adding to the incoming wavefunction a component that represents the scattered 

wave 

   ψ
π

( ) ( )
� ����

��
r e

e

r s
F s d sikz

ik r s

= −
−

−�1

4
3

.                  8-28 

8.6 Scattered Waves 

Equation 8-28 is especially important. The second term on the right is very similar to Eq. 8-25 and 

represents an outgoing wave whose amplitude is modulated by some function  f(θ,φ). 

    ψ θ φ( ) ( , )r e
e

r
fikz

ikr

≈ + .                  8-29 
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The function f(θ,φ) is known as the scattering amplitude and is related to the scattering cross-section 

by 

    σ ϑ φ θ φ( , ) ( , )= f
2

     8-30 

Note that the scattering amplitude can be complex. The measured  quantity (the cross-section) is 

determined by taking the square of the absolute magnitude. This means that when we have one or 

more scattering amplitudes contributing to a physical process that we will need to add the scattering 

amplitudes before computing the cross-section . This leads to interference effects.  

In the case that we are observing the system a long way away from the scattering centre we note that 

if r>>s then: 

  �� �� ��
r s r

r
r s

s

r
r

r s

r
− = − ⋅ +

�
�� ���≈ − ⋅
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2

1
2

2

2

1 2

2

/

    8-31 

The exponential term in the integral 8-28 can then be simplified 

    
e

r s

e

r
e

ik r s ikr
ikr s r

�� ����− − ⋅

−
≈ /

     8-32 

which if we put 

     		k kr r' /=      8-33 

becomes 

     
e

r
e

ikr
ik s− ⋅




.                   8-34 

Substituting the form Eq. 8-34 into Eq. 8-28 yields 

ψ
π

ψ θ φ( ) ( ) ( ) ( , )'� � ��
��
r e

e

r

m
e V s s d s e

e

r
fikz

ikr
ik s ikz

ikr

= + −
��� ���= +− ⋅

�2

4 2
3

                8-35 
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i.e. 

   f
m

e V s s d sik s( , ) ( ) ( )'θ φ
π

ψ= − − ⋅
�

2 2
3� ���

��
                 8-36 

8.7 Scattering Amplitude for Small Perturbations 

We can take Eq. 8-36 and apply to the very important case where the potential is very weak. This 

means that the incident wave is only slightly distorted. We can put 

    ψ ( )
� ��
s eik s→ ⋅

     8-37 

in Eq. 8-35 yielding 
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m
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m
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K k k
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π π
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2 22
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.  8-38 

This is the Born Approximation for the scattering amplitude and yields our previous result for the  

cross-section when we take the absolute magnitude of the  scattering amplitude ( c.f. Eq. 8-7). The 

advantage of the form Eq. 8-36 is that if we have a number of different scattering amplitudes we can 

now sum then to obtain the correct cross-section.  

8.8 Problems 

8.1 Particles are incident on a spherically symmetric potential 

( )V r
r

r( ) exp= −β γ  

 where β and γ are constants. Show that in the Born approximation, the differential scattering 

 cross-section for the scattering vector K is given by 
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( ) ( )σ θ φ β
γ

, =
+

�
��
��

�
��
��

2
2 2 2

2

m

K
�  

 Use this result to derive the Rutherford formula for the scattering of alpha particles. 

Although  this gives the right result, see if you can think of any reasons why this might not be 

a rigorous  result. 

8.2 Obtain in the Born approximation the differential cross-section for the scattering of the 

 particles of mass m by the potential 

V r V e r( ) = −
0

α  

8.3 Show that Eq. 8-16 is the Schrödinger Equation in 3 dimensions. 

8.4 Prove that Eq. 8-25 is a solution of Eq. 8-24. 

8.5 Calculate the differential cross-section for the scattering of a particle of energy E with mass 

m  by  a hard sphere of radius a. 

8.6 A uniform beam of particles with momentum p are scattered by a potential V(r). The number 
 scattered into a solid angle dΩ is given by 

n d u V r u
L

p mdp p

p p

( , ) ( )θ φ π
π

Ω Ω=
�
	
 ��
′

�

�
�
�

�

�
�
�′

′=

2

2

2
3

� �    

  
 i)  Explain very briefly the origin of the arbitrary length L and the meaning of ′p   

ii)  Assuming that the flux of incoming particles is given by I p m L= ( / ) 3  write  

down an expression for the differential cross section.     

 iii) Defining �
���
K p p= − ′ show that the cross-section only depends on the Fourier 

    transform of the scattering potential   
   

iii)  Calculate the differential cross-section for the  elastic scattering of a charged  
particle   off a Coulomb potential.[You may assume that 

sin /bxdx b
0

1
∞�

= ].  

 v) What are the limitations of this calculation?      
 



 

9 Partial Waves 

In the last chapter we saw that the scattering  of a particle (or a beam of particles) off a scattering 

centre resulted in a solution of the Schrödinger Equation of the form 

   ψ θ φ= +e f
e

r
ikz

ikr

( , )        9-1 

where we separated the final wavefunction into two parts. The forwards going (unscattered part) of 

the amplitude and spherical waves. The spherical waves emanate from the scattering centre and are  

modulated by the scattering amplitude. We discovered we could calculate the scattering amplitude 

from the total cross-section. There is an extremely useful way of determining the scattering amplitude 

that attempts to resolve the scattering components of known angular momentum. This method of 

partial waves is what we shall discuss below. 

 

Let us assume that we can expand the angular part of the incoming wave using as set of orthonormal 

solutions (spherical harmonics) to the Schrödinger Equation centred around the scattering centre i.e. 

  e e u kr Yikz ikr
l l

l

l

= =
=

=∞�
cos ( ) ( , )θ θ φ0

0

    9-2 

where the functions ul can be determined by taking the inner product of  Eq. 9-2 with another 

spherical harmonic 
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  u kr d Y el l
ikr( ) ( , )=�Ω 0 θ φ .      9-3 

Note that the expansion Eq. 9-2 has only been performed over the z=0 components of the spherical 

harmonics. If we assume the scattering potential is radially symmetric there can be no azimuthal 

dependence of the scattering. 

At very low energies of the incident scattering particle we expect that only the lower angular 

momentum states will contribute to the expansion. In the limit let us consider the case of s-wave 

scattering where only the angular momentum zero state zero can contribute. Using the fact that 

    Y0
0

1 2

1

4
=

( ) /π
       9-4 

we find 

 u kr d e d
kr

kr
ikr

0 1 2
1 21

4
4( )

( )
(cos ) ( )

sin
/

cos /= =
�

π
θ φ πθ

    9-5 

i.e. at very low energies the incoming wave is given by 

    e
kr

kr
ikz ≈ sin

.      9-6 

If we compare this with  our general form for the incident and scattered form of the wavefunction 

namely: 

   ψ θ φ= +e
e

r
fikz

ikr

( , )       9-7 

we can then write using our s-wave approximation 

  ( )ψ = − + = − + +

�
�� ���− −e e

ikr

e

r
f

ik

e

r

e

r
ikf

ikr ikr ikr ikr ikr

2

1

2
1 20 0    9-8 
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We note that Eq. 9-8  has a total wavefunction made up of an incoming wave and an outgoing wave. 

