{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "mean = 5.44 mode = 5 median = 5\n" ] } ], "source": [ "########################################################################\n", "########################################################################\n", "# \n", "# MeanModeMedian.py \n", "# write a function to return the mean, mode and median of the following \n", "# numbers\n", "#\n", "########################################################################\n", "########################################################################\n", "\n", "# 1000 numbers taken from a Poisson distibution\n", "numbers = [ 5, 5, 6, 5, 3, 3, 7, 5, 4, 4, 3, 4, 5, 3, 3, 2, 2, 7, 7,\n", " 7, 5, 7, 10, 3, 2, 2, 6, 7, 10, 6, 7, 6, 5, 3, 5, 4, 4, 4, 2, 7, 6, 6,\n", " 5, 11, 5, 7, 3, 9, 5, 2, 5, 12, 7, 8, 6, 2, 1, 5, 5, 6, 5, 8, 4, 6, 4,\n", " 5, 4, 5, 5, 5, 7, 4, 4, 2, 2, 6, 5, 6, 7, 3, 8, 8, 10, 6, 7, 6, 6, 3,\n", " 5, 9, 2, 4, 6, 7, 7, 4, 5, 4, 8, 5, 5, 4, 7, 8, 4, 10, 4, 1, 9, 7, 10,\n", " 7, 1, 8, 7, 6, 1, 11, 6, 5, 6, 3, 7, 3, 4, 6, 6, 4, 7, 5, 6, 2, 2, 7,\n", " 3, 8, 4, 5, 8, 4, 5, 2, 7, 4, 7, 7, 4, 4, 7, 1, 3, 11, 3, 4, 2, 5, 4,\n", " 4, 4, 4, 8, 10, 8, 2, 4, 6, 0, 7, 4, 5, 8, 6, 6, 4, 5, 8, 8, 6, 5, 8,\n", " 11, 4, 6, 6, 2, 5, 2, 5, 2, 6, 4, 9, 7, 10, 6, 2, 11, 8, 5, 1, 4, 5,\n", " 3, 5, 4, 3, 8, 0, 6, 13, 5, 3, 8, 3, 6, 8, 2, 4, 4, 4, 4, 2, 2, 6, 5,\n", " 7, 2, 6, 7, 2, 4, 6, 5, 4, 12, 4, 9, 1, 12, 5, 6, 11, 6, 8, 9, 2, 9,\n", " 3, 5, 10, 7, 8, 6, 4, 7, 6, 7, 5, 4, 2, 8, 4, 1, 8, 5, 2, 7, 5, 8, 4,\n", " 6, 3, 2, 6, 4, 3, 7, 2, 8, 6, 6, 7, 4, 7, 5, 4, 7, 3, 4, 7, 7, 3, 5,\n", " 4, 6, 7, 9, 5, 8, 2, 4, 6, 11, 7, 9, 2, 3, 2, 6, 6, 7, 7, 5, 4, 4, 3,\n", " 5, 4, 4, 5, 7, 5, 2, 5, 4, 3, 6, 5, 5, 5, 7, 3, 7, 4, 7, 4, 3, 4, 7,\n", " 3, 9, 3, 6, 6, 7, 4, 2, 3, 7, 5, 5, 6, 4, 6, 9, 3, 4, 2, 3, 4, 9, 8,\n", " 5, 7, 8, 6, 3, 1, 5, 5, 1, 6, 6, 6, 6, 6, 5, 5, 10, 2, 4, 2, 5, 8, 4,\n", " 7, 6, 4, 3, 3, 7, 6, 3, 8, 4, 5, 6, 4, 2, 9, 7, 4, 9, 4, 7, 4, 1, 9,\n", " 2, 6, 5, 7, 3, 5, 4, 8, 4, 9, 5, 9, 6, 5, 4, 4, 6, 6, 4, 9, 9, 7, 1,\n", " 4, 5, 10, 6, 7, 4, 4, 10, 3, 3, 3, 3, 5, 4, 6, 4, 11, 2, 10, 4, 