Introdquction to
Programming using C++

Lecture Two: Further Syntax

Andrew Washbrook
aj wahep. ph.liv. ac. uk

Factor calculation example

I nt nyNunber, factor, nfactors = 0;
cout << "G ve ne a nunber\n";
cin >> nyNunber;
for (int factor = 1; factor < nyNunber; factor++) {
I f ((!(nyNunber % factor)) && (factor !'= 1)) {
cout << factor << " is a factor\n";

++nf act ors;

}

I f (!'nfactors) cout << nyNunmber << " is prine\n";

The for loop

e In the lifetime of the f or statement:

« theinitialisation statement is called only once.

« the action statement, along with all the statements within the
block, are repeatedly executed (or looped) until..

« the expression in the condition statement is false.

¥ v¥rwyvyy

Using the for loop

« The for loopis much more than a simple iterator.

« The Initialisation, the condition and the action parts
of the f or statement are all optional. Each of
these statements can also include multiple
expressions.

hell o worl d
hell o worl d
hell o worl d
hell o worl d

Increment Operators

factor++

« The ++ operator increments the value of an integer
variable by 1.

o This is the origin of the name “C++" |

« Similarly, the - - operator decrements the value of
an integer variable by 1.

Pre and Post-fix Operators

e These both increment the value of
the variable by 1 but they are not
Identical. factor ++

++nf act ors

« Both operators will have specific
uses in your code, know when to
use them and use them properly.

/] y assigned the value 2
/] y assigned the value 4

« The increment and decrement operators are operators. The
mathematical operators are operators.

Logical Operators

I f ((!'(nmyNunber % factor)) && (factor !'= 1))

o EXpressions are evaluated as false if their value is
zero, true if non-zero.

o A conditional statement can therefore consist of
multiple expressions with logical and, or and not
operators.

condition true

Simple statistics example

« We will now focus on the development of the small
statistical calculation program.

statsl. exe statsl. exe statsl. exe

> > >
1 2 3
5 5 5
6 6 6
4 4 4
5 0. 4

816497 5 6

> Referto stat s1. cpp

What Is the purpose of this program?

Purpose of the program

« The program performs one of the following routines:
calculate the mean of the input sample.

calculate the standard deviation of the input sample.
order the input sample from lowest to highest value.

Y Order
X=" _y2 2
X N ; A O = /\/X — X Lowest..Highest

Was this obvious from looking at the source code?

Purpose of the program

The function of the code is unclear to everyone
apart from the author.

« Comments are required to explain the purpose of the code.

« Annotations are not just required within the source code.
Explanatory text is required for the user of the program.

/] get a routine to run

\ 4

Adding whitespace
Source code needs spacing out to increase readability.

« The efficiency of the program does not decrease if whitespace
IS liberally used throughout the source code.

« Often useful to add line breaks to partition chunks of code.

/'l calculate x_ i - nean
Comments
Whitespace
l /] cal cul ate standard devi ati on

stats2.cpp

Variable Naming

Variable names bear no relation to their
role in the program.

« The purpose of the program can be interpreted much easier if the
variables have names that indicate their role within the program.

« In other words, descriptive names for variables enable other
developers to follow the "story" told by the code.

Some sample naming systems
Sum of val ue

Suntx Val ue

i Sum é -- i

Declaration Styles

All the variables are declared at the top of the program.

o In C++, a variable can be declared
anywhere within the body of the
/1 program provided the declaration
error precedes the definition.

« All variables can be declared at the top
of mai n() .

BUT..

« Itis preferable to declare variables close to where they are first
assigned a value.

o This seems too chaotic, why bother? This practice is introduced
to implement an important feature of C++.

The Lifetime of Objects

The lifetime of an object associated with a variable:
starts with the declaration of the variable.
ends with the termination of the containing block.

X =4
X =7
X =4

« The same variable name can be
repeated in different blocks.

o Qutside of the block the variable runs
out of scope.

« The variable has a scope local to the

. block in which it was declared in.
Useful variable names

Moved declarations away » St at s3. cpp
from the top of the main

program

Extending the sample size

The program can only handle a data
sample of a fixed size.

« We would now like the program to accept a sample of any
size.

« The first step is to add an option to dictate the size of the
SAMPIC.c....oeee et

:cout << "How big is the sanple?" << endl ;i
fint size; '
icin >> size:

« But thisis not enough to extend the sample size. The code has
been specifically written to process three values:

:sum = sanpl el + sanple2 + sanpl e3;
:float sunDivSize = (sum/ 3); ;

Extending the sample size

« Can a larger sample size be accommodated by simply adding
more variables to hold the new values?

Yes, but the idea is simply not scalable:

I f] oat sanpl eSwap; :
§|f (sanpl el > sanpl e2) {

sanpl eSwap = sanplel; : Sample size Statements
sanpl el = sanpl e2; : 3 13

: sanpl e2 = sanpl eSwap; :

B " LesER 4 22

Eif (sanpl el > sanpl e3) {E S 34

: sanpl eSwap = sanplel; 10 139

sanpl el = sanpl e3;
: sanpl e3 = sanpl eSwap
} : « The more pertinent question is, how does
:if (sanple2 > sanple3d) { : _ _
i sanpl eSwap = sanpl e2; the program cope with holding the values of
sanpl e2 = sanpl e3; the sample if the sample size is only to be

: sanple3 = sampleSwap; : decided at runtime?
:.} .. .