As long as no particles are destroyed or created during the scatter the incoming flux  must equal the 

outgoing flux i.e. 

    1 2 10+ =ikf       9-9 

or expressing this as an exponential may be written as 

    1 2 0
2 0+ =ikf e id

     9-10 

where the scattering amplitude is therefore 

   f
e

ik
e

ko

i
i= − =

2
0

0

0
1

2

δ
δ δsin

                   9-11 

and (if we wish) we can write the total amplitude 

 ψ δδ δ= − − +

�
�� ���= +1

2
2 00 0

ik

e

r

e

r
e e

kr

kr

ikr ikr
i i sin( )

.    9-12 

Comparing this with Eq.  9-6 we see the effect of the scatter has been to change the phase of the 

scattered wave by δ0  and the amplitude by an amount that depends on this phase shift. We can 

calculate the differential cross-section for the s-wave approximation by taking the square of the s-

wave amplitude (Eq. 9-11) 

   σ θ φ δ
( , )

sin
=
�
�� 	
�0

2

k
 .                   9-13 

 

9.1 Scattering off a hard sphere 

A particularly simple and illuminating example is given by the problem of calculating the s-wave 

scattering off an impenetrable sphere. This is  represented by an infinite potential at some radius a. 

The wavefunction must therefore be zero within, and on the boundary of, the sphere. Assuming we 
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can use the low energy s-wave approximation (Eq. 9-12) this can only be the case if   ka=-δ0. 

Inserting this into Eq. 9-13 gives 

    σ θ φ( , )
sin=
�
�� ���ka

k

2

                   9-14 

and the total cross-section is 

    σ π
tot

ka

k
= 4 2

2

sin
     9-15 

which in the limit that k becomes very small indeed becomes  

     σ πtot a= 4 2
     9-16 

This is very close to the classical result but demonstrates  that quantum mechanics does not always 

predict what we might expect from classical arguments. 

9.2 Problems 

9.1 Find the s-wave phase shift for an attractive square wave potential V=-V0,r<a ,  and V=0 for 

 r>a . Show that the cross-section for s-wave scattering vanished if the scattering energy E is 

 such that 

     
tanKa

Ka
= 1       

where 

    K
m

E V= +
�
�� 	
�2

2 0
2

1 2

�( )
/

 

This is called the Ramsauer-Townsend effect and occurs in the scattering of electrons by rare gas 

atoms. 



 

10 Identical Particles 

To make any further progress in Quantum Mechanics beyond the calculational level we have to 

investigate, in a little more depth, some of the  more “quantum” like features of the wavefunction. In 

particular we are going to be interested in the properties of the wavefunction that have no clearly 

defined classical analogue. We begin this  with a short introduction to the idea of identical particles. 

10.1 Classically Identical Particles 

In classical mechanics the idea of identical particles does exist. One can imagine two objects, for 

example apples, which have exactly the same appearance, shape, weight etc. These apples would be 

labelled in normal usage “identical” insofar as if one were presented with one apple one could not say 

which one it was. This linguistic concept of “identical” is however not the same as our physics 

concept. 

Consider two apples in a large space. One could, at  a particular instant, label one (at least in one’s 

mind) A and the other B. Even though there is no discernible difference between  A and B one could 

then - for all subsequent times - be sure which apple was A and which was B. This could be achieved 

by very carefully following each apple. Since there is classically a unique and smooth trajectory in E3 

as a function of time all one would have to do is apply the Newton’s laws at a particular instant t to 

predict (and label) the position of an apple at time t+dt. Thus one can differentiate between  A and B 

for all time. 
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10.2 Quantum Mechanically Identical Particles 

Quantum mechanically the differentiation  between A and B is no longer possible. This is because at 

any instant the wavefunctions are non-localised. The spatial extent of a wavefunction in free space is 

normally infinite. Thus if we have two particles A and B that share identical properties (quantum 

numbers) we are not able to follow their wavefunctions unambiguously for all times. Suppose we were 

able to localise the wavefunction of A to some region of space  xA to xA+dxA and B to xB to xB+dxB . If 

at some small instant of time later on we calculate  the probability,  PA(y), that particle A is in another 

volume y to y+dy  and  the probability PB(y), that particle B may be observed at the same point we will 

general find that  both PA(y), PA(y) are non-zero. Namely, if we do observe a particle at point y we 

cannot be sure whether it was the particle  A or the particle  B. One might argue that one could on the 

basis of probability assign a likelihood of one particle being A and the other B: for example an 

electron that started out in a cathode ray tube on Earth is more likely to be observed on earth than in 

Alpha Centauri. However  likelihood is not the same as the absolute certainty that we had in the 

classical example above.  
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10.3 Wavefunction for Identical Particles 

With  state vectors we can examine indistinguishability a little more  carefully. We assume that we 

have two particles which we can labelƒ (but not distinguish) as 1 and 2. Let us also assume that the 

particles can be in states ψ m  and ψ n  which are distinguishable because they have different 

quantum numbers. If our particles are indistinguishable then the state ψ ψm n
1 2  must be entirely 

equivalent to ψ ψm n
2 1  i.e. it won’t affect the outcome of any measurement if we interchange labels 

1 and 2 because we cannot tell experimentally which particle is in which state. Thus for the total 

wavefunction for two-particles we have a linear superposition of the two possibilities 

  Ψ12 1 2 1 2= +c cmn m n nm n mψ ψ ψ ψ  .    10-1 

This mixture contains equal proportions of each product state (since they are equally likely) thus 

    c cmn nm= .      10-2  

In addition since the total wavefunction in Eq. 10-1 must be normalised we see that 

    c cmn nm

2 2
1+ =      10-3 

so that 

     c cmn nm= = 1

2
.     10-4 

                                                        
ƒ The reader may wonder how we can write down a state vector for a particle that we cannot distinguish for 

another. Does this not imply that we have somehow differentiated one particle from another by labelling one 
particle differently from another?  This not an easy question to answer. Here on may simply assert that  there 
is a  reality associated with a particular particle, and this reality described by its wavefunction. Each 
wavefunction develops according the Schrödinger Equation. However we cannot directly access this 
wavefunction. We have to make an observation on the system as a whole and in making the observation the 
“information” about which wavefunction (or particle) was observed is lost.   
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10.4 Fermions and Bosons 

There are two ways of enforcing Eq. 10-4. Either  cmn=cnm or cmn=-cnm. We can write down explicitly 

what Eq. 10-1 becomes in either case. For the case that cmn=cnm  we have 

  ( )Ψ12 1 2 1 21

2
= +ψ ψ ψ ψm n n m .    10-5 

In this case if  we exchange particles 1 and 2 the wavefunction (Eq. 10-5) remains identical and is 

said to be symmetric on the exchange of particles. Particles whose two-particle state vectors possess 

this property are known as bosons. When cmn=-cnm we have  

  ( )Ψ12 1 2 1 21

2
= −ψ ψ ψ ψm n n m .     10-6 

The reader will notice that if we now exchange particle 1 and 2 the wavefunction changes sign. It is 

said to be anti-symmetric on the exchange of particles. Particles whose two-particles state vectors 

possess this property are known as fermions. 

