
Introduction to

Programming using C++

Lecture Three: Functions

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

Calculating Binomial and

Poisson Probability
• Consider question 3(b) from Tutorial 1:

• The program could be

extended to include other

probability distributions,

such as the Poisson

distribution [prob1.cpp].

Mathematical Functions

• In the above statement the mathematical functions pow()

and exp() are called.

• These common mathematical applications are not implicit

in the C++ language; they‟re in the math library.

• The pre-processor command #include<cmath> needs to

be included at the top of the program to use them.

• It also includes other useful math expressions, such as …

– abs/fabs absolute value of integer/float

– cos/sin/tan trig expressions (+ inverse acos/asin/atan)

– log/log10 natural/base-10 log

– floor round down float

// calculate poisson probability

float poisson = (exp(-mean) * pow(mean,r))/fct;

Function Declaration

• A function has to be declared before it is called. This is

also known as the functions prototpye

• A function declaration acts as a contract between the

author and the user and a function definition is an

implementation of that declaration.

• Functions in C++ are strongly typed.

return_type function_identifer (argument_list)

double sin (double x); //declaration before main (in math.h)

int main() {

double pi = 3.14;

double y = sin(pi); //variable name need not be the same

} //return value assigned to variable of same type

Writing Functions
• It is desirable to delegate work outside the main block.

• To identify a function use case, looked for a repeated

sequence of statements that share some form of

commonality.

• I don‟t care how the work is done, I‟m only interested in

return value. double triesfct = 1;

for (int i = 1; i<=tries; i++) triesfct *= i;

double winsfct = 1;

for (int i = 1; i<=wins; i++) winsfct *= i;

float losses = tries - wins;

double lossesfct = 1;

for (int i = 1; i<=losses; i++) lossesfct *= i;

float comb = triesfct / (winsfct * lossesfct);

Calculate

combinatorics:

Writing a factorial function
• An n! function

can be added to

the program

(this is needed

3 times from the

main for the

combinatorics):

• Variable type

„Number‟ is an

example of a

typedef (see

later).

[prob2.cpp]

// function prototype (outside main)

double factorial(int n);

int main() {

// calculate combinations

Number triesfct = factorial(tries);

Number winsfct = factorial(wins);

Number lossesfct = factorial(tries-wins);

float comb = triesfct / (winsfct * lossesfct);

:

}

double factorial(int n) {

int fact = 1;

for (int i = 1; i<=n; i++) fact *= i;

return fact;

}

Switch Statements

• The switch statement evaluates

an expression and executes a set

of statements depending upon it‟s

value

• The result of the expression in the

switch statement must be of type

integer.

• If the result does not match any of

the case labels the default block

is executed.

• A break must be included at the

end of each case otherwise the

next statement will be executed

switch (expression) {

case value1:

statement1;

break;

case value2:

statement1;

:

statementN;

break;

:

case valueN:

:

break;

default:

:

}

Switch statements for a menu

• If the number of menu options will increase then it is

preferable to use a switch statement instead of an if –

else if chain:

if (request == 1) {

:

} else if (request == 2) {

:

} else if (request == 3) {

:

} else {

:

}

switch (request) {

case 1:

:

break;

case 2:

:

break;

case 3:

:

break;

default:

:

}

• Statements shouldn‟t be to long

or code looses readability

Enumerations

• For a large enough menu system, it can be difficult to

recall the correspondence between the menu options

and the routines they refer to.

• For this problem enumerations can be applied which

map an integer value to a user defined name.

