Introduction to
Programming using C++

Lecture Five: Introducing Classes

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

The Next Step

 If you have made it this far ...

Congratulations! You can program in C++!

« But if you stop here you might as well have learnt a less
syntactically complicated language.

« The next half of the course will be spent introducing
Object Orientated (OQO) programming.

Types Reuvisited

« A type defines the information
that can be held by an object.

* A type limits the actions that can
be performed on the object.

* Atype is a method of
determining the amount of
memory that needs to be
allocated for a new object.

// C++ built-in types
int a; //integer
float b; //real
double c; //real
bool d; //boolean

char e; //character

float height = 1.76; // float type
unsigned integer counter = 5; // type limits to int above o

counter = counter / 3.6; // int conversion of rhs

Extending Types

» Types are not just a method of expressing the precision
of a value. A type is a category.

* The key to OO programming in C++ is the ability to
create user defined types.

// some declarations

int x, y;

Particle electron, muon;
Department physics, chemistry;
Car myFiesta;

 If the new types are declared and defined in the correct
manner then all of the above statements are valid C++.

Is there a need for new types?

* You have already written programs to model several
real-world situations without need for new object types.

!

rln—r)!

Pripn)=p(l-p)~

Modeling Complex Systems

« Can the same programming logic be applied to the
following complex systems?
— Car engine performance
— Resource optimisation within a company
— Particle interaction with detector material

Yes! Split problem into small group of calculations and store
relevant values in variables that have labels relevant to problem.

BUT:
* OO programming allows the creation of new types that
more accurately reflect the scenario to be modeled.

« A problem can be modeled in terms of objects and the
interaction between different objects.

This seems contrary to our obsession with reducing any situation
into a series of abstract mathematical statements...

Layers of Abstraction

* Obiject Orientated programming is just a higher level of
abstraction than you are currently used to.

* Your programs are already written in a high-level
language. Can you answer these questions? Do you
care?

— What is the bit sequence for the objects /\
number 37 modules 5

— What memory addresses are being | statements o
used to store your variables? assembler E

— How does program interpret language 2
keyboard signals into ASCII bitwise operations <
values?)

Layers of Abstraction

* Dealing with objects and object interaction enables
programs to be designed on a more intuitive level.

« (C++ provides the syntax to allow you to manipulate user

defined objects in the same way that integers and
floating numbers are manipulated.

Planet a,b; // information determined
a.force(b); // by class decleration

mass1 = getMass(1); // functions called to
force = getForce (G,mass1,mass2,dist); //retrieve properties
massI = densityr ¥ volumer; // statements establishing
mass2 = density2 * volumez; // values of properties

force = (G * masst * massz2) /pow(dist,2);

ABSTRACTION

L

Introducing Classes

User defined types are referred to as classes.

An object is an instance of class. A class is a category
of objects. Several objects of a certain class can be
instantiated (just like built in types).

int x; // equivalent

Car myFiesta, myFerrari; // statements

A car can be declared in the same way that an integer
can be declared. The variable myFiesta is associated
with an object of type Car.

An object instance is not a single value. Math operators
have to be assigned a new meaning in this context.

float someValue = myFerrari — myFiesta;

Declaring a Class

A simple car class will be designed to introduce the
basic concepts of class construction.

In the first iteration, a car object consists of two
characteristics, the age and retail price of the car.

A car class is declared using the 1/ car declaration
class keyword followed by the class Car {
name of the class. Llic:

. . . public:
The variables declared inside int ageInYears;
the block are associated with int pricelnGBP;
this class. }. // semi-colon
These are known as member // terminated

variables or member data.

myFiesta (previous slide) is an object that contains two integers

Accessing Member Variables

« Member variables are accessed by the dot operator.

« The dot operator is placed after name of the object and
followed by the name of the desired member variable.

myFiesta.ageInYears = s5;

* Some common misunderstandings:

— This statement is trying to assign an age to the idea of a car,
rather than age of particular car

(does int = §; make any sense?)

Car.agelnYears = s;

— This statement is accessing age without the dot operator. The
car member variables only exist within the scope of the car class
(else how do we know if want

age of myFiesta or myFerrari?) .

agelnYears = s;

Simpler Data Structures

“The car class has no advantages
over using a one dimensional
array.”

— An array can only hold variables of the
same type whilst classes can contain
variables of multiple types.

“The class is just being written as
a data structure. A C-style struct
can be used for this purpose.”

— True, but classes are much more
powerful than structs.

— E.g. Unlike structs, members of a
class are private by default, which
encourages encapsulation (see later).

int Car = {s5,2000}

class Car {
public:
int agelnYears;

int priceInGBP;
};

struct Car {
int agelnYears;
int priceInGBP;

} //no semi-colon

Member Functions

A class is a collection of member variables and a set of
related functions, known as member functions or class
methods.

Member functions are also class Car {
accessed using the dot operator. public:

They are distinguished from int ageInYears;
member variables by the use of int priceInGBP;
parentheses. void brake();
Like other functions they can take | void accelerate();
arguments };

Member functions have a role specific to

the class they are declared in. They are Car myFiesta;
primarily used to access and manipulate | myFiesta.brake();

class member data.

Writing Member Functions

 The difference between a normal function definition and
a member function is the form of the function name.

 The member function name needs to be prefixed with
the class it belongs to followed by the scope resolution
operator ::.

» This syntax indicates to the compiler that the function is
local to the Car class and can only be accessed through
a Car object.

// brake member function
void Car::brake() {

cout << "Slowing down* << endl;

}

Private and Public Member data

* Al members of a class are declared [j,ss Car {

private by default. int ageInYears;

. . : int priceInGBP;
If public kew\{ord iIs removed from void brake():
class declaration the member o] el)

variables and methods cannot be I
accessed from outside the class. ,
Car myFiesta;

“Why should the member data be // error here
private? | created the object so | should myFiesta.agelnYears = s;

have access to all of its information.”