10.5 Pauli Exclusion Principle 

Perhaps one of the most important distinction between bosons and fermions is  evident in the 

comparison of Eq. 10-5 and 10-6. In the case that the two particles are in an identical eigenstate  the 

bosonic two particle wavefunction becomes  

    Ψ12 1 2= ψ ψm m .     10-7 

This is evidently non-zero and is simply the product state of the two separate particles in state m. For 

fermions the product wavefunction is altogether more interesting:  

  ( )Ψ12 1 2 1 21

2
0= − =ψ ψ ψ ψm m m m                   10-8 
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This means that the particles whose two particle wavefunctions are antisymmetric (i.e. fermions) are 

forbidden from occupying the same state,  i.e. there is no probability that they can be found in the 

same state. This is often referred to as the Pauli Exclusion Principle.  The exclusion - that two 

fermions are forbidden from being in the same state - should be thought of as consequence of our 

ideas about indistinguishability. In the next chapter we shall revisit bosons and fermions and see their 

relation to the spin of the particles. 

10.6  Problems 

10.1 Explain why  Eq. 10-5 becomes Eq.  10-7 when the two states m and n are identical. 
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11 Spin 

One of the most puzzling features of the Quantum World is the phenomenon of  “spin”. The idea, as 

always, is motivated by experiment: if we put an electron into a magnetic field we will see that it will 

be in one of  two distinct states. If we were performing a spectroscopic experiment we would see the 

line “split” from the field free value with one band moving down and the other moving up. Classically 

we could understand this if the electron were to have a magnetic moment (µµµµ) which could interact 

with the magnetic field B giving an energy to the electron of  ∆E ∝µ µ µ µ . B. For there to be only two 

levels it means that the magnetic moment must be aligned in just two directions antiparallel to  one 

another. It is natural pick the B field direction as this axis of quantization. Thus in our semi-classical 

picture we envisage two cases - one with the electron moment aligned parallel and in the other with it 

aligned anti-parallel to the magnetic field. 

                                         µ µ µ µ  

                                                                            B 

 

                                                                                                 µµµµ    

Figure 11-1: Semi-Classical view of an “electron” interacting with a magnetic field. 

In this simple picture we can easily understand how we arrive at the nomenclature spin. Classically a 

charged object that spins creates a magnetic moment (the small magnetic field produced by the 
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moving charge) which interacts with the externally applied magnetic field. From this we clearly 

expect spin to be related (somehow) to angular momentum and other rotational effects. 

 

But there are problems with this semi-classical picture. First there is no evidence that the electron has 

any spatial dimension. Second there is the issue of why the “spin” is quantized. To tackle these 

problems we will first review the quantum mechanical view of angular momentum. 

11.1 Angular Momentum Commutation Relations 

Classically the angular momentum of a particle about a point is given by  

     ���L r p= ×      11-1 

and in quantum mechanics we postulate that there will be an angular momentum operator L defined 

by  

    
��� ���
L r p i r= × = − × ∇                    11-2 

where we have replaced the momentum by its quantum mechanical operator. In Cartesian co-

ordinates it is then easy to explicitly write down the form of the angular momentum operator 

   L

i j k

x y z

p p p

i
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=
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∂

∂
∂

∂
∂

.    11-3 

which gives us the three forms for the angular momentum operators 
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L i y
z

z
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L i z
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     11-4 

These are our familiar forms for the angular momentum operators and, as we have done before, we 

can also define 

    L L L Lx y z
2 2 2 2= + + .                   11-5 

From these  definitions (Eq. 11-4 and Eq. 11-5) it is easy to prove that 

    

[ ]
[ ]
[ ]

L L i L

L L i L

L L i L

x y z

y z x

z x y

,

,

,

=

=

=

�
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      11-6 

and that using these commutation relations that 

   [ ] [ ][ , ] , ,L L L L L Lx y z
2 2 2 0= = = .                   

11-7 

These are very important commutation relations to which  we will return  later.  

11.2 Angular Momentum in Spherical Co-ordinates 

In spherical (rather than Cartesian) co-ordinates the angular momentum operators are  easy to 

identify. First we define the relationship between the spherical co-ordinates and the Cartesian ones: 

  

� �
cos sin

�
sin sin

�
cos� �

cos cos
�
sin cos

�
sin� �

sin
�
cos

e i j k

e i j k

e i j

r = + +

= + −
= − +

φ θ φ θ θ

φ θ φ θ θ
φ φ

θ

φ

                   

11-8 
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where the quantities �,�,�e e er θ φ  are  unit vectors in the radial, polar and azimuthal directions 

respectively. The inverse can also be written down: 

  

��
sin cos

�
cos cos

�
sin��

sin sin
�

cos sin
�

cos��
cos
�

sin

i e e e

j e e e

k e e

r

r

r

= + −

= + +

= −

θ φ θ φ φ

θ φ θ φ φ

θ θ

θ φ

θ φ

θ

.     11-9 

In spherical co-ordinates 

   
�
∇ = + +
� � �

sin
e

r
e

r
e
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∂
∂

∂
∂θ θ

∂
∂φθ φ

1 1
    11-10 

so the components of the angular momentum may be written using  
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 The components of the angular momentum may be written 

   

L i L i

L j L i

L k L i

x

y

z

= ⋅ = +


�� ���

= ⋅ = − −
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φ ∂
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θ φ ∂
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∂
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.    11-12 

It is important to note that we have done nothing  except express the operators in spherical co-

ordinates. An expression for L2 may be found from Eq. 11-11  noting that from Eq. 11-9 the 

derivatives of the unit vectors with respect to the spherical co-ordinates are not constant. Fom Eq.  11-

8 
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Hence 
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In the case that we have a central force (where classically the angular momentum is conserved) we 

can write down the time independent Schrödinger Equation  

   H r E rΨ Ψ( , , ) ( , , )θ φ θ φ=      11-15 

where the Hamiltonian (H) is given by 

H
m

V r

m r r
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  11-16 

It is very important to note that in Eq. 11-16 the operator ∇2 has been expressed in  spherical co-

ordinates. The second part of ∇2 is simply proportional to the angular momentum operator (Eq. 11-

14)  so  we can write 

   H
mr r

r
r

L

mr
V r= − + +

�2
2

2
2

22 2

∂
∂

∂
∂

( ) .   11-17 

From examination of Eq. 11-17 we can deduce the Hamiltonian will commute will commute with L2, 

Lx, Ly, and Lz. This is because all the terms (except L2) contain terms in r only and L2 commutes with 
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all the angular momentum operators. From Ehrenfest’s theoremƒ this automatically means that L2 is a 

constant of motion as are Lx, Ly, Lz.  

