106c106 < self.aux_sequence_object = "tracks" --- > self.aux_sequence_object = "objects" 138c138 < outputs = [f"{self.model_name}_p{flav.rstrip('jets')}" for flav in object_classes] --- > outputs = [f"{self.model_name}_p{flav.rstrip('events')}" for flav in object_classes] 224c224 < pt_model.input_dims["jets"], --- > pt_model.input_dims["events"], 230c230 < inputs_pt["jets"] = jets --- > inputs_pt["events"] = jets 235c235 < pred_pt_jc = [p.detach().numpy() for p in get_probs(outputs_pt["jets"]["jets_classification"])] --- > pred_pt_jc = [p.detach().numpy() for p in get_probs(outputs_pt["events"]["events_classification"])] 262c262 < pred_pt_origin = torch.argmax(outputs_pt["tracks"]["track_origin"], dim=-1).detach().numpy() --- > pred_pt_origin = torch.argmax(outputs_pt["objects"]["track_origin"], dim=-1).detach().numpy() 275c275 < pred_pt_scores = outputs_pt["tracks"]["track_vertexing"].detach() --- > pred_pt_scores = outputs_pt["objects"]["track_vertexing"].detach() 322c322 < "name_salt": "jets", --- > "name_salt": "events", 327c327 < if "tracks" in inputs: --- > if "objects" in inputs: 332c332 < "name_salt": "tracks", --- > "name_salt": "objects",