
Introduction to

Programming using C++

Lecture Five: Introducing Classes

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

The Next Step

• If you have made it this far …

Congratulations! You can program in C++!

• But if you stop here you might as well have learnt a less

syntactically complicated language.

• The next half of the course will be spent introducing

Object Orientated (OO) programming.

Types Revisited

• A type defines the information

that can be held by an object.

• A type limits the actions that can

be performed on the object.

• A type is a method of

determining the amount of

memory that needs to be

allocated for a new object.

// C++ built-in types

int a; //integer

float b; //real

double c; //real

bool d; //boolean

char e; //character

float height = 1.76; // float type
unsigned integer counter = 5; // type limits to int above 0
counter = counter / 3.6; // int conversion of rhs

Extending Types

• Types are not just a method of expressing the precision

of a value. A type is a category.

• The key to OO programming in C++ is the ability to

create user defined types.

// some declarations
int x, y;
Particle electron, muon;
Department physics, chemistry;
Car myFiesta;

• If the new types are declared and defined in the correct

manner then all of the above statements are valid C++.

Is there a need for new types?

• You have already written programs to model several

real-world situations without need for new object types.

Modeling Complex Systems
• Can the same programming logic be applied to the

following complex systems?

– Car engine performance

– Resource optimisation within a company

– Particle interaction with detector material

Yes! Split problem into small group of calculations and store

relevant values in variables that have labels relevant to problem.

BUT:

• OO programming allows the creation of new types that

more accurately reflect the scenario to be modeled.

• A problem can be modeled in terms of objects and the

interaction between different objects.

This seems contrary to our obsession with reducing any situation

into a series of abstract mathematical statements…

Layers of Abstraction

• Object Orientated programming is just a higher level of

abstraction than you are currently used to.

• Your programs are already written in a high-level

language. Can you answer these questions? Do you

care?

– What is the bit sequence for the

number 3?

– What memory addresses are being

used to store your variables?

– How does program interpret

keyboard signals into ASCII

values?

objects

modules

statements

assembler

language

bitwise operations

A
B

S
T

R
A

C
T

IO
N

Layers of Abstraction
• Dealing with objects and object interaction enables

programs to be designed on a more intuitive level.

• C++ provides the syntax to allow you to manipulate user

defined objects in the same way that integers and

floating numbers are manipulated.

mass1 = density1 * volume1; // statements establishing
mass2 = density2 * volume2; // values of properties
force = (G * mass1 * mass2) /pow(dist,2);

Planet a,b; // information determined
a.force(b); // by class decleration

mass1 = getMass(1); // functions called to
force = getForce (G,mass1,mass2,dist); //retrieve properties

A
B

S
T

R
A

C
T

IO
N

Introducing Classes
• User defined types are referred to as classes.

• An object is an instance of class. A class is a category

of objects. Several objects of a certain class can be

instantiated (just like built in types).

• A car can be declared in the same way that an integer

can be declared. The variable myFiesta is associated

with an object of type Car.

• An object instance is not a single value. Math operators

have to be assigned a new meaning in this context.

int x; // equivalent
Car myFiesta, myFerrari; // statements

float someValue = myFerrari – myFiesta;

Declaring a Class

• A simple car class will be designed to introduce the

basic concepts of class construction.

• In the first iteration, a car object consists of two

characteristics, the age and retail price of the car.

• A car class is declared using the

class keyword followed by the

name of the class.

• The variables declared inside

the block are associated with

this class.

• These are known as member

variables or member data.

// car declaration
class Car {
public:

int ageInYears;
int priceInGBP;

}; // semi-colon
// terminated

• myFiesta (previous slide) is an object that contains two integers

• Some common misunderstandings:

– This statement is trying to assign an age to the idea of a car,

rather than age of particular car

(does int = 5; make any sense?)

– This statement is accessing age without the dot operator. The

car member variables only exist within the scope of the car class

(else how do we know if want

age of myFiesta or myFerrari?) .