11.3 Simultaneous Determination of the Components o f 
Angular Momentum 

Ehrenfest’s theorem tells us that L2 is a constant of motion, as are  Lx, Ly and  Lz. However this does 

not mean that we can determine all of these components simultaneously. In fact  the commutation 

relations Eq. 11-6 tell us that the x,y,z components of the angular momentum do not commute with 

each other.   We know that in cases such as this (for example with x and px) we do not expect to be 

able to simultaneously observe both variables. This is a feature of quantum mechanics. We  will show 

that we can  simultaneously  observe L2 and one directional component (which by convention  is 

usually Lz). 

 

We will discuss simultaneous eigenfunctions in Chapter 12 but it is worthwhile here to prove that the 

commutation relations Eq. 11-6 do embody a very  important feature of quantum mechanics. Let us 

assume we have two operators A and B that both commute with the Hamiltonian. The condition that 

either A or B commute with the Hamiltonian is that their eigenfunctions are also eigenfunctions of the 

Hamiltonian: this may be seen (non rigorously) from 

    

H u E u

A u a u

AH u HA u

u=

=

=
      11-18 

therefore 

                                                        
ƒ Ehrenfest’s Theorem tells us that if an operator commutes with the Hamiltonian the observable which it 

represents is a constant of motion. This may be proved easily and is done so in Chapter 12. 
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    [ , ]A H = 0        11-19 

if Eq. 11-19 is zero it must be that the last line of Eq. 11-18 holds and that is only possible if H and A 

have simultaneous eigenfunctions. Now if A and B both commute with the Hamiltonian we have only 

two choices. If they commute with each other they have will both have the same eigenfunctions which 

are also eigenfunction of the Hamiltonian. If they do  not commute  then B will have another set of 

eigenfunctions  |v> i.e. 

H v E v

B v b v

BH v HB v

v=

=

=
 

such that [B,H]=0  but these will not be same as the same functions as the |u>. 

 

Thus if we make a measurement in a particular direction (for example z) we select (put) the system 

into a simultaneous eigenfunction of both L2 and Lz. The corresponding eigenfunction will not be an 

eigenfunction of both the Hamiltonian, L2 and the component La (where a is any other direction). 

11.4 Angular Momentum and Rotation 

There is a very deep connection between angular momentum and rotation. This is most obvious from 

the form of the angular momentum operator Lz that we wrote down in Eq. 11-12. If there is no 

dependence of the state on the azimuthal angle(i.e. along some particular direction)  the expectation 

value of the angular momentum along that particular direction will  be zero i.e. <Lz>=0 . However if 

the state has an eigenvalue m� with respect to Lz we know that 

    − =i u m u
� �∂

∂φ
                 11-20 
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which of course is trivially solved by 

    u u r eim= ( , )θ φ
                 11-21 

Now Eq. 11-21 embodies a very interesting feature. Under the angular momentum Lz operator the 

state is only changing by a fixed factor (the eigenvalue)  and the φ dependence is only a phase factor, 

albeit one that depends on the value of the angular momentum projection m. 

 

 Let us consider what happens to a vector r when it is rotated about a small angle around the z 

direction 

    ���r r dr→ +       11-22 

where 

 dr
r
d

� �
= ∂

∂φ
φ       11-23 

which,  if we wished, we could write in terms of components from Eq. 11-9.  Comparing Eq. 11-20 

and Eq. 11-23 we see that the angular momentum operator Lz is “responsible” for generating rotations 

about the z axis2. To be more formal Eq. 11-22 can be expressed in terms of a rotation operator 

(which of course can be applied to states as well as vectors ). For an infinitesimal rotation α, 

� � ��

�

r D r
i

L r

D
i

L

z

z

→ = −

= −

α

α

α

α

( )

( )

1

1
     11-24 

Repeated application of the operator Da gives for a finite angle α, 

D
i

Lzα
α= −
�
�� ��	exp 
      11-25 

                                                        
2 In fact Lz is often call the generator of infinitesimal rotations. 
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i.e. the finite rotation operator in quantum mechanics is a simple function of the angular momentum 

operator.  

11.5 Eigenvalues of Angular Momentum Operators 

The eigenvalues corresponding to the operators L2 and Lz are well known. They are given by 

L l m l l l m

L l m m l m

m l l l l
z

2 21

1 1

, ( ) ,

, ,

, , , ,

= +

=
= − − + −

�
�

�
     11-26 

where the values in 11-26 can be derived by an explicit solution to the differential equation 11-14  

with  the spherical harmonics Ylm(θ,φ) . However here we will use a somewhat more elegant technique 

to obtain the eigenvalues of  the angular momentum operators. 

Let us define two operators 

L L iL

L L iL

x y

x y

+

−

= +

= −
      11-27 

where L+ and L- are known as the raising and lowering operators of the angular momentum. The 

commutation relations  for these operators are: 

[ ]
[ ]

L L L L i L L L L L

L L L L i L L L L L

x y x y z z

x y y x z z

+ −

− +

= + − = − +

= + − = − −

2 2 2 2

2 2 2 2

,

,

�

�    11-28 

which yields 

[ ]L L Lz+ − =, 2�.     11-29 

We also have 
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[ ] [ ] [ ] ( )
[ ] [ ] [ ] ( )
L L L L i L L i L iL L

L L L L i L L i L iL L

z z x z y y x

z z x z y y x

, , ,

, , ,

+ +

− −

= + = − =

= − = + = −

� �

� �    11-30 

The two sets of commutator relations Eq. 11-29 and Eq. 11-30 are all we need to extract the values of 

the eigenvalues of the angular momentum. Let us restate the problem. We have the equations 

L u u

L u uz

2 =

=

α
β

      11-31 

and we need to find the simultaneous eigenvalues α,β. This is done as follows. First we take  the 

second of the equation in Eq. 11-31 and multiply  both sides by the raising operator L+: 

L L u L uz+ += β . 

