Introduction to
Programming using C++

Lecture Seven: Designing Classes

Carl Gwilliam

gwilllam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

delete in Objects

If a class has data
members on the heap,
the memory associated
to them must be freed
when an object of that
class goes out of scope.

This is done by placing
delete statements in the
class’s destructor.

“I don’t need to bother
with that. The compiler
doesn’t even warn me.
Will it really affect the
running of my program?”

: [Point.cpp]
/I constructor
Point::Point(float x, float y, float z) {
// value placed on heap
itsX = new float(x);

.}
)/ destructor: delete memory on heap
Point::~Point() {

delete itsX; class Point {
; public:

} :_
; private:

float Point::getX() { float* itsX;

/Ideref ptrto get val | float* itsY;
return *itsX; float* itsZ;

) 5 [Point.h]

Memory Leaks

* If memory used by object
IS not freed when pointer
goes out of scope, we
loose access to the object
and the memory cannot be
reused until program
terminates.

 Thisis a memory leak.

o If getArraySum() is called
frequently as part of a
larger program then this
memory leak becomes an
Important efficiency issue.

iInt main() {

inti=0;

while (i < 500) {
// 500 000 memory adresses
/[created on heap
float* result = getArraySum();
I++:
// no freeing of memory

}

return O;

}
float* getArraySum() {

float* anArray = new float[100];

return anArray;

}

More Memory Leaks

. Int main() {
M emory leaks can b.e : float* anArray = new float[100];
iIntroduced by reassigninga | -

ptr before the original object /I must delete memory

has been deleted /[associated to original array
' deleteanArray;

 The undeleted object on the | anArray = new float[200];
heap can now longer be '
accessed as the pointer
containing the object’s }

delete anArray;
return O;

address in memory has
been reassigned => the
memory the object is taking
up cannot be freed until the

« Memory leaks are easily
Introduced by misuse of
pointers. But the damage

_ _ from pointer mistreatment
program Is terminated. does not end here .

Stray Pointers

* An uninitialised pointer refers to a random memory
address. This is called a stray, wild or dangling pointer.

iInt main() { Int main() {
Int carl = 27; Int carl = 27;
Int* lecturer; Int* lecturer =NULL;
/[ptr used before assigned // compiler catches error
(*lecturer++); (*lecturer++);
lecturer = &carl; lecturer = &carl;
return O; return O;
} }

 The stray pointer can be used to access and overwrite
the value stored in a random memory address.

 The pointer can be made NULL (or O) if a pointer has to
be declared without being initialised.

Stray Pointers to the Free Store

 The meaning of delete is often misunderstood.

e The pointer to is not deleted, instead the memory on the
free store that the pointer referred to has is freed. The
pointer still exists, and can be misused:

iInt main() {
Int andy = 27,
Int* lecturer = new int(andy);

delete lecturer:;

*lecturer = 28; /] error
return O;

Stray Pointers to the Free Store

 If the wild pointer is used after the memory has been
freed there are two possible side-effects:

— It can access an address in memory used by other processes on
the computer.

— It can overwrite the value in that address there by interrupting the
process using that area of memory.

« Every time an object is deleted on the free store, ensure

that
— the pointer to that object will go out of scope after the delete, or

— assign the pointer to NULL.

Writing a Sample Class

A class sample can be constructed that has all the
functionality of the stats program. It can also be extended
to incorporate new routines.

Data members:
— An array to store the input sample
— Size of the array storing the sample

Class methods:
— Calculate the mean of the sample
— Calculate the standard deviation of the sample
— Order the sample by lowest to highest value

Constructors:
— Declare an array to store the sample
— Declare an integer to hold the size of the sample
— Request the sample from the user
— Request the size of the sample from the user

The Basic Sample Class

e Start with
the basic
Interface
to Sample
class:

// sample class declaration [Sample.h]
class Sample {
public:
Sample(); // empty constructor
~Sample(); // destructor
/[accesor methods (const and some inline)
int getSize() const {return the_size;}
double* getSample() const {return the _sample;
void showSample() const;
double mean() const;
double stdev() const;

private:
int the_size; /[private data
double* the_sample; /[members
Int setSize(); /] setters called

double* setSample(int size)] by constructor

If

| S

Sample Constructor and Destructor

Constructor initialises
data members by calling
private member funcs to
request data interactively
from the user of Sample.

The array is placed on
the heap rather than the
stack.

If Sample object only
contains the size and
address of array then
size of object will be
constant regardless of
size of input sample.

Sample..SampIe() { /lconstructor
the_size = setSize();
the sample = setSample(the_size);
}
Sample::~Sample() {/destructor
delete the_sample;
}

int Sample::setSize() {

cout << "How big is the sample?" << end|;

Int size: cin >> size;
return size;
}
double* Sample::setSample(int size) {
double* sample = new double[size];
/l read sample from keyboard

return sample;

} [Sample.cpp]

Additional Constructors

 Two more constructors can be added to the class:
— First reads the sample from a given filename.
— Second converts an array (and it's size) into a sample object.

/I constructor to read sample from file[Sample.cpp]
Sample::Sample(char* filename) {...}

/I constructor with sample input
Sample::Sample(double* sampleArray, int size) {...}

#include "Sample.h”

Int main() {
Sample height("heightsample")//filenames are
Sample weight("weightsample")/char arrays
double ageVal[5] = {7.2,18.6,21.3,34.7,45.6};
Sample age(ageVal,5);

.

Ordering Routines

The order routine
from stats can now

be included in the
sample class. The
order routine has
two functions:

— Return ordered sample

class Sample { [Sample.h]
public:

double mean() const;

double stdev() const;

double* order(int rank = 1) const;
void selfOrder(int rank = 1);

} double* Sample::order(int rank) const {

back to user whilst
keeping the original
sample intact.

