Kinematics: 1

Important concepts

Lab frame:

- Where measurements are made

CM / rest frame:

- Where particle/system is at rest

Invariant mass:

Particle mass in every frame

CM energy:

Invariant mass of system of particles

Frames

We can view collisions from many standpoints ("frames").

Observer in laboratory

Observer in centre of collision

In HEP

We detect particles in lab frame

We deduce their properties in CM frame

LAB FRAME

Relating frames

Consider particle p in lab and CM frame: CM frame at rest (black) Lab frame moves with velocity v (red) Frames coincide at t=0.

Classically:

(x,y,z) in cm frame (x',y',z') in lab frame x' = x - vt y' = y, z' = zt' = t

In HEP particles move near speed of light; use special relativity instead.

Four vectors

Compact notation for defining position (+ time), energy + momentum.

- Particle position; (ct,x,y,z)
- Particle energy/momentum; (E,cp_x,cp_y,cp_z)

```
Magnitude of vector (a,b,c,d): L^2 = a^2 - b^2 - c^2 - d^2
- invariant between frames
eg. Position: c^2t^2 - x^2 - y^2 - z^2
or energy-momentum: E^2 - c^2px^2 - c^2py^2 - c^2pz^2
```

Four vectors

In 3D; $L^2 = x^2+y^2+z^2$ invariant under rotation (ie. x,y,z change, but L doesn't)

In special relativity; must include fourth dimension

Rules for relating frames

Position:

$$x' = \gamma(x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \gamma(t - vx/c^{2})$$

Exercise: prove c²t²-x²-y²-z² invariant

$$\beta = v/c$$

$$\gamma = 1/\sqrt{(1 - \beta^2)}$$

Rules for relating frames

Energy/momentum:

$$(E',cp_x',cp_y',cp_z')$$
 lab frame (E,cp_x,cp_y,cp_z) cm frame

$$p_x' = \gamma(p_x - vE/c^2)$$

 $p_y' = p_y$
 $p_z' = p_z$
 $E' = \gamma(E-vp_x)$

Exercise: prove $E^2-c^2p_x^2-c^2p_y^2-c^2p_z^2$ invariant

Example: detecting μ in cosmic rays

Muons are typically produced in cosmic rays as protons hit the upper atmosphere. Would we detect them on the Earth's surface?

Invariant mass

Follows from energy-momentum 4 vector.

Eg. Single particle.

invariant =
$$E^2 - c^2p^2$$
 (general case: all frames)

$$= m^2 c^4$$
 (rest frame; p²=0)

For single particle invariant mass = rest mass

- characteristic of particle type

Invariant mass/ CM energy

```
Eg.(2) System of > 1 particle.
invariant =(\Sigma E)^2 - c^2(\Sigma p)^2 (combined 4 vector)
```

```
General solution: (E1 + E2)^2 - c^2(p1 + p2)^2
= E1^2 + E2^2 + 2.E1E2 - c^2p1^2 - c^2p2^2 - 2c^2p1.p2
= m1^2c^4 + m2^2c^4 + 2E1E2 - 2c^2p1.p2
.... Valid for any frame ... but horrible maths!
```

Often easier to consider rest frame: $= \Sigma E^2$ (rest frame; $\Sigma p^2 = 0$) Special case if both particles at rest = $(m1 + m2)^2 c^4$

If > 1 particle, invariant mass called CENTRE-OF-MASS ENERGY

Summary

- Important HEP concepts:
 - Centre of mass frame, lab frame
 - Invariant mass
 - CM energy
- Special relativity reminder:
 - How to relate position between frames
 - How to relate energy and momentum between frames

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.