We  note that from Eq. 11-30  

L L L L Lz z+ + += −� 

so 

( )L L L u L uz + + +− =
�

 β      11-32 

which may be rewritten as 

( )L L u L uz + += +β � ..     11-33 

Similarly 

( )L L u L uz − −= −β � .     11-34 

Equations 11-33 and 11-34 are interpreted as telling us that if u  is an eigenfunction of Lz with 

eigenvalue β  then  L u+  is also an eigenfunction of Lz with eigenvalue β +�. L u−  is an 

eigenfunction of  Lz with eigenvalue β −�. This is why L+ and L- are known as the raising and 

lowering operators. 
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We can also apply the same method to the total angular momentum. Starting with 

L u u2 = α       11-35 

we multiply by the raising operator  

L L u L u+ +=2 α .     11-36 

We have not explicitly calculated the commutator [ ]L L2 , +  but we note that since L2 commutes with 

both Lx and Ly it must also commute with the raising and lowering operators. Eq. 11-36 can then  be 

written as 

L L u L u2
+ += α      11-37 

and we can find a similar relation for  the lowering operator 

L L u L u2
− −= α .    11-38 

This shows that the states L u+  and L u−  are also simultaneous eigenstates of the total angular 

momentum. 

We can now calculate the eigenvalues α,β.  The eigenvalues of Lz are limited by the condition 

β α2 ≤ .  There must then  exist some maximum value of β (say βmax) and a minimum value βmin. If 

umin  and umax  are the corresponding eigenfunctions we must have 

L u

L u

+

−

=

=
max

min

0

0
      11-39 

i.e. we cannot get any higher than the highest state or any lower than the lowest state. Thus operating 

on the first of Eq. 11-39 by the lowering operator and the second by the raising operator we see: 
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L L u

L L u

− +

+ −

=

=
max

min

0

0
     11-40 

Now we can use Eq. 11-28 that we derived before to give: 

( )
( )

L L u L L L u

L L u L L L u

z z

z z

− +

+ −

= − − =

= − + =

max max

min min

2 2

2 2

0

0

�

�     11-41 

i.e. 

α β β
α β β

− − =
− + =

max max

min min

2

2

0

0

�
�       11-42 

Eliminating α gives 

β β β βmax max min min
2 2+ = −
� �

.    11-43 

We can write down the solution  

β βmin max= − .      11-44 

Now from Eq. 11-34 we know values of β are  separated by steps of �i.e. 

β βmax min− = n�     11-45 

so  

β max = n
�

2
.      11-46 

The value of α can be found from  Eq. 11-42 and Eq. 11-46. 

α =
�
��
	

�+
�
��
	

��2

2 2
1

n n
     11-47 
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Note that the minimum value of α (when n=0) is 0, then 3/4� ��2

2 2
β = −
�
�� ���, , ( )2 02

� ��
β = − , ,  

and so on. The solutions where n is even lead to our “normal” angular momentum states and we are 

left with the “unexpected” half integer solutions (spin 1/2) which we would like to connect to the 

intrinsic spin. It  vital to note that while the integer solutions to spin have  normal spatial 

wavefunctions, no such wavefunctions can be found that correspond to the half-integer case. 

11.6 Intrinsic Angular Momentum 

That we cannot find spatial wavefunctions that correspond to the half-integer spin eigenvalues does 

not necessarily mean that  they do not exist. Remember that our problem was formulated in a way 

(using kets) that  dictated  the form of the ket.  Rather than define angular momentum specifically 

with components, we generalise the operators and define angular momentum with the commutation 

relations Eq. 11-6 and 11-7. We will show how this can be done for spin-1/2 particles. 

11.7 Matrix Representation 

For particles that we would like to occur in two eigenstates (spin up and spin down) it is natural to 

write the eigenstates of the z-component as column vectors 

1

0

�
	

�
�
= ↑ spin up, 

0

1

�
	

�
�
= ↓ spin down. 

 

Any operator operation will have to be a 2x2 matrix. In order that this representation of spin yield the 

“right” eigenvalues we need to guarantee that 
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L

L

z

z

↑ = ↑

↓ = − ↓

�

�2

2

      11-48 

In order to make it explicit that we are worried about the problem of intrinsic angular momentum and 

that the operators are distinct from the ones we have been dealing with before we will replace the L by 

an S i.e.  

S

S

z

z

↑ = ↑

↓ = − ↓

�

�2

2

      11-49 

This may be satisfied if  Sz is given by  

Sz z

z

=

=
−

�
�� ���

1

2

1 0

0 1

�
σ

σ
       11-50 

If we wished to find a set of operators S2,Sx,Sy,Sz that satisfy  Eq. 11-6 and 11-7 it is natural to do it 

from matrices  similar to these in Eq. 11-50. Such a set of matrices does exist and they were first 

discovered by W. Pauli. They are named after him and are called the Pauli Spin Matrices. These are 

σ σ σx y z

i

i
=

�
	
 ��
 =

−
�
	
 ��
 =

−

�
	
 ��
0 1

1 0

0

0

1 0

0 1
, ,      11-51 

 

These three matrices form the x,y,z, components of a vector  σ  which is related to the spin operators 

by 

���
S =

2
σ .     11-52 
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Using the definitions of the Pauli Spin Matrices it is easy to show that the matrix version of Eq. 11-6 

and 11-7 does hold i.e. 

[ ]S S i Sx y z, =�etc.     11-53 

and that 

S S S Sx y z
2 2 2 2 23

4

1 0

0 1
= + + =

�
�� ����

    11-54 

Clearly the eigenstates 
1

0

0

1

�
	

�
�

�
	

�
�
,  have total angular momentum eigenvalue 3/4�2 and a spin 

projection either ±�/ 2 in the z direction. Note that the corresponding bra vectors are 

( ) ( )↑ = ↓ =1 0 0 1,  

11.8 Spin and Angular Momentum 

From the discussion above it should be clear that intrinsic angular momentum is a very different 

object than the spatial angular momentum. Being represented by the Pauli Matrices (for spin 1/2 

particles) it does not contain any of the normal r, p operators or their components.  The spatial 

degrees of freedom will commute with the intrinsic spin components.  

[ ] [ ] [ ]������
S r S p S L, , , ,= = = 0      11-55 

This means we can specify simultaneously the spatial and intrinsic components of  a particles 

wavefunction and that the total wavefunction may be written as 

u r= Ψ( , , ).θ φ λ       11-56 

where λ  is the spin wavefunction. 
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Despite all this abstraction the intrinsic spin is a very real property of an electron. It does couple to a 

magnetic field and one can see this even with fairly simple experiment. Let us take a moment to see 

how we can write down the mathematics for an electron inside a magnetic field. Let us choose the 

applied magnetic field to be along the z-direction. We know that the spin part of the electron 

wavefunction will be composed of the spin up and spin down states  
1

0

0

1

�
	

�
�

�
	

�
�
, .  In analogy to the 

classical case the Hamiltonian will be perturbed by an amount proportional to the magnetic moment  

∆H B g
e

m
S B g

e

m
S B

e e
z z= − = =

�� ��
µ. .

2 2
    11-57 

We can then use perturbation theory to calculate energy shifts. All we need to be able to do to 

compute energy shifts is to calculate our usual matrix elements i.e. 