4, 7,\n", " 3, 10, 5, 5, 10, 5, 8, 7, 5, 6, 5, 6, 7, 3, 5, 10, 9, 3, 4, 3, 5, 5,\n", " 9, 6, 4, 4, 8, 8, 5, 6, 5, 4, 3, 10, 7, 6, 7, 5, 3, 8, 5, 7, 8, 2, 9,\n", " 11, 5, 3, 4, 5, 4, 4, 8, 2, 5, 3, 1, 2, 5, 6, 11, 4, 6, 3, 5, 7, 9, 5,\n", " 10, 4, 7, 10, 5, 4, 1, 8, 3, 8, 5, 6, 4, 5, 2, 6, 6, 7, 11, 6, 6, 4,\n", " 6, 8, 4, 3, 5, 4, 5, 3, 8, 8, 3, 5, 7, 9, 7, 5, 8, 0, 8, 3, 10, 3, 8,\n", " 9, 7, 4, 4, 1, 3, 5, 3, 5, 4, 3, 6, 8, 3, 3, 7, 2, 4, 9, 8, 4, 8, 3,\n", " 6, 7, 7, 5, 4, 5, 3, 4, 3, 2, 2, 3, 5, 11, 6, 1, 5, 8, 3, 6, 2, 7, 4,\n", " 5, 6, 6, 4, 5, 2, 4, 6, 5, 4, 9, 6, 2, 9, 8, 4, 5, 7, 12, 1, 7, 7, 5,\n", " 7, 5, 5, 10, 8, 3, 7, 2, 7, 3, 8, 4, 3, 8, 4, 7, 6, 5, 4, 7, 3, 3, 4,\n", " 5, 5, 5, 4, 7, 0, 7, 5, 3, 9, 4, 8, 5, 2, 7, 8, 8, 5, 4, 11, 8, 5, 4,\n", " 3, 4, 4, 3, 3, 3, 8, 2, 8, 6, 9, 4, 7, 8, 5, 4, 6, 5, 5, 4, 6, 6, 7,\n", " 5, 8, 6, 7, 7, 7, 6, 5, 6, 2, 6, 8, 6, 5, 5, 4, 9, 9, 5, 5, 6, 12, 8,\n", " 6, 7, 0, 7, 6, 7, 3, 6, 4, 4, 8, 11, 5, 3, 7, 6, 6, 7, 5, 2, 8, 7, 6,\n", " 1, 10, 5, 6, 8, 3, 5, 3, 6, 2, 9, 6, 5, 7, 6, 7, 5, 12, 5, 1, 5, 13,\n", " 9, 4, 5, 3, 3, 11, 8, 4, 7, 7, 6, 6, 6, 5, 6, 6, 3, 2, 5, 5, 8, 10, 8,\n", " 6, 4, 9, 6, 2, 1, 7, 5, 5, 7, 5, 4, 5, 5, 4, 5, 5, 6, 4, 3, 6, 6, 6,\n", " 4, 7, 6, 6, 3, 2, 4, 5, 3, 6, 8, 14, 4, 4, 6, 2, 6, 5, 5, 2, 1, 6, 9,\n", " 5, 8, 7, 4, 6, 5, 5, 4, 5, 6, 10, 3, 1, 6, 3, 7, 5, 12, 8, 6, 7, 4, 7,\n", " 7, 6, 8, 1, 5, 4, 7, 8, 4, 8, 8, 4, 10, 3, 6, 5, 6, 4, 4, 2, 6, 4, 3,\n", " 6, 8, 6, 11, 2, 8, 3, 2, 9, 6, 2, 7, 5, 8, 6, 8, 5, 3, 3, 7, 8, 5, 5,\n", " 9, 6, 10, 3, 9, 4, 11, 9, 8, 4, 6, 3, 4, 7, 5, 7, 8, 4, 5, 5, 7, 3, 2,\n", " 7, 3, 4, 5, 6, 4, 10, 5, 6, 6, 4, 5, 13, 3, 5, 6, 7, 4, 3, 3, 6, 8,\n", " 10, 6, 4, 11, 2, 3, 9, 7, 3, 5, 3, 4, 8, 3, 3, 5, 7, 3, 5, 2, 5, 8, 2,\n", " 5, 4, 6, 10, 7, 5, 7, 4, 5, 9, 4, 0, 3, 3, 4, 9, 4, 7, 1, 8, 4, 6]\n", "\n", "# the mean = 5.44\n", "# the mode = 5\n", "# the median = 5\n", "\n", "def mmm(numbers):\n", " \"\"\"Return the mean, mode and median of a list of numbers\"\"\"\n", " mean = float(sum(numbers))/len(numbers) # float is necessary as python2 does integer division...