
Introduction to
Programming using C++

Lecture Seven: Designing Classes

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

delete in Objects
• If a class has data

members on the heap,
the memory associated
to them must be freed
when an object of that
class goes out of scope.

• This is done by placing
delete statements in the
class’s destructor.

“I don’t need to bother
with that. The compiler
doesn’t even warn me.
Will it really affect the
running of my program?”

:
// constructor
Point::Point(float x, float y, float z) {

// value placed on heap
itsX = new float(x);
:

}
:
// destructor: delete memory on heap
Point::~Point() {

delete itsX;
:

}
:

float Point::getX() {
//deref ptr to get val
return *itsX;

}
:

class Point {
public:

:
private:

float* itsX;
float* itsY;
float* itsZ;

};

[Point.cpp]

[Point.h]

Memory Leaks
• If memory used by object

is not freed when pointer
goes out of scope, we
loose access to the object
and the memory cannot be
reused until program
terminates.

• This is a memory leak.
• If getArraySum() is called

frequently as part of a
larger program then this
memory leak becomes an
important efficiency issue.

int main() {
int i = 0;
while (i < 500) {

// 500 000 memory adresses
// created on heap
float* result = getArraySum();
i++;
// no freeing of memory

}
return 0;

}
float* getArraySum() {

float* anArray = new float[100];
:
return anArray;

}

More Memory Leaks

• Memory leaks can be
introduced by reassigning a
ptr before the original object
has been deleted.

• The undeleted object on the
heap can now longer be
accessed as the pointer
containing the object’s
address in memory has
been reassigned => the
memory the object is taking
up cannot be freed until the

program is terminated.

int main() {
float* anArray = new float[100];
:
// must delete memory
// associated to original array
delete anArray;
anArray = new float[200];
:
delete anArray;
return 0;

}

• Memory leaks are easily
introduced by misuse of
pointers. But the damage
from pointer mistreatment
does not end here…

Stray Pointers
• An uninitialised pointer refers to a random memory

address. This is called a stray, wild or dangling pointer.
int main() {

int carl = 27;
int* lecturer;
// ptr used before assigned
(*lecturer++);
:
lecturer = &carl;
return 0;

}

int main() {
int carl = 27;
int* lecturer = NULL ;
// compiler catches error
(*lecturer++);
:
lecturer = &carl;
return 0;

}

• The stray pointer can be used to access and overwrite
the value stored in a random memory address.

• The pointer can be made NULL (or 0) if a pointer has to
be declared without being initialised.

Stray Pointers to the Free Store

• The meaning of delete is often misunderstood.
• The pointer to is not deleted, instead the memory on the

free store that the pointer referred to has is freed. The
pointer still exists, and can be misused:

int main() {
int andy = 27;
int* lecturer = new int(andy);
:
delete lecturer;
:
*lecturer = 28; // error
return 0;

}

Stray Pointers to the Free Store

• If the wild pointer is used after the memory has been
freed there are two possible side-effects:
– It can access an address in memory used by other processes on

the computer.
– It can overwrite the value in that address there by interrupting the

process using that area of memory.

• Every time an object is deleted on the free store, ensure
that
– the pointer to that object will go out of scope after the delete, or
– assign the pointer to NULL.

Writing a Sample Class
• A class sample can be constructed that has all the

functionality of the stats program. It can also be extended
to incorporate new routines.

• Data members:
– An array to store the input sample
– Size of the array storing the sample

• Class methods:
– Calculate the mean of the sample
– Calculate the standard deviation of the sample
– Order the sample by lowest to highest value

• Constructors:
– Declare an array to store the sample
– Declare an integer to hold the size of the sample
– Request the sample from the user
– Request the size of the sample from the user

The Basic Sample Class

• Start with
the basic
interface
to Sample
class:

// sample class declaration
class Sample {
public:

Sample(); // empty constructor
~Sample(); // destructor
// accesor methods (const and some inline)
int getSize() const {return the_size;}
double* getSample() const {return the_sample;}
void showSample() const;
double mean() const;
double stdev() const;

private:
int the_size; // private data
double* the_sample; // members
int setSize(); // setters called
double* setSample(int size); // by constructor

};

[Sample.h]

Sample Constructor and Destructor
• Constructor initialises

data members by calling
private member funcs to
request data interactively
from the user of Sample.

• The array is placed on
the heap rather than the
stack.

• If Sample object only
contains the size and
address of array then
size of object will be
constant regardless of
size of input sample.

:
Sample::Sample() { //constructor

the_size = setSize();
the_sample = setSample(the_size);

}
Sample::~Sample() { //destructor

delete the_sample;
}
:
int Sample::setSize() {

cout << "How big is the sample?" << endl;
int size; cin >> size;
return size;

}
double* Sample::setSample(int size) {

double* sample = new double[size];
// read sample from keyboard
:
return sample;

} [Sample.cpp]

Additional Constructors
• Two more constructors can be added to the class:

– First reads the sample from a given filename.
– Second converts an array (and it’s size) into a sample object.

#include ”Sample.h”
int main() {

Sample height("heightsample"); //filenames are
Sample weight("weightsample"); //char arrays
double ageVal[5] = {7.2,18.6,21.3,34.7,45.6};
Sample age(ageVal,5);
:

}

// constructor to read sample from file
Sample::Sample(char* filename) {…}
// constructor with sample input
Sample::Sample(double* sampleArray, int size) {…}

[Sample.cpp]

Ordering Routines
• The order routine

from stats can now
be included in the
sample class. The
order routine has
two functions:
– Return ordered sample

back to user whilst
keeping the original
sample intact.

