
Introduction to
Programming using C++

Lecture Two: Further Syntax

Andrew Washbrook
ajw@hep.ph.liv.ac.uk

Factor calculation example

int myNumber, factor, nfactors = 0;

cout << "Give me a number\n";

cin >> myNumber;

for (int factor = 1; factor < myNumber; factor++) {

 if ((!(myNumber % factor)) && (factor != 1)) {

 cout << factor << " is a factor\n";

 ++nfactors;

 }

}

if (!nfactors) cout << myNumber << " is prime\n";

The for loop

• In the lifetime of the for statement:

for (initialisation; condition; action) {
 statement 1;
 :
 statement n;
}

for (i = 1; i < 10; i = i+1)
{
 statement 1;
 :
 statement n;
}

• the initialisation statement is called only once.

• the action statement, along with all the statements within the
block, are repeatedly executed (or looped) until..

• the expression in the condition statement is false.

Variable i is initialised to 1.
Process the statements in the block.
Increment i by 1.
If i is less than 10 continue.

Using the for loop

• The for loop is much more than a simple iterator.

• The initialisation, the condition and the action parts
of the for statement are all optional. Each of
these statements can also include multiple
expressions.

for (i = 1, j = 0; i < 10;) {
 :
 i = i + 1
 :
}

for (;;) {
 cout << “hello world\n”;
}

hello world
hello world
hello world
hello world
:

loop iterator inside the block

infinite loop
multiple expressions in

initialisation

Increment Operators

• The ++ operator increments the value of an integer
variable by 1.

• This is the origin of the name “C++” !

• Similarly, the -- operator decrements the value of
an integer variable by 1.

factor++

i++ is the same as i = i + 1
i-- is the same as i = i - 1

Pre and Post-fix Operators

• These both increment the value of
the variable by 1 but they are not
identical.

• Both operators will have specific
uses in your code, know when to
use them and use them properly.

factor++
++nfactors

value of x assigned to y and x is increased by 1

post-increment operator

pre-increment operator

int x = 2, y = 0;
y = x++; // y assigned the value 2
y = ++x; // y assigned the value 4

value of x is increased by 1 and assigned to y

• The increment and decrement operators are unary operators. The
mathematical operators are binary operators.

Logical Operators

• Expressions are evaluated as false if their value is
zero, true if non-zero.

• A conditional statement can therefore consist of
multiple expressions with logical and, or and not
operators.

if ((!(myNumber % factor)) && (factor != 1))

if ((x == 2) && (y > 5))
if ((x == 2) || (y > 5))

logical orx || y

logical andx && y

logical negation!x
ignored if x equals 2

int x = 1, y = 1, z = 2;
if (x == 1 && y > 2 || z < 3) {
 cout << “condition true\n”;
}

condition true

precedence

Simple statistics example

Refer to stats1.cpp

> stats1.exe

1

5

6

4

5

> stats1.exe

2

5

6

4

0.816497

> stats1.exe

3

5

6

4

4 5 6

executable name

input

output

command prompt

What is the purpose of this program?

• We will now focus on the development of the small
statistical calculation program.

Purpose of the program

• The program performs one of the following routines:

calculate the mean of the input sample.

calculate the standard deviation of the input sample.

order the input sample from lowest to highest value.

Request the routine to be performed (r)

Request the statistics sample (s1,s2,s3)

∑
=

=
N

i
ix

N
x

1

1
22 xx −=σ

Order

Lowest..Highest

r = 1
r = 2

r = 3

Was this obvious from looking at the source code?

Purpose of the program

cin >> r;

// get a routine to run

cout << "\nWhat would you like to do?" <<
endl;

cout << "1 - Calculate the mean" << endl;

cout << "2 - Calculate the standard
deviation" << endl;

cout << "3 - Order the sample lowest first"
<< endl;

cin >> r;

The function of the code is unclear to everyone
apart from the author.

• Comments are required to explain the purpose of the code.

• Annotations are not just required within the source code.
Explanatory text is required for the user of the program.

old input routine

new input routine

Adding whitespace

• The efficiency of the program does not decrease if whitespace
is liberally used throughout the source code.

• Often useful to add line breaks to partition chunks of code.

md=0;s1m=s1-m_2;s1ms=pow(s1m,2);

s2m=s2-m_2;s2ms=pow(s2m,2);

s3m=s3-m_2;s3ms=pow(s3m,2);md=s1ms+s2ms+s3ms;

m_3=md/3;s=sqrt(m_3);

// calculate x_i - mean

md = 0;

s1m = s1 - m_2;

s1ms = pow(s1m,2);

s2m = s2 - m_2;

s2ms = pow(s2m,2);

s3m = s3 - m_2;

s3ms = pow(s3m,2);

md = s1ms + s2ms + s3ms;

// calculate standard deviation

m_3 = md / 3;

s = sqrt(m_3);

a series of statements

associated with one task.

