Introduction to
Programming using C++

Lecture One: Getting Started

Carl Gwilliam

gwilliam(@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

Course Prerequisites

« What you should already know about C++

NOTHING!!

| have assumed:
— You have never encountered C++ before.

— You have limited to no programming experience in any
language.

By the end of the course

You should:
— Have a working knowledge of all of the common C++ syntax.
— Know how to avoid common coding pitfalls.
— Be able to use and create your own functions and classes.
— Recognise the advantages of using pointers and references.

— Be able to understand the fundamental ideas of object oriented
(OQO) design.

Be aware!
— This is not the comprehensive course for C++!
— Some advanced topics will not be covered in this course.

— Project specific C++ courses are worth attending if you have
time.

You are learning a sophisticated language! It will take some time

and a fair amount of hands-on experience to become familiar with
C++.

Course format
Lecture 1: Getting Started

— Statements, variables, types, operators, I/O, conditional
statements

Lecture 2: Further Syntax

— For and while loops, increment and logical operators, sorting
algorithms

Lecture 3: Functions
— Library and user functions, declarations, arguments, overloading

Lecture 4: Pointers and References

— References, pointers, passing by reference, pointers and arrays,
consts

Lecture 5: Introducing Classes

— Declarations, member variables and functions, accessors,
overloading

Course Format

Lecture 6: Classes in Practice

— Constructors and destructors, constant functions, memory
management

Lecture 7: Designing Classes

— Passing by const reference, copy constructors, overloading
operators

Lecture 8: Towards OO Design

— Inheritance, virtual functions, multiple inheritance, abstract
classes

Lecture 9: Templates & the STL

— Function & Class Templates, Specialisation, String, Vector, Map

Lecture 10: File I/0O and Streams
— Reading, writing, formatting, strings as streams

Why do you need to learn how to
write code?

"l am not a computer scientist!”

« Software development skills are usually required in every
element of your project - from extracting data to getting
your results published.

It will be very useful to learn good programming
techniques now so you can save a lot of time later.

Why Learn C++7

"l already know how to program in FORTRAN/C/ASSEMBLER
so why do | have to bother with C++7?*

 Inrecent times there has been a shift from procedural
languages such as FORTRAN to OO-style languages
such as C++ and Java.

« The language of choice, for now, is C++.

« C++isideally suited for projects where the active
developers are not located in the same place.

e Our survey says: almost all of the current HEP Ph.D.
students write and execute C++ code on a daily basis.

C++ is not the answer, it is a reasonable solution..

Hello World!

* The first complete C++ program in this course:

#include <iostream>
using namespace std;
int main() {

cout << "Hello World!";

return o;

}

* Every C++ program must contain one (and only one)
main function.

* When the program is executed "Hello World" is
displayed on the terminal screen.

Compiling Hello World

* Once the code is written is has
to be compiled:

g++ -Wall -o Hello.exe
HelloWorld.cpp

Error SLUCTEsE

 |If the code compiles successfully
an object file (HelloWorld.o) is
created.

o | . This object file is then linked with
other object files and libraries
required to create the exe.

» Hallo.eaxe

* The executable can be run at
the command prompt, just like
any other UNIX command.

Hello World!

A simple example

int a; float b; float c;

float d = 10.2;

float result;

// get two numbers

cout << "Enter two numbers" << endl;
cin >> a; cin >> b;

C = 2.1

result = b *a + c;

result = (result + 2)/d;

// display the answer

cout << "Result of calculation: " << result << endl;

Statements

- Statements are used to control the sequence of
execution, evaluate an expression (or even do nothing).

 ALL statements are terminated with a semi colon ;

cout << "Enter two numbers" << endl;

result = b *a + c;

* One statement can trail over several lines.
« Code is easier to read with a sensible use of whitespace.

result= b* a

+C :

//1is the same as

result = b * a + ¢

Comments

Comments are useful for you and other developers!

// get two numbers
// display the answer

A comment begins with // and ends with a line break.
Comments indicate the purpose of the surrounding code.
They can be placed anywhere in the program, except
within the body of a statement:

// this is a valid comment
result = b * a; // this is also valid

result = // this is NOT wvalid (result

+2)/d;
/* You may also use this ‘C’ style

comment to span multiple lines */

Variables

* Avariable is a name associated with a location in
computer memory used to store a value.
In order to use a variable in C++, we must first declare it
by specifying which data type we want it to be.

int a;
float d = 10.2;

« Variable ‘a’ has a type integer associated with some
object of type integer.

« Variable ‘d’ has a type float associated with some object
of type float with a value of 10.2

Variable Types

 What does it mean to say a variable has a type?
e The C++ built-in types are:

int a; //integer

float b; //real

double c; //real

bool d; //boolean (o or 1)

char e; //character (ASCII value)

* The compiler needs to know how much memory to set
aside for the object associated with the variable.

« Each type requires a specific amount of space in
memory.

The Built-in Types

1 byte = 8 bits = 28

bool 1 true/false .
possible combos.

char 1 256 chars
int 2o0r4 (see below) Size determined
shortint 2 + 32,768 by the compiler.