– Use function call as to
order sample inside the
object.

• Can also extend to order
from highest first as well
as lowest first

class Sample {
public:

:
double mean() const;
double stdev() const;
double* order(int rank = 1) const;
void selfOrder(int rank = 1);

:
}; double* Sample::order(int rank) const {

:
return newSampleArray;

}
void Sample::selfOrder(int rank) {

:
} #include “Sample.h”

int main() {
:

double* newheight = height.order();
weight.selfOrder(2);

}

[Sample.h]

[UseSample.cpp]

[.cpp]

Correlation Class Method

• An input sample is now stored in a persistent way as
long as the sample object remains in scope.

• Moreover, the functionality of the sample class can be
extended to include interactions between sample
objects.

• An example of this is a correlation method:

• A sample object is passed (by reference) into a sample
class method to calculate the correlation between the
two samples.

double Sample::correlation(const Sample& b) const {
:
return correlation;

} [Sample.cpp]

Passing by Constant Reference

• In the correlation member function a reference to a
sample object is passed in rather than the entire object.

• Passing by reference is a more efficient mechanism for
objects because a local copy of the object does not have
to be created.

• But by passing a reference to the object the function is
able to modify the contents. To forbid modification the
reference must be declared const. This is known as
passing by constant reference.

double Sample::correlation(const Sample& b) const {
:
return correlation;

} [Sample.cpp]

Copying Objects

How do I copy the contents of an existing sample object
into a new sample object?

• The complier provides a default copy constructor that
performs a memberwise or shallow copy of an object.

• If the member data are pointers then the address held by
a pointer is copied to the new object. This causes two
problems:
– The original and the copy have member data that both point to

the same object. A change to the member data in one object
would lead to a member data modification in the other.

– If either the original or the copy go out of scope then the memory
both point to is freed so the remaining object will contain a stray
pointer.

Copying Objects
int main() {

:
Sample weight(“weightsample”);
if (makeCopy) {

Sample aCopy(weight); // shallow copy
:

} // copy goes out of scope => d’tor
: // frees memory containing the_sample

}

Copy Constructor

• The copy constructor for the sample class:
– copies the value of the sample size
– creates a new array on the free store and copies the contents of

the existing sample into the new array.

// copy constructor
Sample::Sample(const Sample& rhs) {

the_size = rhs.the_size; // assign size of array (straight copy)
the_sample = new double[the_size]; // creat new array on heap and
int iSample = 0; // copy every element (not address)
while (++iSample <= the_size) {

*(the_sample + (iSample-1)) = *(rhs.the_sample + (iSample-1));
}

}

Name::Name(const Name&) {…}

• Default memberwise copying can be overwritten by
writing a copy constructor which takes obj of same type.

Overloading Operators

• How do I add two objects together
• What is meant by the above statement?

– Add the contents of the sample array element-wise or
concatenate the samples?

• The problem lies in the ambiguity of what it means to
add two Sample objects together.

• The exact definition of addition can be included in the
sample class. This is known as operator overloading

return_type operator sign (parameters) {…}

Sample comb = weight + height
// is actually equivalent to
Sample comb = weight.operator+(height)

Adding Two Samples

• The addition operator is overloaded in the sample class:

int main() {
:
Sample comb=
weight + height;
:

}

Sample Sample::operator+ (const Sample& rhs) {
// get total size
int newsize = this->the_size + rhs.the_size;
// declare new array of total size
double newSampleArray[newsize];
// copy array from lhs of + into new array, and
// copy array from rhs of + into new array
:
return Sample(newSampleArray,newsize);

}

• Almost all of the operators can be overloaded in an
intuitive way, including
– assignment opertors, unary operators, relation operators …

The this Keyword

• The keyword this represents a pointer to the object
whose member function is being executed. It is a pointer
to the object itself.

• One of its uses can be to check if a parameter passed to
a member function is the object itself (i.e. has the same
address).

• It is also used in overloading the assignment operator…

bool AClass::isSame(AClass& object)
{

if (this == &object) return true;
else return false;

}

#include “AClass.h”
int main() {

AClass a;
AClass* b = &a;
if (b->isSame(a)) cout << “Same\n”
return 0;

}Same

Overloading Assignment
• The compiler provides a default assignment operator

which does a memberwise copy to object of same type.
• The assignment operator can be overloaded to ensure

that pointers are treated properly (as with copy c’tors).

// Return by reference
Sample& Sample::operator= (const Sample& rhs) {

// if lhs & rhs are equal (same address) don’t do anything
if (this == &rhs) return *this;
the_size = rhs.the_size; // get size
int iSample = 0; // get sample
while (++iSample <= the_size) {

*(the_sample + (iSample-1)) =
*(rhs.the_sample + (iSample-1));

}
return *this;

}

int main() {
:
Sample = height(“heightsample”);
Sample aCopy = height;
//Sample aCopy.operator=(height)
aCopy = aCopy;
:

}

class Sample { // The sample class declaration
public:

Sample(); // constructors
Sample(char* filename);
Sample(double* sample, int size);
Sample(const Sample&); // copy constructor
~Sample(); // destructor
Sample operator+ (const Sample& rhs); // overloadaed operators
Sample& operator= (const Sample& rhs);
int getSize() const {return the_size;} // public member functions
double* getSample() const {return the_sample;}
void showSample() const;
double mean() const;
double stdev() const;
double* order(int rank = 1) const;
void selfOrder(int rank = 1);
double correlation(const Sample& b);

private:
int the_size; // private member data
double* the_sample;
int setSize(); // private member fnctions
double* setSample(int size);

};

