
Introduction to

Programming using C++

Lecture Two: Further Syntax

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

Factor calculation example

int myNumber, nfactors = 0;

cout << "Give me a number\n";

cin >> myNumber;

for (int factor = 1; factor < myNumber; factor++) {

if ((!(myNumber % factor)) && (factor != 1)) {

cout << factor << " is a factor\n";

++nfactors;

}

}

if (!nfactors) cout << myNumber << " is prime\n";

The for loop

• In the lifetime of the for statement:

– the initialisation statement is called only once.

– the action statement, along with all the statements within the

block, are repeatedly executed (or looped) until..

– the expression in the condition statement is false.

for (initialisation; condition; action) {
statement 1;
:
statement n;

}

for (int i=1; i<10; i++) {
statements;

}

• Variable i initialised to 1.

• Process statements in block.

• Increment i by 1.

• If i less than 10 continue.

Using the for loop

• The for loop is much more than a simple iterator.

• The initialisation, the condition and the action parts of the

for statement are all optional. Each of these statements

can also include multiple expressions.

// multiple expressions
// in initialisation
for (i = 1, j = 0; i < 10;) {

:
// iterator inside block
i = i + 1
:

}

for (;;) { // infinite loop
cout << “hello world\n”;

}

hello world

hello world

hello world …

Increment Operators

• The ++ operator increments the value of an integer

variable by 1.

• This is the origin of the name “C++” !

• Similarly, the -- operator decrements the value of an

integer variable by 1.

i++ //the same as i = i + 1
i-- //the same as i = i - 1

factor++

Pre and Post-fix Operators

• These both increment the value of

the variable by 1 but they are not

identical.

• Both operators will have specific

uses in your code, know when to

use them and use them properly.

factor++
++nfactors

int x = 2, y = 0;
y = x++; // x incremented after assignment -> y = 2
y = ++x; // x incremented before assignment -> y = 4

• The increment and decrement operators are unary

operators. The mathematical operators are binary

operators.

Logical Operators

• Expressions are evaluated as false if their value is zero,

true if non-zero.

• A conditional statement can therefore consist of multiple

expressions with logical and, or and not operators.

if ((!(myNumber % factor)) && (factor != 1))

if ((x == 2) && (y > 5))
if ((x == 2) || (y > 5))!x Logical negation

x && y Logical AND

x | | y Logical OR

int x = 1, y = 1, z = 2;
if (x == 1 && y > 2 || z < 3) {

cout << “condition true\n”;
}

condition true

P
R

E
C

E
D

E
N

C
E

Simple statistics example

• We will now focus on the development of the small

statistical calculation program [stats1.cpp]

> stats1.exe > stats1.exe > stats1.exe

1 2 3

5 5 5

6 6 6

4 4 4

5 0.816397 4 5 6

• What is the purpose of this program?

Purpose of the program

• The program performs one of the following routines:

– calculate the mean of the input sample.

– calculate the standard deviation of the input sample.

– order the input sample from lowest to highest value.

• Was this obvious from looking at the source code?

Purpose of the program

• Comments are required to explain the purpose of the

code.

• Annotations are not just required within the source code.

Explanatory text is required for the user of the program.

• New input routine:

// get a routine to run
cout << "\nWhat would you like to do?" << endl;
cout << "1 - Calculate the mean" << endl;
cout << "2 - Calculate the standard deviation" << endl;
cout << "3 - Order the sample lowest first” << endl;
cin >> r;

The function of the code is unclear to everyone apart

from the author.

Adding whitespace
Source code needs spacing out

to increase readability.

• The efficiency of the program

does not decrease if whitespace

is liberally used throughout the

source code.

• Often useful to add line breaks to

partition chunks of code

[stats2.cpp].

// calculate x_i - mean
md = 0;
s1m = s1 - m_2;
s1ms = pow(s1m,2);
s2m = s2 - m_2;
s2ms = pow(s2m,2);
s3m = s3 - m_2;
s3ms = pow(s3m,2);
md = s1ms + s2ms + s3ms;

// calculate std
// deviation
m_3 = md / 3;
s = sqrt(m_3);

md=0; s1m=s1-m_2;s1ms=pow(s1m,2);
s2m=s2-m_2;s2ms=pow(s2m,2); s3m=s3-
m_2;s3ms=pow(s3m,2);md=s1ms+s2ms+s3
ms; m_3=md/3;s=sqrt(m_3);

Variable Naming

• The purpose of the program can be interpreted much

easier if the variables have names that indicate their role

within the program.