. 1O
long int 4 +2.110 Range can be
float 4 +3.4*1038 doubled by using
double 8 +1.8%10308 unsigned int

 Thatis all? How does C++ deal with complex numbers?

« C++ has the capacity to create user defined types. This
Is a fundamental concept of the language.

Initialisation

When declaring a variable, it's value is by default
undetermined.

We can give the variable a value at the same moment it is
declared

There are two ways to do this in C++.
— The more used c-like method:

// type identifier = initial_value

int a = o;

— The constructor method:

// type identifier (initial value)
int a(o);

It is good practice to always initialise a variable to a value

Assignment

« Avariable can be assigned (or reassigned) to a particular
value with the assignment operator (=).

C = 2.1; //assignment operator
result =b * a + ¢

* Do not mistake the above statements for algebral

« Value of the expression to the right of the assignment
operator (rvalue) is assigned to the variable on the left
(the Ivalue). Remember assignment is right-to-left:

c = 2.1; //c assigned the value 2.1
2.1 = ¢; //incorrect!

Arithmetic Operators

* There are five primary mathematical operators:

Addition +

Subtraction -

Multiplication | *

Division /

Modulus %

the modulus is the
remainder from integer
division (e.g. 33%6 is
equal to 3).

=

« Be careful applying the division operator when
assigning a variable with a different type:

inta=28;intb =g5;
float c = a / b;

// cis1

c = (float)a / (float)b; // c is 1.6

Casting an integer
to a float (‘c’-style)

/

Multiple Operators and Precedence

result =b *a + ¢
result = (result + 2)/d;

* There are no restrictions on the amount of operators in an
expression.

floata=6% 4+ 4 % 2; // answer is 32
floatb = 6 * (4+4) * 2; // answer is 96 /
// expression is incomprehensible o,
floatc =b+c*2/d+3+b/c+d-b *c/d;
// still unclear!

floatd = b + ((c*2)/(d+3)+(b/(c+d))-(b*c/d)); -

* Do not assume that an expression is evaluated from left
to right by the compiler. In C++, an operator has a
precedence value.

PRESEDENCE

Input and Output

 cin reads information from the keyboard and cout prints
information to the terminal (they're defined in the header

losteam). New line \n
cin >> a; Horizontal tab |\t
cout << "Enter two numbers" << endl; Backspace \b

» For now, you can use these Alert \a
statements without fully appreciating |Backslash \\
the syntax.

float a = 13.3; This is a string
cout << "This is a string" << endl; velLe @raL Teke
cout << "Value of a: " << a << endl; :::3 13.3
cout << "a: " << (int) a << endl; |
cout << "a =\t" << a <« "\n";

Equality example

float a, b, c = o;

cout << "Enter two numbers* << endl;

cin >> a; cin >> b;

c =a-b;

if (a == b) cout << "T'wo numbers are equal\n";
if (Ic) {

cout << "Two numbers are equal\n"; return o;

if (a>b){
cout << "The first number is greater\n";

}else {

cout << "The second number is greater\n";

return o;

Conditional Statements

if (expression) statement;

* Apply the condition in the expression to determine if the
statement will be executed.

« The capability of altering the program flow depending on
a outcome of an expression is a powerful tool in
programming.

« The expression is a conditional statement is always
evaluated as false (0) or true (non-0).

Conditional Statements

« A statement will be included in the program flow if the
condition is true.

* The greater than symbol > and the equivalence symbol
== are relational operators.

if (a > b) statement;
if (a == b) statement;

 Remember the difference between the assignment (=)
and equivalence (==) operators!

Condition
Is always
true

Int X = 4; Int y = 3;
if (x = 4) cout << “x equals 4\n”;
if (y = 4) cout << “y equals 4\n”;

X equals 4

y equals 4

Relational Operators

» Relational operators are used to evaluate if an
expression is true or false.

X<y |Lessthan

X <=y |Less than or equal to

x>y | Greater than

x >=y | Greater than or equal to

X ==y |equal

x!=y | Not equal

* The negation operator ! inverts the logic of the result.

if (!(x > y)) cout << “x less than y”;

Boolean Logic

if (Ic)

« Conditional statements use boolean logic to determine
whether the expression is true or false.

A non-zero value is true, a zero value is false.

int x = 2; int y = 0; X equals 2
if (x) cout << “x equals 2” << end];
if (ly) cout << “y equals 0” << end]; y equals 0

Boolean logic is used frequently in C++ so be prepared!

Compound Statements

Compound statements (or blocks) act as a single
statement.

They enable multiple statements to be attached to one
condition.

Blocks are started and ended with braces { }

A ; is not placed at the end of a block

{

statement I;

statement n;

}

If-else Statements

« Atrue condition in the if expression | if (expression) {

will result in block a being executed block a;
otherwise block b will be executed. |} else {

* The if statement can be used for slioets
multiple conditions and nested)
conditions:

if (a>b){ if (a>b){
: if (a>=c¢c){
}elseif (a<b){ :
: } else §
} else § :
: }
} }

* Note, else block is only executed if none of above is true

