Introduction to
Programming using C++

Lecture Four: Pointers & References

Carl Gwilliam

owilliam(@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

The swap function

“l want to write a function that takes two integers

transposes their values.”

Swapping the values in the
function will have no effect
on the variables in main()

Calling a function in this
way Is referred to as

passing by value .

In fact, the object (variable)
within the funtion is actually
a copy not the original (just
has the same label).

Is there an alternative method that allows the modi
of the input variables?

and
int main() {
intx =2,y =5;
cout << x << """ << y << endl;
swap(x,y);
cout << x << "J"' << y << endl;

}

void swap(int x, int y) {
//not same x and y (copies)
int tmp = y; y = X; X = tmp;

cout << x << """ << y << endl;
return; 25
} _ 5,2
fication
2,5

Overloading in C++

Yes! But you first have to understand the concepts of pointers and
references.

« Variable and function names are not important, it is the
context in which they are used that matters.

Study these two operators closely:

&*

e To understand how pointers and references work you
must appreciate that these operators can be overloaded
as well.

References

A reference is just an alias for an object.
References allow multiple variables to access the same
object. T

I
int | x| ! int
// y is a ref to an int object int | v : >

A reference is initialised by placing an ampersand (&)
between the type and the variable name.

A reference must be initalised to an object when it is
defined and cannot subsequently reference a diff object

References

« Compare these two pieces of code.:

int carl = 27; // assign age to name

int lecturer = carl; // copy object

carl++; // birthday

// display age

cout << “Carl is " << carl << endl; //Carl is 28

cout << “Lecturer is " << lecturer << endl; // Lecturer is 27

int carl = 27; // assign age to name

int& lecturer = carl; // reference to same object
carl++; // birthday

// display age

cout << “Carl is " << carl << endl; // Carl is 28

cout << “Lecturer is " << lecturer << endl; // Lecturer is 28

» Reference is changed with original obj, while copy isn’t
 Anything done to ref affects original obj and vice versa!

« A pointer is an object that points to or refers to another
object but, unlike a reference, a pointer is a new object.

Pointers

The reference is the object.

« The value of the new pointer obiect is the address of the

object it is pointingto. ...

int x = 2;

S . . int#* Y| —
// vy is a ptr to an int object |

int* y = &x; o

e A pointer is Initialised by placing an asterix (*) between

the type and the variable name.

int

|
!
:I.nl::-::—-»

N

* Unlike a reference, a pointer can be subsequently

changed to point to another object

Note: An & before a variable Is the “address of” not a

reference (operator overloading)

int

Pointers

Carl is 28
int carl = 27; //assign age to name lecturer is Oxbffffbb4
int* lecturer = &carl; // pointer to address of object |lecturer is 28
carl++; // birthday Carl is 28
// display age lecturer is ??+1

cout << “Carl is " << carl << endl;

cout << “Lecturer is " << lecturer << endl; // address

cout << “Lecturer is " << *lecturer << endl; // value pointed to

// change lecturer to paul

int paul = P?;

lecturer = &paul,;

(*lecturer)++; // another birthday (only inc obj currently pts to)
// display age again

cout << “Carl is " << carl << endl; // Carl is still 28

cout << "lecturer is " << *lecturer << endl; // Lecturer is 1 year older

* We get the value of the obj pointed at by a ptr by placing
an * before it. This is called dereferencing the ptr.

 Note: A * before a ptr is the “value pointed at”

Passing by reference

* The input arguments in a void swap(int& x, int& y); 2 F5)
function can be modified by |int main() { ’
passing a reference to the int x = 2,y = 5; = °
object (i.e. its address), cout << x << "," <<y << endl;
rather than the value (i.e a swap(x,y);
copy) of the object. // still 5,2 as func refs
This is achieved by placing | // original variables
an & between the type and | cout << x <« '," «<y << endl;

variable name in the args
of the function to indicate a
reference (otherwise
syntax IS unchanged)

This method is known as
passing by reference

¥
void swap(int& x, int& y) {

int tmp = y; y = X; X = tmp;
cout << x << "," << y << end];
return;

}

Passing by reference using Pointers

e A pointer to an object (again address) can also be used

pass by “reference” into a function.

 To do this we place an * between the type and variable
name in the args (and dereference to get obj's value)

void swap(int* x, int* y);
int main() {
intx =2,y =5;
cout << x << """ << y << endl;
swap(&x,&y); // pass address (pointer)
cout << x << """ << y << endl; // still 5,2
¥
void swap(int* x, int* y) {
int tmp = *y; // dereference y to get value pointed at
*y = *x; // value pointed by y = that pointed by x
*x = tmp; // value pointed by x = tmp
cout << ¥*x <« "," <« *y << endl;

return;

} // aaargggghhhh!!