Arrays

An array is an ordered collection of objects of the same type.

An object stored in an array is referred to as an array element.

In the first example the array x holds 10 objects of type integer.
The first element in the array x is xX[0] and the last element is x[9].

Arrays are an integral part of most other computing languages but are
approached with suspicion in C++ (see Lecture 5).

Using for loops

« An array can be used to store a
data sample of any reasonable
sSize.

« However, this is still not the
final solution. The routines are
still limited to only accepting
three values.

/'l get sanple val ues

« Remove this dependency by E// cal cul ate sum of sanple
using a for loop to iterate : float sum = 0; ;
through all the data sample. i sum = sanpl el + sanple2 + sanpl e3; :

i .

/| cal cul ate sum of sanple

The Bubble Sort

« The for loop (and a nested for loop) will significantly improve the
current ordering routine.

Eif (sanpl el > sanpl e2) {E

i sanpl eSwap = sanplel; i
sanpl el = sanpl e2;

: sanpl e2 = sanpl eSwap;

tif (sanplel > sanple3) { i— *

. sanpl eSwap = sanplel; i

sanpl el = sanpl e3;

i sanpl e3 = sanpl eSwap;

i f (sample2 > sanple3) { i

: sanpl eSwap = sanpl e2: Routines can process a data

sanpl e2 = sanpl e3: sample of an unrestricted size.

: sanpl e3 = sanpl eSwap; E l
} .. . St at 34 Cpp

Error Catching

There is no way of handling incorrect input
by the user.

« If the input value for the routine is not in the range 1 to 3 the
code will compile but the program will not indicate an error back
to the user.

« Do not assume that everyone who uses your code will be

Competent!
> stats

What woul d you |ike to do?

1 - Calculate the nean

2 - Calculate the standard devi ati on
3 - Oder the sanple I owest first
4

How big is the sanple?

3

Sanmple 1. 4

Sanple 2: 5

Sanple 3: 6

>

Error Catching

« If the input routine value is not in the desired range then an
error message will not be reported back to the user.

« The solution is to replace the separate i f blocks with one
I1f -elseif -else block.

tif (request == 1) {

)

tif (request == 2) { —.

)
Eif (request == 3) {

3 R

Program protected
against basic user errors.

l

stat s5. cpp

Unnecessary Code

Code is unnecessarily verbose.

« It is good coding practice to attain a balance between
conciseness and clarity.

:// cal culate sumof sanple

I nt sanpl eCount ; :
: for (sanpl eCount = 1; sanpl eCount <= size; sanpleCount = sanpl eCount + 1) { i
: I nt sanpl eCount Array = sanpl eCount - 1; :
sum = sum + | sanpl e[sanpl eCount Arr ay] ;

« The less variables you have in an algorithm the less
potential mistakes you will make! Well, almost..

Self Assighed Operators

« Itis common coding practice to
apply a mathematical operation to a
/'l add 5 to x variable and then assign the result
// add 5 to x back to the same variable.

/[l add n to Xx
o In C++, the same result can be
achieved by applying self-assigned
operators.

« There are similar self-assigned operators for
the other mathematical operations.

l The source code is more
concise.

stat s6. cpp

Alternatives to the for loop

Simplify the iteration routines in the code

// cal cul ate sum of saerI e
for (int sanpl eCount = 1; sanpl eCount <= size; sanpl eCount ++) {
: sum += sanpl e[sanpl eCount - 1] ;

« The for loop Is much more versatile than just iterating
the value of a conditional variable by 1.

« There are other loops that provide the same result with
less syntactic baggage..

The while loops

« There are two other types of loops you can use in C++;

« Usethewhi | eloop if it is possible that the statement block may
never be executed.

« Usethedo.whil eloop if the statement block has to be executed at
least once.

Breaking the loop

o Itis possible to exit the whi | e, do. . whi |l e and f or
loops even if the condition is still true.

for (int i =0; i <5; i++) {
1f (1 =5 3) break;
cout << i << “\t”;

}

cout << “end\n”;

1 2 3 end 1
0

int x =0, y = 2
out of the | oop

while (x < 3) {

X++:
it (x ==vy) continue; o The break statement can be used to exit the
cout << x << At nearest enclosed loop.
} . .
cout << “end\n’: « The conti nue statement can be used to skip

remaining statements in the block.
1 3 end

« Thereis one other unspeakable way of getting out
of a loop..the ... statement.

lteration in a while loop

« How does the whi | e loop become an iteration tool?

P for (int sanpl eCount = 1; sanpl eCount <= size; sanpl eCount ++) { :

: sum = sum + sanpl e[sanpl eCount - 1] ;
8
/1 cal cul ate sum of sanple Used while loops for all
iteratons.
L stats’/.cpp

Has this improved the readability of the code? That is up to you..