( )

( )

( )

( )

∆

∆

E g
e

m
B S g

e

m
B

g
e

m

B
g

e

m

B

E g
e

m
B S g

e

m
B

g
e

m

B
g

e

m

B

e
z

e

e e

e
z

e

e e

↑

↓

= ↑ ↑ =
−

�
�� ���
�
�����=

�
�����=

= ↓ ↓ =
−

�
�� ���
�
�����=

−
�
�����= −

2 2
1 0

2

1 0

0 1

1

0

2 2
1 0

1

0 2 2

2 2
0 1

2

1 0

0 1

0

1

2 2
0 1

0

1 2 2

�

� �

�

� �

   11-58 

Eq. 11-58 gives the energy shifts. The factor of proportionality (g) between the spin and the magnetic 

moment g. This is the Landé g-factor for the electron - which is almost exactly 2. 

11.9  Spin and Statistics 

Finally we return to the question of spin and statistics. We saw that particles that have anti-symmetric 

wavefunctions  obey the Pauli exclusion principle. We also stated that fermions (spin 1/2 particles) 
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have anti-symmetric wavefunctions and bosons  (spin 0,1) have symmetric wavefunctions. Why 

should this be? 

 If we return to our generalised angular momentum discussion we see that the angular momentum 

operator is related to the rotation operator (Eq. 11-25). We might believe that the exchange properties 

arise trivially from the rotation operators. It is certainly true, for example, that if we take the 

generator of spin rotations to be Sz then, just as derived above, the generator  of a finite rotation is 

D e e
i

S
iz

z
α

α
ασ= =

−� /2
     11-59 

which if we expand the exponential in terms of σz becomes 

D ei
α

α= /2
     11-60 

and Eq. 11-60 shows that a fermion system is only identical to its original configuration after a 

rotation of 4π radians. It can be shown that spin 0 and spin 1 systems require only a rotation of 2π to 

return to their original configuration. Since exchanges of identical particles can be considered similar 

to rotations (in a classical two body system) we should not thus be surprised that the exchange 

properties of fermions and bosons are different. 

However a “proof” of these properties lies beyond the scope of this course as it requires a detailed 

understanding of relativistic wave equations. 

11.10 Problems 

11.1 Prove the  commutation relations 11-6. Prove  Eq  11-7 by using the commutation relations 

 11-6. 

11.2 Perform the calculation to show the final form of Eq. 11-14 is correct. 

11.3 Prove the equation 11-34. 
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11.4  Prove by explicit matrix multiplication that the Pauli Spin Matrices give rise to Equations 

11- 53 and 11-54. 

11.5  Show that the following matrices obey the appropriate commutation rules and have the 

correct  eigenvalues to represent the three components of angular momentum of a spin-one particle 

L L

i

i i

i

Lx y z=

�

�
���

�

�
���=

−
−

�

�
���

�

�
���=

−

�

�
���

�

�
���

� � �
2

0 1 0

1 0 1

0 1 0
2

0 0

0

0 0

1 0 0

0 0 0

0 0 1

, ,  

 Verify that the matrix representing the square of the total angular momentum also has the 

 correct eigenvalues 

11.6 The spin operators, �s , may be related to the Paul Spin Matrices by �
	
�s =

2
σ . Where  

σ σ σx y z

i

i
=



�� 
�� =

−


�� 
�� =

−



�� 
��0 1

1 0

0

0

1 0

0 1
, ,  

. 
 i) Show that the Pauli matrices have the correct commutation properties to be 
identified   with spin        
 ii)  A beam of spin 1/2 particles are placed in a single spin eigenstate aligned along the 
z   direction. Calculate the average value of the spin obtained by making   
  repeated measurements of the spin along a direction  θ  to the z direction.  
 iii) What  result would  you expect from a single measurement. 
 
.



 

12 Operators 

Let us take a few moments to review what have  learned about Quantum Mechanics and in particular 

about operators. We have  used operators in Schrödinger’s Equation and are quite familiar with most 

of their properties. However it is important to remember the following points that  are really 

postulates. They embody what we know about nature as described by the Schrödinger Equation: 

Postulate 1: Every dynamical variable may be represented by a Hermitian operator 

(see Chapter 1) whose eigenvalues represent the possible results of carrying out a 

measurement of the value of the dynamical variable. Immediately after such a 

measurement, the system will be in a state of the system identical to the eigenstate 

corresponding to the eigenvalue obtained as a result of the measurement. 

Postulate 2: The operators representing the position and momentum of a particle 

are �r and − ∇i
��

 respectively. Operators representing other dynamical quantities 

bear the same functional relation to these as do the corresponding classical 

quantities to the classical position and momentum variables. 

In Chapter 1 we already looked at many of the properties of operators under these assumptions and 

the reader is urged to remind themselves of how  the expectation value of an observable is related to 

the probability amplitude.  Here  we will be concerned with the relationship between operators. 
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12.1 Compatible Observables 

Two observables are said to be compatible if the operators representing them have a common set of 

eigenfunctions. This means that if one quantity is measured  then the system will be left in an 

eigenfunction of that observable. Another measurement of the other observable will leave system in 

the same state. If one wished the system could be measured again with the first observable with the 

identical result as the first time, and so on. We interpret this as saying that the two observables are 

compatible, and that the system can have both measured unambiguously. This may be expressed 

mathematically as follows. Let us assume our two operators are Q and R. If a system is originally in a 

state 

u a ii
i

=�      12-1 

then measurement with the operator Q  will put the system into one of the eigenstates k with an 

eigenvalue qk i.e. 

Q u Q a i a q ii
i

i
i

i= =
��

     12-2 

and a subsequent operation with R yields 

RQ u R a q i a r q ii i i i i
i

= =��      12-3 

QR u Q a r i a q r ii i i i i
i

= =��     12-4 

thus combining Eq. 12-3 and 12-4 by subtracting we arrive at 

 ( ) [ ] ( )QR RQ u Q R u a q r q r ii i i i− = = − =
�

, 0    12-5 

which since u  is not trivially zero implies 

[ ]Q R, = 0      12-6 
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Thus in the case that the two operators are simultaneously measurable their commutator vanishes. 

12.2 Commutation Relations and the Uncertainty Prin ciple 

Things are not quite as simple when the commutator does not vanish. We will examine this case in 

more detail. Let us take two Hermitian operators A, B. Let us also assume that their commutator can 

be calculated and is given by 

[ ]A B iC, =       12-7 

The first observation we make is that C is also a Hermitian operator( see Problem 12.1). As their 

commutator does not vanish they two variables will not have simultaneous eigenstates. To study their 

effect on a state u let us form an arbitrary mix of the two operators operating on this state: 

( )w A i B u= + λ .     12-8 

Now by definition 

( )( )u A i B A i B u w w− + = ≥λ λ 0      12-9 

so expanding Eq. 12-9 gives 

[ ]u A i A B B u2 2 2 0+ + ≥λ λ,      12-10 

which can be rewritten in terms of expectation values 

A C B2 2 2 0+ + ≥λ λ .    12-11 

For this to be true for all arbitrary values of λ it is necessarily the case that 

A B C2 2 2 4≥ / .     12-12 

The quantities on the left-hand side of Eq. 12-12 are the expectation values of the operators A and B 

squared. What do they represent? The interpretation of these is relatively straightforward. Take  the 
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operator A A− . This operator gives the deviation of the observable A from its expectation value 

and its expectation value is by definition zero. The observable (A A− )2 is the variable that gives 

the square of the deviation from the mean of A. Thus we state that its expectation value is the mean 

square i.e. 