Comments

Whitespace

stats2.cpp

Source code needs spacing out to increase readability.

Variable Naming

• The purpose of the program can be interpreted much easier if the
variables have names that indicate their role within the program.

• In other words, descriptive names for variables enable other
developers to follow the "story" told by the code.

s_1 = s1 + s2 + s3;

Variable names bear no relation to their
role in the program.

 Some sample naming systems

Sum_of_value

SumOfValue

iSum

Functionfn

Longl

Inti

Shortn

Charc

sum = sample1 + sample2 + sample3;

Declaration Styles

int main() {

 int x = 1;

 y = x; //
error

 :

}

All the variables are declared at the top of the program.

• It is preferable to declare variables close to where they are first
assigned a value.

• This seems too chaotic, why bother? This practice is introduced
to implement an important feature of C++.

• In C++, a variable can be declared
anywhere within the body of the
program provided the declaration
precedes the definition.

• All variables can be declared at the top
of main().

BUT..

y assigned to
x before y is
declared

The Lifetime of Objects

int x = 4; int y = 2;

if (y > 0) {

 cout << "x = " << x << endl;

}

if (y > 1) {

 int x = 7;

 cout << "x = " << x << endl;

 x++;

}

cout << "x = " << x << endl;

The lifetime of an object associated with a variable:
starts with the declaration of the variable.
ends with the termination of the containing block.

Useful variable names

Moved declarations away
from the top of the main
program

• The same variable name can be

repeated in different blocks.

• Outside of the block the variable runs

out of scope.

• The variable has a scope local to the

block in which it was declared in.

x = 4

x = 7

x = 4variable name is the same
but this is a different object

refers to the object value
assigned outside of the
above block

stats3.cpp

Extending the sample size

• We would now like the program to accept a sample of any
size.

• The first step is to add an option to dictate the size of the
sample.

The program can only handle a data
sample of a fixed size.

cout << "How big is the sample?" << endl;

int size;

cin >> size;

sum = sample1 + sample2 + sample3;

float sumDivSize = (sum / 3);

• But this is not enough to extend the sample size. The code has

been specifically written to process three values:

Extending the sample size

• Can a larger sample size be accommodated by simply adding
more variables to hold the new values?

• Yes, but the idea is simply not scalable:

float sampleSwap;

if (sample1 > sample2) {

 sampleSwap = sample1;

 sample1 = sample2;

 sample2 = sampleSwap;

}

if (sample1 > sample3) {

 sampleSwap = sample1;

 sample1 = sample3;

 sample3 = sampleSwap;

}

if (sample2 > sample3) {

 sampleSwap = sample2;

 sample2 = sample3;

 sample3 = sampleSwap;

}

• The more pertinent question is, how does

the program cope with holding the values of

the sample if the sample size is only to be

decided at runtime?

13910

345

224

133

StatementsSample size

number of statements needed
to order the data sample.

Arrays

• An array is an ordered collection of objects of the same type.

• An object stored in an array is referred to as an array element.

• In the first example the array x holds 10 objects of type integer.
The first element in the array x is x[0] and the last element is x[9].

type variable[int]

int x[10];
int y = x[4];
float x[5] = {5.0,4.3,6.1,2.1,9.2};
int x[2][3] = {{1,2,3},{4,5,6}};

example of an array element assigned
to non-array variable. arrays can be declared and initialised

in the same statement.

arrays can be multi-dimensional
(matrices)

Arrays are an integral part of most other computing languages but are

approached with suspicion in C++ (see Lecture 5).

Using for loops

• An array can be used to store a
data sample of any reasonable
size.

• However, this is still not the
final solution. The routines are
still limited to only accepting
three values.

• Remove this dependency by
using a for loop to iterate
through all the data sample.

// calculate sum of sample

float sum = 0;

sum = sample1 + sample2 + sample3;

// calculate sum of sample

int samplecount;

for (sampleCount = 1; sampleCount <= size; sampleCount = sampleCount + 1) {

 int sampleCountArray = sampleCount - 1;

 sum = sum + sample[sampleCountArray];

 }

cout << "How big is the sample?" << endl;

int size;

cin >> size;

// get sample values

float sample[size];

:

value of size is decided at runtime

Start filling array from 0

The Bubble Sort

• The for loop (and a nested for loop) will significantly improve the
current ordering routine.

float sampleSwap;

if (sample1 > sample2) {

 sampleSwap = sample1;

 sample1 = sample2;

 sample2 = sampleSwap;

}

if (sample1 > sample3) {

 sampleSwap = sample1;

 sample1 = sample3;

 sample3 = sampleSwap;

}

if (sample2 > sample3) {

 sampleSwap = sample2;

 sample2 = sample3;

 sample3 = sampleSwap;

}

for (int i = 0; i < (size - 1); i = i + 1) {

 for (int j = 0; j < (size - 1); j = j + 1) {

 if (sample[j] > sample[j+1]) {

 float swap = sample[j];

 sample[j] = sample[j+1];

 sample[j+1] = swap;

 }

 }

}

this algorithm is commonly
known as the bubble sort.

