
Introduction to
Programming using C++

Lecture Four: Pointers & ReferencesLecture Four: Pointers & References

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

The swap function

• Swapping the values in the
function will have no effect
on the variables in main()

• Calling a function in this

“I want to write a function that takes two integers and
transposes their values.”

int main() {
int x = 2, y = 5;
cout << x << "," << y << endl;
swap(x,y);• Calling a function in this

way is referred to as

passing by value .
• In fact, the object (variable)

within the funtion is actually
a copy not the original (just
has the same label).

cout << x << "," << y << endl;
}
void swap(int x, int y) {
//not same x and y (copies)
int tmp = y; y = x; x = tmp;
cout << x << "," << y << endl;
return;

}
2, 5

5, 2

2, 5
Is there an alternative method that allows the modi fication
of the input variables?

Overloading in C++

• Variable and function names are not important, it is the
context in which they are used that matters.

Yes! But you first have to understand the concepts of pointers and
references.

• To understand how pointers and references work you
must appreciate that these operators can be overloaded
as well.

Study these two operators closely:

& *

References

• A reference is just an alias for an object.
• References allow multiple variables to access the same

object.

int x = 2;int x = 2;
// y is a ref to an int object
int& y = x;

• A reference is initialised by placing an ampersand (&)
between the type and the variable name.

• A reference must be initalised to an object when it is
defined and cannot subsequently reference a diff object

References
• Compare these two pieces of code:

int carl = 27; // assign age to name
int lecturer = carl; // copycopycopycopy object
carl++; // birthday
// display age
cout << “Carl is " << carl << endl; //Carl is 28
cout << “Lecturer is " << lecturer << endl; // Lecturer is 27cout << “Lecturer is " << lecturer << endl; // Lecturer is 27

int carl = 27; // assign age to name
int& lecturer = carl; // referencereferencereferencereference to samesamesamesame object
carl++; // birthday
// display age
cout << “Carl is " << carl << endl; // Carl is 28
cout << “Lecturer is " << lecturer << endl; // Lecturer is 28

• Reference is changed with original obj, while copy isn’t
• Anything done to ref affects original obj and vice versa!

Pointers
• A pointer is an object that points to or refers to another

object but, unlike a reference, a pointer is a new object.
The reference is the object.

• The value of the new pointer object is the address of the
object it is pointing to.

int x = 2;int x = 2;
// y is a ptr to an int object
int* y = &x;

• A pointer is initialised by placing an asterix (*) between
the type and the variable name.

• Unlike a reference, a pointer can be subsequently
changed to point to another object

• Note: An & before a variable is the “address of” not a
reference (operator overloading)

Pointers
int carl = 27; //assign age to name
int* lecturer = &carl; // pointerpointerpointerpointer to address of objectobjectobjectobject
carl++; // birthday
// display age
cout << “Carl is " << carl << endl;
cout << “Lecturer is " << lecturer << endl; // address
cout << “Lecturer is " << *lecturer << endl; // value pointed to
// change lecturer to paul

Carl is 28
lecturer is 0xbffffbb4
lecturer is 28
Carl is 28
lecturer is ??+1

• We get the value of the obj pointed at by a ptr by placing
an * before it. This is called dereferencing the ptr.

• Note: A * before a ptr is the “value pointed at”

// change lecturer to paul
int paul = ??;
lecturer = &paul;
(*lecturer)++; // another birthday (only inc obj currentlycurrentlycurrentlycurrently pts to)
// display age again
cout << “Carl is " << carl << endl; // Carl is still 28
cout << "lecturer is " << *lecturer << endl; // Lecturer is 1 year older

Passing by reference
• The input arguments in a

function can be modified by
passing a reference to the
object (i.e. its address),
rather than the value (i.e a
copy) of the object.

void swap(int& x, int& y);
int main() {
int x = 2, y = 5;
cout << x << "," << y << endl;
swap(x,y);
// still 5,2 as func refs

2, 5

2, 5

2, 5

copy) of the object.
• This is achieved by placing

an & between the type and
variable name in the args
of the function to indicate a
reference (otherwise
syntax is unchanged)

• This method is known as
passing by reference .

// still 5,2 as func refs
// original variables
cout << x << "," << y << endl;

}
void swap(int& x, int& y) {
int tmp = y; y = x; x = tmp;
cout << x << "," << y << endl;
return;

}

Passing by reference using Pointers
• A pointer to an object (again address) can also be used

pass by “reference” into a function.
• To do this we place an * between the type and variable

name in the args (and dereference to get obj’s value)

Pointers are too
confusing! Why

void swap(int* x, int* y);
int main() {
int x = 2, y = 5;

confusing! Why
bother with them
at all?

But you have
already been
using pointers in
your code before
you knew about
references…

int x = 2, y = 5;
cout << x << "," << y << endl;
swap(&x,&y); // pass address (pointer)
cout << x << "," << y << endl; // stillstillstillstill 5,2

}
void swap(int* x, int* y) {
int tmp = *y; // dereference y to get value pointed at
*y = *x; // value pointed by y = that pointed by x
*x = tmp; // value pointed by x = tmp
cout << *x << "," << *y << endl;
return;

} // aaargggghhhh!!