( ) ( )∆A A A A A A A A A2 2 2 2 2 22= − = − + = −    12-13 

We  can always define our co-ordinate systems such that the expectation value of A is zero and in 

such a case we can easily see that Eq. 12-12 becomes: 

( ) ( )∆ ∆A B C2 2 2 4≥ /      12-14 

i.e. 

∆ ∆A B C≥ / 2 .     12-15 

For the case of position and momentum we note that Eq. 11-15 becomes the  famous uncertainty 

relation 

∆ ∆x p ≥�/ 2 .      12-16 

Let us summarise. We have argued that when two Hermitian operators commute their observables are 

simultaneously and precisely observable. When the operators do not commute a measurement of A we 

will leave the system in an eigenstate of A which is not an eigenstate of B. Operating on the system 

with A gives 

A u a ii A
=
�

.     12-17 

The system is will be left in a particular  state i A . The state i A   is not an eigenstate of B but can 

of course be expanded in terms of the eigenstates of B: 

    i b jA j B
=�.    12-18 
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A  measurement of B will put the system into one of the eigenstates  of  B with probability bj . The 

state j
B

 can be expanded in terms of the eigenstates of A 

j a i
B i

jB
=�    12-19 

When we remeasure A we can measure anyone of its eigenstates and not just  the original state that 

we measured in Eq. 12-14. From the point of view of the experimentalist a measurement of B spoils 

our knowledge of A and vice versa. There is no way we can predict from  measurement of one variable  

what measurement we will make of the other variable if the operators do not commute.  

12.3 Ehrenfest’s Theorem 

We include here a theorem that is very important. First we show that if an operator commutes with 

the Hamiltonian then it is associated with an observable that is a constant in time  of the system. 

This may be proved easily: 

 

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂t

Q
t

Q
t

Q
t
Q Q

t
= = + +Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ  .  12-20 

 

Using the Schrödinger equation  

H i
t

Ψ Ψ=�∂
∂

     12-21 

and its Hermitian Conjugate 

Ψ ΨH i
t

= −�∂
∂

     12-22 

yields 
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[ ]

∂
∂

∂
∂

∂
∂

t
Q

i
HQ

i
QH

t
Q

i
Q H

t
Q

= − + +

= +

1 1

1

� �

�

Ψ Ψ Ψ Ψ Ψ Ψ

Ψ Ψ Ψ Ψ,
    12-23 

Thus the expectation value of any time independent operator is constant if the operator commutes 
with the Hamiltonian. 
 
We next consider the commutator of the position operator with the Hamiltonian 
 

[ ] [ ] ( ) ( )( )

( ) ( ) prrrr

rrrrr
p

rr

m

i

mmm

mmm
V

m
H

����

���

=∇−=∇−∇−∇−∇−=∇∇−∇−∇−

=∇+∇−∇−=∇−∇−=∇−=��
�

��
�

+=

2
22

2
2

2

2
2

22
2

2
22

22

1
22

,
22

,,

                  12-24 

Thus the rate of change of the expectation value of the position is closely  related to its classical form 
i.e.  

   
m

H
itdt

d p
r

rr
=+

∂
∂= ],[

1�      12-25 

Similarly we can show 
  
 

 VH
itdt

d
∇−=+

∂
∂= ],[

1
p

pp 	
      12-26 

Equations 
m

H
itdt

d p
r

rr
=+

∂
∂= ],[

1�      12-25 

and VH
itdt

d
∇−=+

∂
∂= ],[

1
p

pp 	
      12-26 

embody Ehrenfests theorem. They show that the expectation values in quantum mechanical systems 

obey the classical laws of motion.  

12.4 Problems 

12.1 Prove that the commutator of a pair of Hermitian operators is also a Hermitian Operator. 
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12.2 Show that if an operator commutes with the Hamiltonian then it is associated with an  
  observable of the system that is constant in time.     
   

  
Using the result derived above determine which of the following are constants of motion of 
the 1-dimensional Hamiltonian 

 

    H
m x

V x= − +

�
�� ���
�2 2

22

∂
∂

( )  

 ii) momentum        
 iii) position          

iv) energy     
 
12.3 Prove 12-26 
12.4 In the Library look up the Correspondance Principle . How does Ehrenefest’s Theorem relate 

to this?  
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12.5     



 

13 Annihilation and Creation 

In the last chapter we investigated the properties of raising and lowering operators for angular 

momentum. Operators that exhibit the “raising” and “lowering” feature are not limited to angular 

momentum. There is another very important example that we will look at now. This concerns the 

harmonic oscillator. 

13.1 Harmonic Oscillator 

Let us consider the harmonic oscillator in one dimension. The Hamiltonian of a particle in the 

oscillator potential is  

H
p

m
m x= +

2
2 2

2

1

2
ω      13-1 

where ω  is the classical oscillator frequency.  Rather than solve the problem of determining the 

eigenvalues by explicitly determining the eigenstates let us use the following technique. Let us define 

two operators 

( )

( )

a
m

m x ip

a
m

m x ip

−

+

= +

= −

1

2
1

2

�

�

ω
ω

ω
ω

.    13-2 

Where a+ and a- are Hermitian conjugates. Let us also define the Hermitian operator 
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N a a= + −
.    13-3 

The definition of a+ and a- is such that 

[ ]a a− + =, 1     13-4 

and  

H N= +
�
�� ����

ω 1

2
.    13-5 

Clearly if we know the eigenvalues of the operator N we will also know the eigenvalues of H. 

Therefore let us assume that  λ  is an eigenfunction of N with the eigenvalue λ, then 

N λ λ λ=      13-6. 

Taking the inner product of Eq. 13-6 with λ  yields 

λ λ λ λ λ λ λ= = = ≥+ −N a a a a 0     13-7 

where we have used the Hermitian properties of a+ and a-. According to Eq 13-7 there must exist a 

smallest eigenvalue λο. From Eq’s  13-3, 13-4 and 13-6 we get 

( ) ( )Na a a a a a a a+ + − + + + − += = + = +λ λ λ λ λ1 1    13-8 

and similarly 

   ( )Na− = −λ λ λ1 .      13-9 

In exactly the same way that we interpreted the raising and lowering operators acting on angular 

momentum states (Eq 11-34) we can understand Eq 13-8 and 13-9: if λ  is  an eigenstate of N with 

quantum number λ, then  a+ λ  and a− λ  are eigenstates of N with eigenvalues λ+1 and λ-1. 