« Think of the declaration as the acquisition of an object
rather than the creation of an object.

* The inner workings are hidden from you for your own
protection! You don’t need to know how the object works,
all you need is an interface to the object. This is known as
encapsulation or information hiding.

Accessor Methods

Private member data can be
modified by calling public member
functions known as accessor
methods. Accessor methods are
commonly known as “getters” and
“setters”.

“Why go the trouble hiding the member
data? It is easier for me to access the data
directly through the dot operator rather
than through this level of indirection.”

class Car {
public:
void brake();
void accelerate();
void setAge(int age);
int getAge();
void setPrice(int price);
int getPrice();
private:
int ageInYears;
int pricelInGBP;
}

An accessor method will allow you to change the name
of a member variable. This change is hidden from the

user because of encapsulation.

A Point Class

* The remainder of this lecture will be used to construct a
point class.

int main() {
Point a, b;

« To design the interface, think in terms of the point object:
— What is my identity?
— What messages can you give me?
— What is my distance from the origin?
— What is my distance from another point in space?

Point class declaration

« The initial interface design // point class
contains just accessor methods. // declaration
class Point {
« The member data is private and public:
the accessor functions are public. void setX(float x);
void setY (float y);
* The class declaration, or void setZ(float z);
interface, is put into a separate float getX();
header file (this allows to float get Y ();

float getZ();
private:

float itsX;

float itsY;

float itsZ;
}: [Point.h]

minimise the dependencies
between different pieces of code).

Preprocessor Macros

Before the compiler interprets code it is passed through
the preprocessor, whose task is to find preprocessor

directives, or macros.

Preprocessor macros are indicated by lines beginning

with a hash, #.

— In fact, we have already been using the #include macro.

Macros can also be used for other purposes, such as
defining constants, although they are generally

considered bad practice.

One place where macros are
useful is to prevent a header file
being included multiple times.

#ifndef MYHEADER H
#define MYHEADER H

// code

#endif

For more information on macros see:
http://www.cplusplus.com/doc/tutorial/preprocessor.himl

http://www.cplusplus.com/doc/tutorial/preprocessor.html

Accessor Implementation

 The implementation of the
accessor functions, along with
other class methods, are
placed in a source file,
seperate from the header file
and the main program.

* The implementation is totally
separate from the interface.

void Point::setX(float x) {
itsX = x;

float Point::getX() {

return itsX;

#include “point.h”
int main() {
Point a;
// set coordinates for point a
a.setX(2); a.setY(1); a.setZ(s);
// display coordinates
cout <<"vector coordinates a: "
«a.getX()<«<","<< a.getY()
«","<<a.getZ()<<endl;

} [UsePoint.cpp]

#include “point.h” « A user of the point class will just
need to include the header file
} at the top of the program.

* The coordinates of the point are
} [Point.cpp] Setand retrieved in main().

Distance of Point from Origin

* A public class method is included that returns the
distance of a point instance from the origin.

// declare point class :

class Point { // get distance from origin

public: float Point::distanceFromOrigin() {
: float distance = sqrt(pow(itsX,2)
float distanceFromOrigin(); + pow(itsY,2) + pow(itsZ,2));

private: return distance;
: }

}; [Point.h] | |: [Point.cpp]

* Note that private member variables can be used in
public class methods from the same class.

Distance between Points

 What is the points distance from another point in space?

// distance between points

float Point::distanceFromPoint(float x, float y, float z) {

float difX = itsX - x;

float difY = itsY - y;

float difZ = itsZ - z;

float distance = sqrt(pow(difX,2)
+ pow(difY,2)
+ pow(difZ,2));

return distance;

}

[Point.cpp]

[UsePoint.cpp]

int main() {

} :

float x = b.getX();

float y = b.getY();

float z = b.getZ();

float dist =
a.distanceFromPoint(x,y,z);

In this first iteration the x,y and z coordinates of one of the Point’s is
passed into the new Point’'s membre function. There’s a better way...

Passing Objects into Functions

The point object can Claﬁi Point { [Point.h]
be passed directly S

into the member float distanceFromPoint(Point anotherPoint);
function. , : B

The member variables
from another point obj
have to be accessed
via the dot operator.

// distance between points

float Point::distanceFromPoint(Point anotherPoint) {
float difX = itsX - anotherPoint.itsX;

o float dif Y = itsY - anotherPoint.itsY;

N.B. another object’s float difZ = itsZ - anotherPoint.itsZ;

member daj[a can be float distance = sqrt(pow(difX,2) + pow(difY,2) +
accessed directly by pow(difZ,2));

an object of the same return distance; [Point.cpp]
class without calling 1

public accessor func.

.int main() {

C++is not a ‘pure’ object :
orientated language! float distance = a.distanceFromPoint(b);
(there’'s a compromise to) ‘

enhance functionality) [UsePoint.cpp]

Overloading Class Methods

« The two distance functions have different input args.
Therefore a single member function distance can be
overloaded (polymorphism).

* Overloading similar functions simplifies the class interface

class Point {

public: [Point.h]

float distanceFromOrigin();
float distanceFromPoint(Point anotherPoint);

};. class Point {
public:

float distance(); // from origin
float distance(Point anotherPoint);

3

Point Class Declaration

// point class declaration
class Point {

public:
Point(float x, float y, float z); // constructors
Point(); ¢ What are
~Point(); // destructor
void setX(float x); // accessors these? ...

void setY(float y);

void setZ(float z);

float getX();

float getY();

float getZ();

float distance();

float distance(Point anotherPoint);
private:
float itsX; // member variables
float itsY;
float itsZ;

};