Pointers are too
confusing! Why
bother with them
at all?

But you have
already been
using pointers in
your code before
you knew about
references...

Pointers and Arrays

* In C++, pointers and arrays are inextricably linked.

x[0] x[1] X12] x[3] x 4]

|flmat[5] | :-:l o float| float| float] float] Elocat

Elozst*

« For an array X[], the name x acts as a pointer to the first
element in the array (i.e. x[0]):

int X[S] = {1)23334,5};

cout << “first element of x: “ << *

x << endl;

Pointer arithmetic

* Other elements in the array can be accessed by applying
an offset value to the pointer.

*x is equivalent to x[o] | Must dereference after increment)

*(x+1) is equivalent to x[i]

first element of x; 1
third element of x; 3

int x[s] = {1,2,3,4,5}; sixth element of x: 2??
*x << endl; //x[o]
cout << “third element of x: “ << *(x+2) << endl; //x[2]
cout << “sixth element of x: “ << *(x+5) << endl; // x[5]

cout << “first element of x: ¢ «<

« This is why you have to careful with arrays! There is no
error if you access an address outside of the memory
allocated to the array.

« If you write a value to this address you could be
overwriting memory used by the operating system...

Pointer arithmetic

e This alternative array notation can be introduced into the
sorting algorithm of the stats program:

// bubble sort algorithm

for (inti = o;1< (size - 1); i++) {

for (int j = o0; j < (size - 1); j++) { — =
if (sample[j] > sample[j+1]) {
float swap = sample[j]; // bubble sort algorithm

sample[j] = sample[j+1]; for (inti = o;1i < (size - 1); i++) {

sample[j+1] = swap; for (int j = o; j < (size - 1); j++) {

} if (*(sample + j) > *(sample + j+1)) {
} float swap = *(sample + j);
¥ *(sample + j) = *(sample + j+1);
% Y .
. Remember the (sample + j+1) = swap;
. }
difference between }

*(x++) and ("x)++ }

Returning pointers from functions

e So far, there has been a restriction of one return value
per function call. What if an array needs to be returned?

* A pointer is a single object that can be used to indicate
the first element in an array.

* A pointer to an array can be returned from the function.
The array can then be accessed through the pointer.

float* x = getarray(); * You can't create the array

float* getarray() { normally as it'll only be valid
int* x =new int[2]; within the function’s scope.
x[o] = 1; x[1] = 2 e This means it'll be deleted at
//array converted the end of the function and
//to pointer to float the ptr will point to nothing

| return x; * You need to use new (later)

Returning pointers from functions

 An array Is converted to a pointer as soon as passed into
a function. The array contents are therefore passed by
“reference” into the function.

« Any modifications of the array contents within the
function will be persistent (changes original too). This
means there is no need to return the array.

* For example, the contents of the sample array in the
stats program will be arranged in order even after the
call to the getOrder function has been made.

float sample[size];
void getOrder(float* sample, int size) { _ _
// bubble sort algorithm This called returning by

reference!

return;

}

Constants

* During the last two tutorials, you have encountered
variables that will always have the same value:

double PI = 3.14157;
double G = 6.67e-11;

« These variables only have to be declared and initialised
once and never redefined. They are constants and are
declared by the const keyword

const double PI = 3.14157;
PI = 3.2; // error

* |tis useful to declare a const variable as a global
variable if it is called throughout the program.

Constant pointers and references

Unlike references, pointers do not always refer to the
same object. Pointers can be reassigned.

Pointers can be fixed to one object (i.e. address) using

const.

Pointer to a constant value => Value it
points to can’t be changed but pointer
can be reassigned to a diff address.

Constant pointer to a value => Value
may be changed but pointer can’t be
reassigned to a different address.

Const pointer to const value => Value
can’'t be changed and pointer can’t be
reassigned a different address.

const double* pPI = &PI;
pPI = &x; // ok

double* const px = &x;

px = &PI; // error

const double® const cpPI = &PI;
cpPI = &x // error

Some gquestions about functions

Can my functions be used by other programs?

— Yes. Place your functions in a separate translation unit.

How do | supply a default value for a function argument?
— Include default value for the argument in the function prototype.

Can a function call itself?
— Yes, these are known as recursive functions.

Do | have to write separate functions for each type, even
though the function will be exactly the same?

— In general, yes. But these functions can have the same identifier
(this is known as overloading a function).

Some gquestions about functions

Is it possible to call a function that modifies the input
arguments?

— Yes. Instead of passing the value of the variables to the function
you pass the references of these variables.

 How do | return more than one value from a function?
— Return a pointer to an array storing the values or include the
array as an input argument in the function.
e Can the value of a function variable be made constant
throughout the entire program?

— Yes, use the const keyword when variable is declared. The const
keyword can also be used to assign pointers to a fixed address.