Routines can process a data
sample of an unrestricted size.

stats4.cpp

Error Catching

• If the input value for the routine is not in the range 1 to 3 the
code will compile but the program will not indicate an error back
to the user.

• Do not assume that everyone who uses your code will be
competent!

There is no way of handling incorrect input
by the user.

> stats

What would you like to do?

1 - Calculate the mean

2 - Calculate the standard deviation

3 - Order the sample lowest first

4

How big is the sample?

3

Sample 1: 4

Sample 2: 5

Sample 3: 6

>_

incorrect option
entered by the user

program exited normally

Error Catching

if (request == 1) {

 :

}

if (request == 2) {

 :

}

if (request == 3) {

 :

}

cerr captures error messages, clog
captures log messages.

if (request == 1) {

 :

}

else if (request == 2) {

 :

}

else if (request == 3) {

 :

}

else {

 cerr << "Routine number does not exist\n";

 return 1;

}

return 1 rather than 0 to indicate to the
operating system that the program did
not run sucessfully.

Program protected
against basic user errors.

stats5.cpp

• If the input routine value is not in the desired range then an
error message will not be reported back to the user.

• The solution is to replace the separate if blocks with one
if - else if - else block.

Unnecessary Code

• It is good coding practice to attain a balance between
conciseness and clarity.

Code is unnecessarily verbose.

• The less variables you have in an algorithm the less
potential mistakes you will make! Well, almost..

// calculate sum of sample

int sampleCount;

for (sampleCount = 1; sampleCount <= size; sampleCount = sampleCount + 1) {

 int sampleCountArray = sampleCount - 1;

 sum = sum + sample[sampleCountArray];

}

The variable sampleCountArray is not
needed.

Use the post-increment
operator ++ instead. Move the declaration of this variable

into the for loop.

Self Assigned Operators

• It is common coding practice to
apply a mathematical operation to a
variable and then assign the result
back to the same variable.

• in C++, the same result can be
achieved by applying self-assigned
operators.

x = x + 5; // add 5 to x

x += 5; // add 5 to x

x += n; // add n to x

sum = sum + sample[sampleCount-1];

sum += sample[sampleCount-1];

• There are similar self-assigned operators for

the other mathematical operations.
Division/=

Multiplication*=

Subtraction-=

Addition+=

The source code is more
concise.

stats6.cpp

Alternatives to the for loop

• The for loop is much more versatile than just iterating
the value of a conditional variable by 1.

• There are other loops that provide the same result with
less syntactic baggage..

Simplify the iteration routines in the code

// calculate sum of sample

for (int sampleCount = 1; sampleCount <= size; sampleCount++) {

 sum += sample[sampleCount-1];

}

The while loops

• There are two other types of loops you can use in C++:

The while loop The do..while loop

repeatedly executes the statements in the
block while the expression is true.

condition check is done
before the block is
executed.

condition is checked is done after the block
is executed.

Which while loop should I use?

• Use the while loop if it is possible that the statement block may

never be executed.

• Use the do…while loop if the statement block has to be executed at
least once.

while (expression) {
 statement;
 :
}

do {
 statement;
 :
} while (expression)

Breaking the loop

• It is possible to exit the while, do..while and for
loops even if the condition is still true.

for (int i = 0; i < 5; i++) {

if (i == 3) break;

 cout << i << “\t”;

}

cout << “end\n”;

1 2 3 end

int val;

while (cin >> val) {

 if (!val) break;

}

cout << “out of the loop\n”;

1

0

out of the loop

• The break statement can be used to exit the

nearest enclosed loop.

• The continue statement can be used to skip

remaining statements in the block.

• There is one other unspeakable way of getting out

of a loop..the goto statement.

int x = 0, y = 2;

while (x < 3) {

x++;

 if (x == y) continue;

 cout << x << “\t”;

}

cout << “end\n”;

1 3 end

If this is true then go back to
the top of the block.

if this is true go
here

Iteration in a while loop

• How does the while loop become an iteration tool?

int x = 1;

while (x < 10) {

 :

 x++;

}

int x = 0;

while (x++ < 10) {

 :

}

iterator is found in body of the loop

increment operator in condition expression
also provides iteration.

for (int sampleCount = 1; sampleCount <= size; sampleCount++) {

 sum = sum + sample[sampleCount-1];

}

// calculate sum of sample

int sampleCount = 0;

while (++sampleCount <= size) sum += sample[sampleCount-1];

Used while loops for all
iteratons.

stats7.cpp
Has this improved the readability of the code? That is up to you..