Operating on the state with lowest eigenvalue λ0 with a- must give zero  
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a− =λ 0 0  

thus 

N a aλ λ0 0 0= =+ −
.     13-10 

Equations 13-8 and 13-9 together with Eq 13-10 imply that the eigenvalues of N are given by 

N n n n= ,  n = 012, , ,�    13-11 

The eigenvalues of the Hamiltonian are then given by 

E nn = +
�
ω( )

1

2
 

allowing us to place the following interpretation on the operator N. N is called the number operator 

because it counts the number of quanta of energy �ω  in our oscillator system. The operators a+ and 

a- acting on the states raise and lower the number of quanta in the system. They are called creation 

and annihilation operators. 

13.2 The Vacuum 

The lowest energy state λ 0 0=  is termed the vacuum state and is the state with no quanta in it. 

Note that the vacuum is not “void” - the lowest energy state has a vacuum energy  of 
1

2

�
ω .  

13.3  Annihilation and Creation Operators 

The annihilation and creation operators a+ and a- deserve a little more discussion. Since the effect of 

a+ is to create an extra quantum 

a n c nn
+ += + 1     13-12 
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and similarly  

a n c nn
− −= −1      13-13 

Taking the Hermitian conjugates of Eq 13-12 gives: 

n a c nn
− += + 1  

i.e. 

( ) ( )
( ) ( )

n a a n n N n c n n c n

n a a n c n n c n

n n

n n

− + + +

+ − − −

= + = + + = = +

= − − = =

1 1 1 1

1 1

2 2

2 2
 13-14 

which means that we can write formally 

a n n n

a n n n

+

−

= + +

=

1 1
     13-15 

We have seen for the harmonic oscillator how we can create and destroy particles of a particular 

energy. This clearly lends itself to detailed calculations of nature in which the number of particles is 

not necessarily conserved.  All fields are represented by a superposition of annihilation and creation 

operators for particles of particular energy and momentum. 

13.4 Problems 

13.1 Prove the commutation relation Eq 13-4. 

 
13.2 If x and p are the position and momentum operators of a one dimensional harmonic 
oscillator  the Hamiltonian may be written 

H
p

m

m x= +
2 2 2

2 2

ω
. 

 If we define the operators 
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a
m

x
ip

m

a
m

x
ip

m

= +

= −

ω
ω

ω
ω

2 2

2 2

� �

� �
†

 

  

 i) show that [ , ]a a† = 1        

 also show  that if N a a= †  then 
 
 ii) Na a N= −( )1         

 iii) Na a N† †= +( )1 .        

  
 iv)  If the eigenvalues of N are n and the corresponding normalized eigenstates 

n show   that with an appropriate choice of phase 

a n n n

a n n n

= −

= + +

1

1 1†
      

 v)  Express x2  in terms of a and a† and use first order perturbation theory to calculate 
and   expression for the shift in the nth state energy due to an additional term αx2 in the 
  Hamiltonian.         
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14 Locality and Non-Locality in 
Quantum Mechanics 

For the precursor to this lecture please see the following URL: 

http://www.science-spirit.org/nonlocality/nonlocal.html 

We now wish to investigate in a quantitative fashion the non-local features of the wavefunction. In 

order to do this we will show how specific predictions can be made that show a distinct difference 

between local and non-local theories. The method for doing this outlined below is due to John Bell 

and is one of the most important pieces of Classical Quantum Mechanics to have been discovered in 

the last 25 years.   

14.1 Bell’s Inequality 

 

Let us suppose that we have two spin 1/2 particles produced in a singlet state. Further  let us assume 

that these two particles move apart. At points A and B along the trajectory of these particles we can 

put two Stern-Gerlach magnets capable of measuring the spin-projection of the electrons along 

arbitrary directions a, b (see Fig. 15-1). 
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A B

a b

 

Figure 14-1 

  

We know from the last chapter that when we measure spin at A this will affect our outcome at B. 

There are two possible interpretations. First that  there is a non-local effect, that is,  the measurement 

at A directly effects what is happening at B through a mysterious action-at-a-distance mechanism. 

Second  the measurement of the particle at  A  reveals something about the particle at B - i.e. we are 

uncovering a hidden variable. 

Let us work with the second assumption that there is a hidden variable, λ, which contains the 

information about the orientation of the spin. The probability of measuring spin up (+1) or spin down 

(-1) along any particular direction will given by a function of the orientation of the Stern-Gerlach 

Magnets and the variable λ i.e. the measurements of the spins are given by 

A a B b( , ) , ( , )λ λ= ± = ±1 1     14-1 

Now since we know that if we measure a spin up in one magnet (along a specific direction) if the 

other magnet is set to same direction we have to measure spin down this means that 

A a B a( , ) ( , )
� �

λ λ= − .     14-2 

The probability of measuring a particular pair of values for the spin is given by the product of the two 

probability functions integrated over the density of the hidden variable λ, 

( ) ( )P a b d A a B b d A a A b( , ) ( , ) ( , ) ( , ) ( , )
�� � � � �

= = −
� �

ρ λ λ λ λ ρ λ λ λ λ    14-3 
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where we have used Eq 15-1. The  “trick: is to introduce a third direction c. If this is done we can 

compute the difference between two probabilities 

( ) [ ]P a b P a c d A a A b A a A c( , ) ( , ) ( , ) ( , ) ( , ) ( , )
�� �� � � � �

− = − −
�

ρ λ λ λ λ λ λ    14-4 

which may be written as 

 ( ) ( )[ ]1),(),(),(),(),(),( −=− � λλλλλλρ cAbAbAaAdcaPbaP ��������   14-5 

Now since 

A a A b( , ) ( , )
� �

λ λ ≤ 1       14-6 

Equation 15-4 becomes an inequality 

( ) [ ] ( ) 1,1),(),(),(),( −−≥−≥− � cbPcAbAdcaPbaP �������� λλλλρ    14-7 

i.e. 

( )1+ ≥ − +P b c P a b P a c
�� �� ��
, ( , ) ( , )       14-8 

 

Now in classical quantum mechanics there exists a well tested prediction for P(a,b) 

P a b ab a b( , ) cos cos( )= − = − −θ θ θ      14-9 

So Equation 15-7 becomes 

 

1− − ≥ − +cos( ) cos cosθ θ θ θb c c b     14-10 

 

Where we have defined angles relative to a. Let us take the special case where both angles are small 

then 
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( )θ θ θ θb c c b−
≥ −

2 2 2

2 2 2

     14-11 

which on further expansion yields 

θ θb c≥       14-12 

Clearly this is not true for all angles so there is a clash between a Hidden variable theory and the 

predications from Standard Quantum Mechanics. 

14.2 Problems 

15-1 Prove Equation 15-12. 

15-2 Prove Equation 15-9 
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