Accessing Member Variables

• Member variables are accessed by the dot operator.

• The dot operator is placed after name of the object and

followed by the name of the desired member variable.

ageInYears = 5;

myFiesta.ageInYears = 5;

Car.ageInYears = 5;

Simpler Data Structures

• “The car class has no advantages

over using a one dimensional

array.”

– An array can only hold variables of the

same type whilst classes can contain

variables of multiple types.

• “The class is just being written as

a data structure. A C-style struct

can be used for this purpose.”

– True, but classes are much more

powerful than structs.

– E.g. Unlike structs, members of a

class are private by default, which

encourages encapsulation (see later).

class Car {
public:

int ageInYears;
int priceInGBP;

};

struct Car {
int ageInYears;
int priceInGBP;

} //no semi-colon

int Car = {5,2000}

Member Functions

• A class is a collection of member variables and a set of

related functions, known as member functions or class

methods.

class Car {
public:

int ageInYears;
int priceInGBP;
void brake();
void accelerate();

};

• Member functions are also

accessed using the dot operator.

• They are distinguished from

member variables by the use of

parentheses.

• Like other functions they can take

arguments

Member functions have a role specific to

the class they are declared in. They are

primarily used to access and manipulate

class member data.

Car myFiesta;
myFiesta.brake();

Writing Member Functions

• The difference between a normal function definition and

a member function is the form of the function name.

• The member function name needs to be prefixed with

the class it belongs to followed by the scope resolution

operator ::.

• This syntax indicates to the compiler that the function is

local to the Car class and can only be accessed through

a Car object.

// brake member function
void Car::brake() {

cout << "Slowing down“ << endl;
}

Private and Public Member data
• All members of a class are declared

private by default.

• If public keyword is removed from

class declaration the member

variables and methods cannot be

accessed from outside the class.

“Why should the member data be

private? I created the object so I should

have access to all of its information.”

• Think of the declaration as the acquisition of an object

rather than the creation of an object.

• The inner workings are hidden from you for your own

protection! You don‟t need to know how the object works,

all you need is an interface to the object. This is known as

encapsulation or information hiding.

class Car {
int ageInYears;
int priceInGBP;
void brake();
void accelerate();

};

Car myFiesta;
// error here
myFiesta.ageInYears = 5;

Accessor Methods

• Private member data can be

modified by calling public member

functions known as accessor

methods. Accessor methods are

commonly known as “getters” and

“setters”.

“Why go the trouble hiding the member

data? It is easier for me to access the data

directly through the dot operator rather

than through this level of indirection.”

class Car {
public:

void brake();
void accelerate();
void setAge(int age);
int getAge();
void setPrice(int price);
int getPrice();

private:
int ageInYears;
int priceInGBP;

};

• An accessor method will allow you to change the name

of a member variable. This change is hidden from the

user because of encapsulation.

A Point Class

• The remainder of this lecture will be used to construct a

point class.

• To design the interface, think in terms of the point object:

– What is my identity?

– What messages can you give me?

– What is my distance from the origin?

– What is my distance from another point in space?

int main() {
Point a, b;
:

}

Point class declaration

• The initial interface design

contains just accessor methods.

• The member data is private and

the accessor functions are public.

• The class declaration, or

interface, is put into a separate

header file (this allows to

minimise the dependencies

between different pieces of code).

// point class
// declaration
class Point {
public:

void setX(float x);
void setY(float y);
void setZ(float z);
float getX();
float getY();
float getZ();

private:
float itsX;
float itsY;
float itsZ;

}; [Point.h]

Preprocessor Macros
• Before the compiler interprets code it is passed through

the preprocessor, whose task is to find preprocessor

directives, or macros.

• Preprocessor macros are indicated by lines beginning

with a hash, #.

– In fact, we have already been using the #include macro.

• Macros can also be used for other purposes, such as

defining constants, although they are generally

considered bad practice.

