Particle discoveries; 1

Overview

- Discovery of fundamental particles in the last 100 years
- See how possibility of discovery goes hand in hand with available energy and technology

This lecture:

Resonances

Fundamental particles → 1970

Uncertainty principle

Heisenberg Uncertainty Relation:

$$\Delta E \Delta t = h/2\pi$$

In particle physics:

 $\Delta t = lifetime of particle (\tau)$

 ΔE = width of particle

If particle at rest: $mc^2 = E$

 $\Delta E \Rightarrow \Delta m$

(how well we know the mass)

Uncertainty principle

Resonances

- Resonances are excited states of mesons and baryons
- Most hadrons are resonances

resonance	$I(J^{PC})$
$\rho^0(769)$	1(1**)
$f_2^0 (1275)$	0(2++)
$\rho^0(1700)$	1(3**)

e.g. excited π^0 states

- Resonances decay by the strong force
 - Short lifetime (Δt small, ~10⁻²³ s ⇒ width large)
- Usually infer presence of resonance by reconstructing and combining decay products

Resonances

 $\sigma(E) \sim \Gamma^2$ $(E - Mc^2)^2 + \Gamma^2/4$

Described by **Breit Wigner** formula

- Width $\Gamma = \Delta E \sim 1 / \tau$
- σ(E) is cross-section for production at given
- M is central mass of particle

Γ/2 Mc²

Section 5.3, Martin & Shaw

Resonances

Identified by looking for:
invariant mass "bumps"
increases in production
cross-section with
rising CM energy

We will see examples in history of particle discovery

Overview

- Discovery of fundamental particles in the last 100 years
- See how possibility of discovery goes hand in hand with available energy and technology

This lecture:

Resonances

Fundamental particles → 1970

Proton & neutron

Protons:

1919 Rutherford;

Realised that nucleus contained small positively charged scattering centres

Neutrons:

1931 Chadwick:

Bombarded Be foil with α particles: neutral particles produced.

Not γ ; prob. of interaction too large

Detection ability dependant on probing power (particle energy)

Electron, muon, neutrinos

Electron: J.J. Thomson 1897

Cathode tubes

(nb. Also xrays $\rightarrow \gamma$)

Muon: Cosmic rays 1937

Very penetrating. 200 electron mass particle in cosmic rays

No strong interactions

collision

More energetic probes

More massive particles

found

Neutrinos: Reines and Cowan 1956

Nuclear reactor produces anti-neutrinos

Interact with proton detector : $v_e + p \rightarrow e^+ + n$

 $e^++ e^- \rightarrow \gamma$ (detect γ with scintillator)

Mesons

Pions: cosmic rays 1946

$$\pi^+ \rightarrow \mu^+ + \nu \mu$$

$$\mu^+ \rightarrow e^+ + \nu e + \nu \mu$$

Kaons: cosmic rays

1944 K+, 1947 K⁰

Interact weakly; "strangely" long lifetime cf. charged pions

Advent of colliders;

Loads of mesons and baryons!

__

N 25+1 L y	تهجر	$\mathbf{r}\underline{\mathbf{d}}$, $\mathbf{r}\underline{\mathbf{d}}$, $\mathbf{d}\underline{\mathbf{d}}$	$a\overline{a}_{1}$, $d\overline{d}_{1}$, $a\overline{a}_{2}$ I=0	Æ I = 0	5 I = 0	āo, ād I = 1/3		eā, eā = 1/2	ته 0 = ۱	$\bar{b}a_1\bar{b}d$ $I=1/2$, =	
1 150	g-+	9E	79. T	Ψja		K	D		D,	В	B.	
1 851	ı—	ρ	ω,φ	$J/\psi(1S)$	T(18)	K*(842)	D	(2010)	D,	₽*	H,	
1 1 17	1+-	ė ₁ (1235)	h _i (1170), b _i (1340)	$b_c(11^{\circ})$.Kr _{t P} †	$D_1(2420)$		$D_{AL}(2536)$			
1 * P ₀	g++	c ₀ (1450)*	$f_{0}(1370)^{*}$, $f_{0}(1710)^{*}$	$\chi_{c} \epsilon^{(1P)}$	72e(1.P)	K(1430)						
1 ⁸ P ₁	1++	ag (1260)	f ₁ (1288), f ₁ (1420)	$\chi_{c1}(1P)$	ж (1.Р)	EC±A [†]						
1 8 1/2	2++	42 (1320)	f2(1270), f2(1525)	$\chi_{c2}(1P)$	жа(1.Р)	K2(1480)	D	(2460)				
$1^{+}D_{2}$	2-+	v₂(1870)	ա(1645), ա(1870)			$K_2(1770)$						
1 * D 1]—	ρ(1700)	ω(1680)	ψ(3770)		K*(1680)‡		Arrrghh!!!				
1 * D2	<u></u>					$K_2(1820)$		Too				
1 8 Pa	a—	ρ ₈ (1600)	$\omega_{B}(1870), \phi_{B}(1880)$			R2(1790)		Too many fundamenta				
1 a r ₄	4++	a ₄ (2040)	f4(2080), f4(2220)			$K_4^{+}(2048)$		particles				
2 150	a -+	π(1 300)	η(1295), η(1440)	$\eta_{c}(2S)$		K(1461)						
2 *51	<u>ı—</u>	ρ(1450)	ω(1420), φ(1680)	$\psi(2S)$	T(2S)	K*(1410)‡						
2 8 P2	2++		f2(1810), f2(2010)		72a(2P)	K ₂ *(1990)						
3 ¹ 5 ₀	g—+	π(1800)	ŋ(17 8 1)			K(1830)						

Quark Model

Express particles as combinations of **u,d,s type quarks** → patterns

"Quarks"; "Three quarks for Muster Mark"

Discovery of Ω (sss) baryon

1964:

Brookhaven, bubble chamber experiment

Kaon beam incident on proton target

-We worked out before how energetic the kaon beam must be to create an omega;

-In fact kaon beam is 5 GeV

Discovery confirmed multiplet and quark models of particles

$$\mathbf{K}^{\text{-}}$$
 + \mathbf{p} \rightarrow $\Omega^{\text{-}}$ + \mathbf{K}^{0} + $\mathbf{K}^{\text{+}}$ $\Omega^{\text{-}}$ \rightarrow Ξ^{0} + $\pi^{\text{-}}$

Review

- Concept of resonances
 - Semi-bound excited hadron states
 - Strong force ⇒ short lifetime ⇒ measureable width
 - Detect from reconstructing decays;
 characteristic mass, shape from Breit Wigner
- Particle history
 - $-p,n,e,\mu,\nu,mesons \rightarrow \Omega$

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.