Pointers and Arrays

• In C++, pointers and arrays are inextricably linked.

• For an array x[], the name x acts as a pointer to the first
element in the array (i.e. x[0]):

int x[5] = {1,2,3,4,5};
cout << “first element of x: “ << *x << endl;

Pointer arithmetic
• Other elements in the array can be accessed by applying

an offset value to the pointer.

*x is equivalent to x[0]
*(x+i) is equivalent to x[i]

int x[5] = {1,2,3,4,5};

first element of x: 1
third element of x: 3
sixth element of x: ???

Must dereference after increment

• This is why you have to careful with arrays! There is no
error if you access an address outside of the memory
allocated to the array.

• If you write a value to this address you could be
overwriting memory used by the operating system…

int x[5] = {1,2,3,4,5};
cout << “first element of x: “ << *x << endl; //x[0]
cout << “third element of x: “ << *(x+2) << endl; //x[2]
cout << “sixth element of x: “ << *(x+5) << endl; // x[5]

sixth element of x: ???

Pointer arithmetic
• This alternative array notation can be introduced into the

sorting algorithm of the stats program:
// bubble sort algorithm
for (int i = 0; i < (size - 1); i++) {
for (int j = 0; j < (size - 1); j++) {
if (sample[j] > sample[j+1]) {if (sample[j] > sample[j+1]) {
float swap = sample[j];
sample[j] = sample[j+1];
sample[j+1] = swap;

}
}

}

// bubble sort algorithm
for (int i = 0; i < (size - 1); i++) {
for (int j = 0; j < (size - 1); j++) {

if (*(sample + j) > *(sample + j+1)) {
float swap = *(sample + j);
*(sample + j) = *(sample + j+1);
*(sample + j+1) = swap;

}
}

}

• Remember the
difference between
*(x++) and (*x)++

Returning pointers from functions
• So far, there has been a restriction of one return value

per function call. What if an array needs to be returned?
• A pointer is a single object that can be used to indicate

the first element in an array.
• A pointer to an array can be returned from the function.

The array can then be accessed through the pointer.The array can then be accessed through the pointer.

float* x = getarray();
float* getarray() {
int* x =new int[2];
x[0] = 1; x[1] = 2;
//array converted
//to pointer to float
return x;

}

• You can’t create the array
normally as it’ll only be valid
within the function’s scope.

• This means it’ll be deleted at
the end of the function and
the ptr will point to nothing

• You need to use new (later)

Returning pointers from functions
• An array is converted to a pointer as soon as passed into

a function. The array contents are therefore passed by
“reference” into the function.

• Any modifications of the array contents within the
function will be persistent (changes original too). This
means there is no need to return the array.means there is no need to return the array.

• For example, the contents of the sample array in the
stats program will be arranged in order even after the
call to the getOrder function has been made.
float sample[size];
void getOrder(float* sample, int size) {
// bubble sort algorithm
:
return;

}

This called returning by
reference!

Constants

• During the last two tutorials, you have encountered
variables that will always have the same value:

double PI = 3.14157;
double G = 6.67e-11;

• These variables only have to be declared and initialised
once and never redefined. They are constants and are
declared by the const keyword

• It is useful to declare a const variable as a global

variable if it is called throughout the program.

const double PI = 3.14157;
PI = 3.2; // error

Constant pointers and references

• Unlike references, pointers do not always refer to the
same object. Pointers can be reassigned.

• Pointers can be fixed to one object (i.e. address) using

const .
• Pointer to a constant value => Value it constconstconstconst double* pPI = &PI;

pPI = &x; // ok

double* constconstconstconst px = &x;
px = &PI; // error

constconstconstconst double* constconstconstconst cpPI = &PI;
cpPI = &x // error

• Pointer to a constant value => Value it
points to can’t be changed but pointer
can be reassigned to a diff address.

• Constant pointer to a value => Value
may be changed but pointer can’t be
reassigned to a different address.

• Const pointer to const value => Value
can’t be changed and pointer can’t be
reassigned a different address.

Some questions about functions

• Can my functions be used by other programs?
– Yes. Place your functions in a separate translation unit.

• How do I supply a default value for a function argument?
– Include default value for the argument in the function prototype.

• Can a function call itself?• Can a function call itself?
– Yes, these are known as recursive functions.

• Do I have to write separate functions for each type, even
though the function will be exactly the same?
– In general, yes. But these functions can have the same identifier

(this is known as overloading a function).

Some questions about functions

• Is it possible to call a function that modifies the input
arguments?
– Yes. Instead of passing the value of the variables to the function

you pass the references of these variables.

• How do I return more than one value from a function?• How do I return more than one value from a function?
– Return a pointer to an array storing the values or include the

array as an input argument in the function.

• Can the value of a function variable be made constant
throughout the entire program?
– Yes, use the const keyword when variable is declared. The const

keyword can also be used to assign pointers to a fixed address.