— Use function call as to

order sample inside the |} | #include “Sample.h”

object. int main() {
Can also extend to order | double* newheight = height.order();
from highest first as well weight.selfOrder(2);
as lowest first J [UseSample.cpp]

.return newSampleArray; [.cpp]

}

void Sample::selfOrder(int rank) {

Correlation Class Method

An input sample is now stored in a persistent way as
long as the sample object remains in scope.

Moreover, the functionality of the sample class can be
extended to include interactions between sample
objects.

An example of this is a correlation method:

double Sample::correlation(const Sample& b) const

[o]

return correlation:
} [Sample.cpp]

A sample object is passed (by reference) into a sample
class method to calculate the correlation between the
two samples.

Passing by Constant Reference

e Inthe correlation member function a reference to a
sample object is passed in rather than the entire object.

» Passing by reference is a more efficient mechanism for
objects because a local copy of the object does not have
to be created.

o But by passing a reference to the object the function is
able to modify the contents. To forbid modification the
reference must be declared const. This is known as
passing by constant reference.

double Sample::correlatioodnst Sample& b) const {

return correlation:
} [Sample.cpp]

Copying Objects

How do | copy the contents of an existing sample object
Into a new sample object?

 The complier provides a default copy constructor that
performs a memberwise or shallow copy of an object.

 If the member data are pointers then the address held by
a pointer is copied to the new object. This causes two
problems:

— The original and the copy have member data that both point to
the same object. A change to the member data in one object
would lead to a member data modification in the other.

— If either the original or the copy go out of scope then the memory
both point to is freed so the remaining object will contain a stray
pointer.

Copying Objects

Int main() {

Sample weight(“weightsample™);
If (makeCopy) {
Sample aCopy(weight)i/ shallow copy

})/ copy goes out of scope => d’tor
. /] frees memory containing the_sample

. —
..... L e

Copy Constructor

« Default memberwise copying can be overwritten by
writing a copy constructor which takes obj of same type.

Name::Name(const Name&) {...}

 The copy constructor for the sample class:
— copies the value of the sample size

— creates a new array on the free store and copies the contents of
the existing sample into the new array.

/[copy constructor
Sample::Sample(const Sample& rhs) {

the_size = rhs.the_size; // assign size of array (straight copy)
the _sample = new double[the_sizef, creat new array on heap and
int iSample = 0; // copy every element (not address)

while (++iSample <= the_size) {
*(the_sample + (iSample-1)) = *(rhs.the_sample + (iSlardi)));
}
}

Overloading Operators

How do | add two objects together

What is meant by the above statement?

— Add the contents of the sample array element-wise or
concatenate the samples?

The problem lies in the ambiguity of what it means to
add two Sample objects together.

The exact definition of addition can be included in the
sample class. This is known as operator overloading

return_type operator sign (parameters) {..|}

Sample comb = weight + height
/[Is actually equivalent to
Sample comb = weight.operator+(height)

Adding Two Samples

« The addition operator is overloaded in the sample class:

e Almost all of the operators can be overloaded in an
Intuitive way, including
— assignment opertors, unary operators, relation operators ...

Sample Sample:.operator+ (const Sample& rhs) {
/[get total size
Int newsize = this->the_size + rhs.the_size;

I/ declare new array of total size
double newSampleArray[newsize]; Int main() {
Il copy array from |Ihs of + into new array, and ;
/[copy array from rhs of + into new array Sample comb=
; weight + height;
return Sample(newSampleArray,newsize); ;

} }

The this Keyword

e The keyword this represents a pointer to the object
whose member function is being executed. It is a pointer
to the object itsellf.

 One of its uses can be to check if a parameter passed to
a member function is the object itself (i.e. has the same
address).

#include “AClass.h”
iInt main() {
bool AClass::.isSame(AClass& object) | AClass a;
{ AClass* b = &a;
If (this == &object) return true; If (b->isSame(a)) cout << “Same\n’
else return false; return O;
] Same)

« Itis also used in overloading the assignment operator...

Overloading Assignment

 The compiler provides a default assignment operator
which does a memberwise copy to object of same type.

« The assignment operator can be overloaded to ensure
that pointers are treated properly (as with copy c’'tors).

// Return by reference
Sample& Sample::operator= (const Sample& rhs) {
/l'if Ins & rhs are equal (same address) don’t dolangt

If (this == &rhs) return *this; ; ,
the_size = rhs.the_sizel/ get size | N main() {
IntiSample = 0; I/ get sample ; o y

while (++iSample <= the_size) { Sample = height(“heightsample”);

*(the_sample + (iSample-1)) = | >ample aCopy = height |
*(rhs.the_sample + (iSample-1)) //Sample aCopy.operator=(height)
] - aCopy = aCopy;

return *this;

})

class Sample §/ The sample class declaration
public:
Sample(); // constructors
Sample(char* filename);
Sample(double* sample, int size);
Sample(const Sample&); // copy constructor
~Sample(); /[destructor
Sample operator+ (const Sampleé& rhs);// overloadaed operators
Sample& operator= (const Sample& rhs);
int getSize() const {return the_size;} // public member functions
double* getSample() const {return the_sample;}
void showSample() const;
double mean() const;
double stdev() const;
double* order(int rank = 1) const;
void selfOrder(int rank = 1);
double correlation(const Sample& b);

private:
int the_size; I/ private member data
double* the _sample;
int setSize(); /[private member fnctions

double* setSample(int size);

I