• For more information on macros see:

http://www.cplusplus.com/doc/tutorial/preprocessor.html

• One place where macros are

useful is to prevent a header file

being included multiple times.

#ifndef MYHEADER_H
#define MYHEADER_H
// code
:
#endif

http://www.cplusplus.com/doc/tutorial/preprocessor.html

Accessor Implementation

• The implementation of the

accessor functions, along with

other class methods, are

placed in a source file,

seperate from the header file

and the main program.

• The implementation is totally

separate from the interface.

#include “point.h”
void Point::setX(float x) {

itsX = x;
}
float Point::getX() {

return itsX;
}

#include “point.h”
int main() {

Point a;
// set coordinates for point a
a.setX(2); a.setY(1); a.setZ(5);
// display coordinates

cout <<"vector coordinates a: "
<<a.getX()<<","<< a.getY()
<<","<<a.getZ()<<endl;

}

• A user of the point class will just

need to include the header file

at the top of the program.

• The coordinates of the point are

set and retrieved in main().[Point.cpp]

[UsePoint.cpp]

Distance of Point from Origin

• A public class method is included that returns the

distance of a point instance from the origin.

:
// get distance from origin
float Point::distanceFromOrigin() {

float distance = sqrt(pow(itsX,2)
+ pow(itsY,2) + pow(itsZ,2));

return distance;
}
:

// declare point class
class Point {
public:

:
float distanceFromOrigin();

private:
:

};

• Note that private member variables can be used in

public class methods from the same class.

[Point.cpp][Point.h]

Distance between Points

• What is the points distance from another point in space?

:
// distance between points
float Point::distanceFromPoint(float x, float y, float z) {

float difX = itsX - x;
float difY = itsY - y;
float difZ = itsZ - z;
float distance = sqrt(pow(difX,2)

+ pow(difY,2)
+ pow(difZ,2));

return distance;
}
:

:
int main() {

:
float x = b.getX();
float y = b.getY();
float z = b.getZ();
float dist =
a.distanceFromPoint(x,y,z);
:

}

[Point.cpp]

[UsePoint.cpp]

• In this first iteration the x,y and z coordinates of one of the Point‟s is

passed into the new Point‟s membre function. There‟s a better way…

Passing Objects into Functions
• The point object can

be passed directly

into the member

function.

:
// distance between points
float Point::distanceFromPoint(Point anotherPoint) {

float difX = itsX - anotherPoint.itsX;
float difY = itsY - anotherPoint.itsY;
float difZ = itsZ - anotherPoint.itsZ;
float distance = sqrt(pow(difX,2) + pow(difY,2) +

pow(difZ,2));
return distance;

}
:

class Point {
public:

:
float distanceFromPoint(Point anotherPoint);
:

};

:
int main() {

:

float distance = a.distanceFromPoint(b);
:

} [UsePoint.cpp]

[Point.h]

[Point.cpp]

• The member variables

from another point obj

have to be accessed

via the dot operator.

• N.B. another object‟s

member data can be

accessed directly by

an object of the same

class without calling

public accessor func.

• C++ is not a „pure‟ object

orientated language!

(there‟s a compromise to

enhance functionality)

Overloading Class Methods

• The two distance functions have different input args.

Therefore a single member function distance can be

overloaded (polymorphism).

• Overloading similar functions simplifies the class interface

class Point {
public:

:
float distanceFromOrigin();
float distanceFromPoint(Point anotherPoint);
:

};

[Point.h]

class Point {
public:

:
float distance(); // from origin
float distance(Point anotherPoint);
:

};

// point class declaration
class Point {
public:

Point(float x, float y, float z); // constructors
Point();
~Point(); // destructor
void setX(float x); // accessors
void setY(float y);
void setZ(float z);
float getX();
float getY();
float getZ();
float distance();
float distance(Point anotherPoint);

private:
float itsX; // member variables
float itsY;
float itsZ;

};

Point Class Declaration

What are

these? …