• In other words, descriptive names for variables enable

other developers to follow the "story" told by the code.

Variable names bear no relation to their role in the program.

// bad
s_1 = s1 + s2 + s3;
// better
sum = sample1 + sample2 + sample3;

Some conventions:

Sum_of_value

SumofValue

sumOfValue

iSum

Declaration Styles

BUT:

• It is preferable to declare variables close to where they

are first assigned a value.

• This seems too chaotic, why bother? This practice is

introduced to implement an important feature of C++ …

All the variables are declared at the top of the program.

• In C++, a variable can be declared

anywhere within the body of the

program provided the declaration

precedes the assignment.

• All variables can be declared at

the top of main().

int main() {
int x = 1;
// error
y = x;
:

}

The Lifetime of Objects
• The lifetime of an object associated with a variable:

– starts with the declaration of the variable.

– ends with the termination of the containing block.

int x = 4; int y = 2;
if (y > 0) {

cout << "x = " << x << endl;
}
if (y > 1) {

int x = 7; //diff object
cout << "x = " << x << endl;
x++;

}
// original object
cout << "x = " << x << endl;

• Same variable name can

be repeated in different

blocks.

• Outside of the block the

variable runs out of scope.

• Variable has a scope

local to the block in

which it was declared

• See [stats3.cpp].

x = 4

x = 7

x = 4

Extending the sample size

• We would now like the program to accept a sample of

any size.

• The first step is to add an option to dictate the size of the

sample

The program can only handle a data sample of a fixed size.

cout << "How big is the sample?" << endl;
int size;
cin >> size;

sum = sample1 + sample2 + sample3;
float sumDivSize = (sum / 3);

• But this is not enough to extend the sample size. The

code has been specifically written to process three

values:

Extending the sample size
• Can a larger sample size be

accommodated by simply

adding more variables?

• Yes, but this is not scalable:

float sampleSwap;
if (sample1 > sample2) {

sampleSwap = sample1;
sample1 = sample2;
sample2 = sampleSwap;

}
if (sample1 > sample3) {

sampleSwap = sample1;
sample1 = sample3;
sample3 = sampleSwap;

}
if (sample2 > sample3) {

sampleSwap = sample2;
sample2 = sample3;
sample3 = sampleSwap;

}

Sample size statements

3 13

4 22

5 34

10 139

• How does the program cope

with holding the sample values

if the sample size is only to be

decided at runtime?

Arrays

• An array is an ordered collection of objs of same type.

• An object stored in an array is referred to as an array

element.

• In the 1st example array x holds 10 objects of type int.

• The first element in the x is x[0] and the last is x[9].

type variable [size]

int x[10];
int y = x[4];
float x[5] = {5.0,4.3,6.1,2.1,9.2};
int x[2][3] = {{1,2,3},{4,5,6}}; // 2D

• Arrays are an integral part of most other computing

languages but are approached with suspicion in C++

Using for loops

• To dynamically assign memory (properly) you need to

use the new syntax and pointers, we’ll cover this later.

• However, this is not the final solution as the routines are

still limited to only accepting three values …

cout << "How big is the sample?" << endl;
int size;
cin >> size;
float sample[size]; //bad, but allowed

//by some compilers
float* sample = new float[size]; // better

• An array can be used to store a data sample of any

reasonable size (memory is limited).

Using for loops

• Remove this dependency by using a for loop to iterate

through all the data sample.