• If the values are not explicitly defined in the enum

statement then the first argument will be assigned 0, the

second 1 and so on

enum label {name1 = value1, name2 = value2, .. nameN = valueN}

enum label {name1, name2, .. nameN};

Enumerations

• If you only want to use the enum to refer to constants

(but don't plan to use the type to declare variables, func

arguments, etc) you can use an unnamed enum

enum DaysOfWeek {mon=1,tue,wed,thr,fri,sat,sun};

cout << "Enter day (mon=1 to sun=7)" << endl;

int day;

cin >> day;

if (day == thr) {

cout << "C++ Lecture at 11am!\n";

}

enum {name1, name2, .. nameN};

Enumerations for a menu
• In a menu routine, enumerations can be used in the

switch statement to clarify the case expressions.

enum Menu {mean=1,stdev=2,order=3};

switch (request) {

case mean:

:

break;

case stdev:

:

break;

case order:

:

break;

default:

:

}

switch (request) {

case 1:

:

break;

case 2:

:

break;

case 3:

:

break;

default:

:

}

Typedefs

• It is sometimes uncertain which type will be needed for a

set of variables

typedef name type;

typedef long double Number;

int main() {

// calculate combinations

Number triesfct = 1;

for (int i = 1; i<=tries; i++) triesfct *= i;

Number winsfct = 1;

for (int i = 1; i<=wins; i++) winsfct *= i;

:

}

e.g. An integer variable

storing the value of a

factorial calculation will

only be useful up to 12!

• Use typedef to

aid redefinition of

a variable type

across an entire

program.

Writing probability functions
• When identifying function use cases, look for reusable

chunks of code that exist to calculate a single value.

• Functions to calculate Binomial and Poisson values can

be added to the program.

float binomial(float prob, int wins, int tries) {

// calculate combinations and then binomial

Number triesfct = factorial(tries); //function calling function

Number winsfct = factorial(wins);

Number lossesfct = factorial(tries-wins);

float comb = triesfct / (winsfct * lossesfct);

return(pow(prob,wins) * pow(1-prob,tries-wins) * comb);

} // can perform calculations within the return statement

float poisson(int r, float mean) {

return (exp(-mean) * pow(mean,r))/factorial(r);

}

Calling the probability functions

• Now that the probability calculations have been taken

outside main() these functions have the potential to be

called from other programs.

int main() {

// get probability, successes and tries

// get binomial

float binom = binomial(prob,wins,tries);

cout << "Binomial probability: " << binom << endl;

// get r and mean

// get poisson

cout << "Poisson probability: " << poisson(r,mean) << endl;

return 0;

}
[prob3.cpp]

Some questions about functions

• We will spend the rest of the lecture and the next lecture

answering the following questions concerning the use of

functions:

– Can my functions be used by other programs?

– How do I supply a default value for a function argument?

– Can a function call itself?

– Do I have to write separate functions for each type, even though

the function will be exactly the same?

– Is it possible to call a function that modifies the input arguments?

– How do I return more than one value from a function?

– Can the value of a function variable be made constant

throughout the entire program?

Creating function libraries
• The pre-processor

copies the

relevant contents

of the header

file into the

translation unit …

Translation units:

// func declarations

// func definitions

// func declarations

// main program

// function declarations

float binomial(float prob, int wins, int tries);

float poisson(int r, float mean);

[problib.h]

#include “problib.h”

// function definitions

float binomial(float prob, int wins, int tries) {

// calculate combinations

// calculate binomial

}

float poisson(int r, float mean) {

return (exp(-mean) * pow(mean,r))/factorial(r);

}

[problib.cpp]

#include “problib.h”

// main program

int main() {

:

} [prob.cpp]

C++ pre-

processor

The C++ program

• In general, a C++ program has source code distributed

across multiple files.

• It is useful to separate source code larger than 500+

lines into separate translation units.

• To compile code distributed across multiple files include

all the translation units in the compilation command.

g++ -Wall –o prob.exe prob.cpp problib.cpp

• The program will not compile unless the translation units

defining all the necessary functions are inculded

Default arguments

• It is often useful to supply a default value for a function

argument.

• The default is entered in the function prototype.

function_identifer (argument1 = value1, .. ,argumentN = valueN)

double getAngle(double vect1[],double vect2[],int radorDeg = 1);

double getArea(double PI = 3.14,double radius);

int main() {

double angle = getAngle(vect1,vect2); // get angle in radians

double angle = getAngle(vect1,vect2,2); // get angle in degrees

// get area of circle

double Area1 = getArea(3.14157,3); // ok

double Area2 = getArea(,3); // error

}

• If a function takes multiple arguments it is not possible to

have a default value for the first argument.