\n", " # fill in a dictionary where the key is each value in n and count the entries\n", " entries = dict()\n", " for i in numbers:\n", " if i in entries: # is there already this value\n", " entries[i] += 1 # increment it\n", " else: # if not create it\n", " entries[i] = 1 # set first value to 1\n", " maxEntry = 0\n", " mode = 0\n", " # note need iteritems() below if using python2\n", " for k,v in entries.items(): # k = key, i.e. number from n, v=value i.e. count of number\n", " if v > maxEntry:\n", " maxEntry = v\n", " mode = k\n", " nSort = numbers.copy() # must \"deep copy\" numbers to avoid changing the list\n", " nSort.sort()\n", " median = nSort[int(len(nSort)/2)] # int as python3 does float division...\n", " return mean,mode,median\n", "\n", "mean,mode,median = mmm(numbers)\n", "print(\"mean = {:5.3} mode = {} median = {}\".format(mean,mode,median))\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD8CAYAAAB3u9PLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFLFJREFUeJzt3X+QXeV93/H3J5JF7LTG/JBTIsmRUtS4ArdyEAqtx8zU\nFEcUGzFTsEWpDS0T1ZPQpm3iWjQTZaLaHTHplCZT6lgxP21smZFDvVPkyjTY6UwbqBasAIISL0JF\nkkmRAWM3NmCFb/+4jzzXl5X2rLS7d1d6v2bu7DnPeZ7nfo9mtZ8959xzNlWFJEk/NuwCJEmzg4Eg\nSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEnN/GEXMBlnnnlmLV26dNhlSNKc8tBDD32r\nqhZO1G9OBcLSpUsZHR0ddhmSNKck+T9d+nnKSJIEGAiSpMZAkCQBHQMhyZokTyYZS7JhnO0XJnk4\nyaEkV/S1/50ku/peLye5vG27PcnTfdtWTt1uSZIma8KLyknmATcDFwP7gZ1JRqrq8b5uzwDXAr/W\nP7aqvgqsbPOcDowBX+nr8tGq2nY8OyBJmhpdPmW0Ghirqj0ASbYCa4EfBkJV7W3bXjvKPFcAX66q\n7x1ztZKkadPllNEiYF/f+v7WNlnrgM8PtH0iySNJbkpyyniDkqxPMppk9ODBg8fwtpKkLmbkonKS\ns4B3ADv6mm8A3g6cD5wOfGy8sVW1papWVdWqhQsnvK9CknSMugTCAWBJ3/ri1jYZHwDuqaofHG6o\nqmer5xXgNnqnpiRJQ9LlGsJOYHmSZfSCYB3wDyb5PlfROyL4oSRnVdWzSQJcDjw2yTl1glu64d4p\nn3Pv5kunfE7pRDHhEUJVHQKup3e65wng7qranWRTkssAkpyfZD9wJfCpJLsPj0+ylN4Rxh8NTH1X\nkkeBR4EzgY8f/+5Iko5Vp2cZVdV2YPtA28a+5Z30TiWNN3Yv41yErqr3TKZQSdL08k5lSRJgIEiS\nGgNBkgQYCJKkxkCQJAEGgiSpMRAkSYCBIElqDARJEmAgSJKaTo+ukI5mOh5CJ2nmeYQgSQIMBElS\nYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVLTKRCSrEnyZJKxJBvG2X5hkoeTHEpy\nxcC2v0iyq71G+tqXJXmwzfmFJAuOf3ckScdqwkBIMg+4GbgEWAFclWTFQLdngGuBz40zxferamV7\nXdbXfiNwU1WdDbwIXHcM9UuSpkiXI4TVwFhV7amqV4GtwNr+DlW1t6oeAV7r8qZJArwH2Naa7gAu\n71y1JGnKdQmERcC+vvX9ra2rH08ymuSBJId/6J8BfLuqDk00Z5L1bfzowYMHJ/G2kqTJmInHX/90\nVR1I8jPA/UkeBV7qOriqtgBbAFatWlXTVKMknfS6HCEcAJb0rS9ubZ1U1YH2dQ/wNeCdwPPAW5Ic\nDqRJzSlJmnpdAmEnsLx9KmgBsA4YmWAMAElOS3JKWz4TeBfweFUV8FXg8CeSrgG+NNniJUlTZ8JT\nRlV1KMn1wA5gHnBrVe1OsgkYraqRJOcD9wCnAe9P8ltVdQ7w14FPJXmNXvhsrqrH29QfA7Ym+Tjw\ndeCWKd87acB0/XW3vZsvnZZ5pZnU6RpCVW0Htg+0bexb3knvtM/guP8JvOMIc+6h9wkmSdIs4J3K\nkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwE\nSVJjIEiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCOgZCkjVJnkwylmTDONsvTPJwkkNJruhr\nX5nkj5PsTvJIkg/2bbs9ydNJdrXXyqnZJUnSsZg/UYck84CbgYuB/cDOJCNV9Xhft2eAa4FfGxj+\nPeDDVfWNJD8FPJRkR1V9u23/aFVtO96dkCQdvwkDAVgNjFXVHoAkW4G1wA8Doar2tm2v9Q+sqj/t\nW/5mkueAhcC3kSTNKl1OGS0C9vWt729tk5JkNbAAeKqv+RPtVNJNSU45wrj1SUaTjB48eHCybytJ\n6mhGLionOQv4DPCPqurwUcQNwNuB84HTgY+NN7aqtlTVqqpatXDhwpkoV5JOSl0C4QCwpG99cWvr\nJMmbgXuBX6+qBw63V9Wz1fMKcBu9U1OSpCHpEgg7geVJliVZAKwDRrpM3vrfA9w5ePG4HTWQJMDl\nwGOTKVySNLUmvKhcVYeSXA/sAOYBt1bV7iSbgNGqGklyPr0f/KcB70/yW1V1DvAB4ELgjCTXtimv\nrapdwF1JFgIBdgEfmeqdk2bK0g33Tsu8ezdfOi3zSuPp8ikjqmo7sH2gbWPf8k56p5IGx30W+OwR\n5nzPpCqVJE0r71SWJAEGgiSpMRAkSYCBIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKkxECRJ\ngIEgSWo6PdxOJ4bpeiKnpBODRwiSJMBAkCQ1BoIkCTAQJEmNgSBJAgwESVJjIEiSgI6BkGRNkieT\njCXZMM72C5M8nORQkisGtl2T5BvtdU1f+3lJHm1z/m6SHP/uSJKO1YSBkGQecDNwCbACuCrJioFu\nzwDXAp8bGHs68JvAzwOrgd9Mclrb/EngF4Hl7bXmmPdCknTcuhwhrAbGqmpPVb0KbAXW9neoqr1V\n9Qjw2sDYXwDuq6oXqupF4D5gTZKzgDdX1QNVVcCdwOXHuzOSpGPXJRAWAfv61ve3ti6ONHZRWz6W\nOSVJ02DWX1ROsj7JaJLRgwcPDrscSTphdQmEA8CSvvXFra2LI4090JYnnLOqtlTVqqpatXDhwo5v\nK0marC6BsBNYnmRZkgXAOmCk4/w7gPcmOa1dTH4vsKOqngW+k+SC9umiDwNfOob6JUlTZMJAqKpD\nwPX0frg/AdxdVbuTbEpyGUCS85PsB64EPpVkdxv7AvBv6IXKTmBTawP4JeDTwBjwFPDlKd0zSdKk\ndPp7CFW1Hdg+0Laxb3knP3oKqL/frcCt47SPAudOplhJ0vSZ9ReVJUkzw0CQJAEGgiSpMRAkSYCB\nIElqDARJEmAgSJIaA0GSBBgIkqTGQJAkAQaCJKnp9CwjScOxdMO90zLv3s2XTsu8mts8QpAkAQaC\nJKkxECRJgIEgSWoMBEkSYCBIkhoDQZIEGAiSpMZAkCQBHQMhyZokTyYZS7JhnO2nJPlC2/5gkqWt\n/eoku/peryVZ2bZ9rc15eNtbp3LHJEmTM2EgJJkH3AxcAqwArkqyYqDbdcCLVXU2cBNwI0BV3VVV\nK6tqJfAh4Omq2tU37urD26vquSnYH0nSMepyhLAaGKuqPVX1KrAVWDvQZy1wR1veBlyUJAN9rmpj\nJUmzUJdAWATs61vf39rG7VNVh4CXgDMG+nwQ+PxA223tdNFvjBMgkqQZNCMXlZP8PPC9qnqsr/nq\nqnoH8O72+tARxq5PMppk9ODBgzNQrSSdnLoEwgFgSd/64tY2bp8k84FTgef7tq9j4Oigqg60r98F\nPkfv1NTrVNWWqlpVVasWLlzYoVxJ0rHoEgg7geVJliVZQO+H+8hAnxHgmrZ8BXB/VRVAkh8DPkDf\n9YMk85Oc2ZbfALwPeAxJ0tBM+AdyqupQkuuBHcA84Naq2p1kEzBaVSPALcBnkowBL9ALjcMuBPZV\n1Z6+tlOAHS0M5gH/Dfj9KdkjSdIx6fQX06pqO7B9oG1j3/LLwJVHGPs14IKBtj8HzptkrZKkaeSd\nypIkwECQJDWdThlp5k3XH1eXpCPxCEGSBBgIkqTGQJAkAQaCJKkxECRJgIEgSWoMBEkSYCBIkhoD\nQZIEGAiSpMZAkCQBBoIkqTEQJEmAgSBJagwESRJgIEiSGgNBkgQYCJKkplMgJFmT5MkkY0k2jLP9\nlCRfaNsfTLK0tS9N8v0ku9rr9/rGnJfk0Tbmd5NkqnZKkjR5EwZCknnAzcAlwArgqiQrBrpdB7xY\nVWcDNwE39m17qqpWttdH+to/CfwisLy91hz7bkiSjleXI4TVwFhV7amqV4GtwNqBPmuBO9ryNuCi\no/3Gn+Qs4M1V9UBVFXAncPmkq5ckTZkugbAI2Ne3vr+1jdunqg4BLwFntG3Lknw9yR8leXdf//0T\nzClJmkHzp3n+Z4G3VdXzSc4D/nOScyYzQZL1wHqAt73tbdNQoiQJuh0hHACW9K0vbm3j9kkyHzgV\neL6qXqmq5wGq6iHgKeCvtf6LJ5iTNm5LVa2qqlULFy7sUK4k6Vh0CYSdwPIky5IsANYBIwN9RoBr\n2vIVwP1VVUkWtovSJPkZeheP91TVs8B3klzQrjV8GPjSFOyPJOkYTXjKqKoOJbke2AHMA26tqt1J\nNgGjVTUC3AJ8JskY8AK90AC4ENiU5AfAa8BHquqFtu2XgNuBNwJfbi9J0pB0uoZQVduB7QNtG/uW\nXwauHGfcF4EvHmHOUeDcyRQrSZo+3qksSQIMBElSYyBIkoDpvw9B0iy0dMO9Uz7n3s2XTvmcmlke\nIUiSAANBktQYCJIkwECQJDUGgiQJMBAkSY2BIEkCDARJUmMgSJIAA0GS1BgIkiTAQJAkNQaCJAkw\nECRJjYEgSQIMBElSYyBIkoCOfzEtyRrgd4B5wKeravPA9lOAO4HzgOeBD1bV3iQXA5uBBcCrwEer\n6v425mvAWcD32zTvrarnjnuPJA3FdPwVNvAvsc2kCQMhyTzgZuBiYD+wM8lIVT3e1+064MWqOjvJ\nOuBG4IPAt4D3V9U3k5wL7AAW9Y27uqpGp2hfJEnHocspo9XAWFXtqapXga3A2oE+a4E72vI24KIk\nqaqvV9U3W/tu4I3taEKSNMt0CYRFwL6+9f386G/5P9Knqg4BLwFnDPT5+8DDVfVKX9ttSXYl+Y0k\nmVTlkqQpNSMXlZOcQ+800j/pa766qt4BvLu9PnSEseuTjCYZPXjw4PQXK0knqS4XlQ8AS/rWF7e2\n8frsTzIfOJXexWWSLAbuAT5cVU8dHlBVB9rX7yb5HL1TU3cOvnlVbQG2AKxataq67dbMma4LaZI0\n07ocIewElidZlmQBsA4YGegzAlzTlq8A7q+qSvIW4F5gQ1X9j8Odk8xPcmZbfgPwPuCx49sVSdLx\nmDAQ2jWB6+l9QugJ4O6q2p1kU5LLWrdbgDOSjAH/EtjQ2q8HzgY2tmsFu5K8FTgF2JHkEWAXvSOM\n35/KHZMkTU6n+xCqajuwfaBtY9/yy8CV44z7OPDxI0x7XvcyJUnTzTuVJUmAgSBJagwESRLQ8RqC\nJA2Lz0iaOR4hSJIAA0GS1BgIkiTAQJAkNQaCJAkwECRJjYEgSQIMBElSYyBIkgADQZLUGAiSJMBA\nkCQ1PtxO0knJh+a9nkcIkiTgJDpCmK7fBiTpROERgiQJOImOECRpJkzH2YiZui7R6QghyZokTyYZ\nS7JhnO2nJPlC2/5gkqV9225o7U8m+YWuc0qSZtaEgZBkHnAzcAmwArgqyYqBbtcBL1bV2cBNwI1t\n7ApgHXAOsAb4T0nmdZxTkjSDuhwhrAbGqmpPVb0KbAXWDvRZC9zRlrcBFyVJa99aVa9U1dPAWJuv\ny5ySpBnUJRAWAfv61ve3tnH7VNUh4CXgjKOM7TKnJGkGzfqLyknWA+vb6v9L8uQxTnUm8K2pqWpG\nzKV6rXX6zKV651KtMIfqzY3HXetPd+nUJRAOAEv61he3tvH67E8yHzgVeH6CsRPNCUBVbQG2dKjz\nqJKMVtWq451npsyleq11+syleudSrTC36p2pWrucMtoJLE+yLMkCeheJRwb6jADXtOUrgPurqlr7\nuvYppGXAcuB/dZxTkjSDJjxCqKpDSa4HdgDzgFuraneSTcBoVY0AtwCfSTIGvEDvBzyt393A48Ah\n4Jer6i8Axptz6ndPktRVp2sIVbUd2D7QtrFv+WXgyiOM/QTwiS5zTrPjPu00w+ZSvdY6feZSvXOp\nVphb9c5Iremd2ZEknex8lpEkCThJAmGuPCYjyZIkX03yeJLdSX5l2DVNpN15/vUk/2XYtUwkyVuS\nbEvyv5M8keRvDbumI0nyL9r3wGNJPp/kx4ddU78ktyZ5LsljfW2nJ7kvyTfa19OGWWO/I9T72+17\n4ZEk9yR5yzBrPGy8Wvu2/WqSSnLmdLz3CR8Ic+wxGYeAX62qFcAFwC/P4loP+xXgiWEX0dHvAP+1\nqt4O/E1mad1JFgH/DFhVVefS++DFuuFW9Tq303scTb8NwB9W1XLgD9v6bHE7r6/3PuDcqvobwJ8C\nN8x0UUdwO6+vlSRLgPcCz0zXG5/wgcAcekxGVT1bVQ+35e/S+4E1a+/gTrIYuBT49LBrmUiSU4EL\n6X0ijqp6taq+Pdyqjmo+8MZ2X8+bgG8OuZ4fUVX/nd4nCvv1P8LmDuDyGS3qKMart6q+0p6sAPAA\nvfuhhu4I/7bQe07cvwKm7cLvyRAIc/IxGe2Jse8EHhxuJUf1H+h9g7427EI6WAYcBG5rp7g+neQn\nhl3UeKrqAPDv6P0m+CzwUlV9ZbhVdfKTVfVsW/4z4CeHWcwk/WPgy8Mu4kiSrAUOVNWfTOf7nAyB\nMOck+UvAF4F/XlXfGXY940nyPuC5qnpo2LV0NB/4OeCTVfVO4M+ZXac0fqide19LL8R+CviJJP9w\nuFVNTrsxdU58hDHJr9M7XXvXsGsZT5I3Af8a2DhR3+N1MgRCl0dvzBpJ3kAvDO6qqj8Ydj1H8S7g\nsiR76Z2Ge0+Szw63pKPaD+yvqsNHXNvoBcRs9HeBp6vqYFX9APgD4G8PuaYu/m+SswDa1+eGXM+E\nklwLvA+4umbvZ/D/Kr1fDv6k/X9bDDyc5K9M9RudDIEwZx6T0R4ZfgvwRFX9+2HXczRVdUNVLa6q\npfT+Te+vqln7W2xV/RmwL8nPtqaL6N1BPxs9A1yQ5E3te+IiZukF8AH9j7C5BvjSEGuZUJI19E55\nXlZV3xt2PUdSVY9W1Vuramn7/7Yf+Ln2PT2lTvhAaBeNDj8m4wng7ln8mIx3AR+i99v2rvb6e8Mu\n6gTyT4G7kjwCrAT+7ZDrGVc7itkGPAw8Su//6ay6qzbJ54E/Bn42yf4k1wGbgYuTfIPeUc7mYdbY\n7wj1/kfgLwP3tf9rvzfUIpsj1Doz7z17j5IkSTPphD9CkCR1YyBIkgADQZLUGAiSJMBAkCQ1BoIk\nCTAQJEmNgSBJAuD/AyyoV/cQHWvyAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "plt.hist(numbers,bins=max(numbers),normed=True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.3" } }, "nbformat": 4, "nbformat_minor": 2 }