// calculate sum of sample
int sampleCount;

for (sampleCount = 1; sampleCount <= size;
sampleCount = sampleCount + 1) {

int sampleCountArray = sampleCount - 1;
sum = sum + sample[sampleCountArray];

}

The Bubble Sort
• Using another (nested) for loop

can significantly improve the

current ordering routine too:

float sampleSwap;
if (sample1 > sample2) {

sampleSwap = sample1;
sample1 = sample2;
sample2 = sampleSwap;

}
if (sample1 > sample3) {

sampleSwap = sample1;
sample1 = sample3;
sample3 = sampleSwap;

}
if (sample2 > sample3) {

sampleSwap = sample2;
sample2 = sample3;
sample3 = sampleSwap;

}

for (int i = 0; i < (size - 1); i = i + 1) {
for (int j = 0; j < (size - 1); j = j+1) {

if (sample[j] > sample[j+1]) {
float swap = sample[j];
sample[j] = sample[j+1];
sample[j+1] = swap;

}
}

}

[stats4.cpp]

Error Catching

• If the input value for the routine is not in range 1 to 3 the

code will compile but the program will not indicate an

error back to the user.

There is no way of handling incorrect input by the user.

> stats

What would you like to do?

1 - Calculate the mean

2 - Calculate the standard deviation

3 - Order the sample lowest first

4

How big is the sample?

3

Sample 1: 4

Sample 2: 5

Sample 3: 6

>_

• Do not assume that

everyone who uses

your code will be

competent!

Error Catching
• The solution is to replace the separate if blocks with one

if - else if - else block. if (request == 1) {
:

} else if (request == 2) {
:

} else if (request == 3) {
:

} else {
cerr << "Routine doen’t exist\n”;
return 1;

}

if (request == 1) {
:

}
if (request == 2) {

:
}
if (request == 3) {

:
}

• Non-zero return code indicates to os that program did

not terminate successfully

• cerr writes so stderr rather than stdout (also clog)

[stats5.cpp]

Unnecessary Code

• It is good coding practice to attain a balance between

conciseness and clarity

• The less variables you have in an algorithm the less

potential mistakes you will make! Well, almost…

Code is unnecessarily verbose.

// calculate sum of sample
int sampleCount; //declaration can be inside for loop
for (sampleCount = 1; sampleCount <= size;

sampleCount = sampleCount + 1) { //can use ++
int sampleCountArray = sampleCount - 1;
// above line is unneeded
sum = sum + sample[sampleCountArray];

}

Self Assigned Operators

• It is common coding practice to apply a mathematical

operation to a variable and assign the result back to the

same variable.

x = x + 5; // add 5 to x
x += 5; // add 5 to x
x += n; // add n to x

Addition +=

Subtraction -=

Multiplication *=

Division /=

• In C++, this can be achieved by

applying self-assigned operators.

sum = sum + sample[sampleCount-1];
// more concise
sum += sample[sampleCount-1];

• The code is then

more concise

[stats6.cpp]

Alternatives to the for loop

• The for loop is much more versatile than just iterating

the value of a conditional variable by 1.

• There are other loops that provide the same result with

less syntactic baggage …

Simplify the iteration routines in the code

// calculate sum of sample
int sampleCount;
for (sampleCount = 1; sampleCount <= size;

sampleCount = sampleCount + 1) {
sum = sum + sample[sampleCount - 1];

}

The while loops
• There are two other types of loops you can use in C++:

• The statements within the block are repeatedly executed

while expression is true.

Which loop should I use?

• Use the while loop if it is possible that the statement

block may never be executed.

• Use the do…while loop if the statement block has to be

executed at least once.:

while (expression) {
statement;
:

}

do {
statement;
:

} while (expression)

Breaking the loop
• It is possible to exit while, do..while and for loops even

if the condition is still true.

int x = 0, y = 2;
while (x < 3) {

x++;
if (x == y) continue;
cout << x << “\t”;

}
cout << “end\n”;

for (int i = 0; i < 5; i++) {
if (i == 3) break;
cout << i << “\t”;

}
cout << “end\n”;

• The break statement

can be used to exit the

nearest enclosed loop.

• The continue statement

can be used to skip

remaining statements in

the block.

• There’s one other

unspeakable way out

of a loop …

0 1 2 end

1 3 end

… goto, but don’t use it or:

Iteration in a while loop

• How does the while loop become an iteration tool?

//increment in
//condition
int x = 0;
while (x++ < 10) {

:
}

//increment in body
int x = 1;
while (x < 10) {

:
x++;

}

for (int sampleCount=1; sampleCount<=size; sampleCount++) {
sum = sum + sample[sampleCount-1];

}
//replaced by …
int sampleCount = 0;
while (++sampleCount<=size) sum += sample[sampleCount-1];

[stats7.cpp]