Recursion

• Recursion routines are a powerful and elegant tool in

programming.

• Recursive functions are commonly used in computing

mathematical algorithms (factorials, series) and in

manipulating large data structures.

Number factorial(int n) {
if (n > 1) {

return (n * factorial(n-1));
} else {

return 1;
}

} // function calls itself

Number factorial(int n) {
int fact = 1;
for (int i = 1; i<=n; i++)

fact *= i;
return fact;

}

Changing function argument types
• The compiler forbids calling a function with different input

and return types than declared in the function prototype.

• It seems necessary to declare & define separate funcs to

accept input and return values of different types.

int conversion(int celsius);
int main() {

int celsius;
cout << "Temperature (C)?“ << endl;
cin >> celsius;
float fahr = conversion(celsius);

//error: float returned but assigned to int
}
// func converts celsius into fahrenheit
int conversion(int celsius) {

return (int) (((9.0/5.0) * celsius) + 32);
}

Changing function argument types
• Functions i_conversion and f_conversion are added to

the code to account for the two different types.

int i_conversion(int celsius); //return int
float f_conversion(float celsius); //return float
int main() {

if (precis == 2) { //what precision is required
float celsius;
cout << "Temperature (C)?\n";
cin >> celsius;
float fahr = f_conversion(celsius);

} else {
int celsius;
cout << "Temperature (C)?\n";
cin >> celsius;
int fahr = i_conversion(celsius);

}
}

Function Overloading
• A function is distinct if the function name OR the number

and type of arguments is unique.

• Although separate conversion functions have to be

defined, these functions have the same identifier. This is

referred to as function overloading.

• Templates allow the use of the same func for multiple types (see later)

int conversion(int celsius); // same identifier but different
float conversion(float celsius); // argument and return types
int main() {

float celsius;
float fahr = conversion(celsius); // celsius is a float so float

: // version of function called
}
// functions convert celsius into fahrenheit
int conversion(int celsius) { return (int) (((9.0/5.0) * celsius) + 32); }
float conversion(float celsius) { return (((9.0/5.0) * celsius) + 32); }

Type conversion routines

• The compiler will use type conversion routines if there is

no exact type match:

Note: You don‟t really have to write a separate function

for each input and routine type, but it‟s good practice!

• The conversion routine will work here but do not rely on

this method to convert all types.

• A variable type is not just a label to indicate the precision

of a value. In general, a type is much more than a single

value.

Function Overloading
• Function overloading is not just used for grouping

identical functions. Overloading can be used when two

functions have a similar purpose.

float probdist(float prob, int wins, int tries);
float probdist(int r, float mean);
int main() {

:
float binom = probdist(prob,wins,tries); // get binomial
float poisson = probdist(r,mean); // get poisson
: // the func to call depends only on input args

}
float probdist(float prob, int wins, int tries) {…}
float probdist(int r, float mean) {…}

• This is the first example of polymorphism! In this case

the ability to implement a function in different ways.

Polymorphism

• DEFINITION:

“In object-oriented programming, polymorphism (from

the Greek meaning ‘having multiple forms’) is the

characteristic of being able to assign a different meaning

or usage to something in different contexts - specifically,

to allow an entity such as a variable, a function, or an

object to have more than one form. There are several

different kinds of polymorphism.”

http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci212803,00.html

http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci212803,00.html

The swap function

• Swapping the values in the

function will have no effect

on the variables in main()

• Calling a function in this

way is referred to as

passing by value.
• In fact, the object (variable)

within the funtion is actually

a copy not the original (just

has the same label).

“I want to write a function that takes two integers and

transposes their values.”

int main() {
int x = 2, y = 5;
cout << x << "," << y << endl;
swap(x,y);
cout << x << "," << y << endl;

}
void swap(int x, int y) {

//not same x and y (copies)
int tmp = y; y = x; x = tmp;
cout << x << "," << y << endl;
return;

}
2, 5

5, 2

2, 5
Is there an alternative method that allows the modification

of the input variables?

