Introduction to
Programming using C++

Lecture Six; Classes in Practice

Carl Gwilliam

gwilllam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

Point Class Declaration

// point class declaration

class Point {

public:
Point(float x, float y, float z); // constructors
poiné)- g : What are
~Point(), // destructor esa?
void setX(float x); /| accessors these? ...

void setY (float y);

void setZ(float z);

float getX();

float getY();

float getZ();

float distance();

float distance(Point anotherPoint);
private:

float itsX; [/ member variables
float itsY;

float itsZ;

If

Constructors

o After a variable has been declared it has to be assigned
a value before it can be used in a expression..

Int i; // declared

| =7; // initialised

Intj =7, // declared & initialised
Point a; // declared
a.setX(7.0); /I tedious initialisation

* Class objects are initialised by the use of a constructor:
whenever an object of a class is created, its constructor is
called

« Remember, the built-in types can also be initialised by the constructor
method:

Intj =7 // normal initalisation
intj(7); // constructor initialisation

Constructors

* A constructor is a special public member function:
— The function has the same name as the class
— There is no return type and a return statement is not required

class Name { ;

public: Name::Name() {
Name(); ;
: }

% [Name.h] ; [Name.cpp]

* A default constructor is provided by the compiler (only if
you don’t provide any) but this is overwritten if a
constructor is supplied in the class declaration.

Using Constructors

« Declaring a constructor
enables the member
data to be Initialised
when the class object
IS Instantiated.

e Constructors are
preferred to multiple
accessor methods
(“set” methods) if the
member variables are
Initialised but never
reassigned.

// point class declaration [Point.h]

class Point {
public:

Point(float x, float y, float z);

private:

.

.

include “Point.h”
Int main() {
Point a(1,2,1);

[UsePoint.h]

/[point constructor

Point::Point(float x, float y, float z)

{
?

ItsX = X; IitsY =vy; itsZ = z;

[Point.cpp]

Overloading Constructors

Like all functions,
constructors can be
overloaded. They are
distinguished by the
number and type of
Input arguments.

The use of different
constructors allows
member data to be
Initialised in multiple
ways.

A constructor with no
arguments does not
have to be called with
empty parentheses.

// point class declaration [Point.h]
class Point {

public:
Point(float x, float y, float z);
Point(); # include “Point.h”
: int main() {
} Point a(1,2,1):
Point b; //origin
} [UsePoint.h]

/[point constructors
Point::Point(float x, float y, float z)

{

}
Point::Point() {

itsX = 0: itsY = 0: itsZ = 0;
}

ItsX = X; itsY =vy; itsZ = z;

[Point.cpp]

Destructors

 Every time a constructor is declared it is advisable to

provide a destructor.

e The destructor also has the same name as the class but

with a tilde (~) in front

// point class declaration
class Point {
public:
Point(float x, float y, float z);
Point();
~Point();
1 ' [Point.h]

// point class declaration
Point::~Point() { } [Point.cpp]

; [UsePoint.cpp]
Int main() {
if (i>1){
Point a(1,2,1);

} .// out of scope so
./l destructor called

}

* The class destructor is called when the object goes out
of scope or delete is called (see later).

Const Member Functlons

Const can be applied:

— before a variable declaration to
indicate that the value will remain
constant until it goes out of scope.

— before a pointer declaration to
iIndicate that the pointer will
always refer to the same object
until pointer goes out of scope.

— AND after a member function.

Const after a member function
means that the member data
can’'t be modified by that

function.

— This is a safeguard for both developer
and user against future modifications
to the member function.

const double PI = 3.14;
double* const px = &X;

)/ declare point class
class Point {
public:

float getX() const;

1 [Point.h]

)/ get x coordinate

float Point::getX() const {
itsX++; // error
return itsX;

:} [Point.cpp]

Inline Member Functions

It is common to have some
class methods only a few
statements in length.

The definition of these
functions can be moved to
the interface (header)
without loss of generality.

Member functions that are
declared and defined in the
same statement are called
Inline functions.

class Point § declare point class
public:

Point(float x, float y, float z);
Point();

~Point();

void setX(float x) {itsX = x;}
void setY (float y) {itsY =vy;}
void setZ(float z) {itsZ = z;}
float getX() const {return itsX;}
float getY() const {return itsY;}
float getZ() const {return itsZ;}
float distance();

float distance(Point anotherPoint);

}

Making functions inline increases the program efficiency Iif
they’re called frequently. Efficiency is not increased If a
large function is made inline.

A Line Class

We can now apply same design to create a line object.

A line is defined as a point of origin in space, and a
direction in X, y and z.

A line can be constructed in three ways:
— Start from the origin and give explicit X,y and z direction
— Give a specific starting point and x,y and z direction
— Define the line as the distance between two points

The initial design indicates that a point object is required
In the construction of a line object.

The idea of objects being constructed from other objects
IS pivotal to OO thinking. Otherwise classes remain as
elaborate data structures.

Constructing a Line Class

class Line { [Line.h]| |#Include “Pointh™ [Line.cpp]
public: #include “Line.h”
Line(Point o, float x, float y, float z);| |// constructor for two points
Line(float x, float y, float z); Line::Line(Point a, Point b) {
Line(Point a, Point b); the origin = a;
~Line(); itsXdir = b.getX() - a.getX();
float getXdir(); itsYdir = b.getY() - a.getY();
float getYdir(); itsZdir = b.getZ() - a.getZ();
float getZdir(); b — _
private: : #!nclude “P_omt.h”
Point the_origin; #include “Line.h”
float itsXdir; Int main() {
float itsYdir; Point a(1,0,1), b(3,2,6);
float itsZdir; Line I(a,b);
; } [UseLine.cpp]

 To use one class within another we must include the
header file & put source file in the compile command

Object Initialisation

 Whenever an object of a class is created, its constructor AND
the constructors for all objects that belong to it are called.
This is done before the class’s own constructor is called

« By default, the constructors invoked are the default ones.

* You can assign a data member to something specific inside
the class’s constructor by

— Creating a new point and then assign is to the object.
— Creating anonymous point obj & assign straight to data member.

class Rectangle { Rectangle::Rectangle() {
; Point itsLowerLeft(0,0,0);// local
private: itsLowerRight(1,0,0); Il error
Point itsLowerLeft; Point ul(0,1,0);
Point itsLowerRight; itsUpperLeft = ul; /[ok
Point itsUpperLetft; itsUpperRight = Point(1,1,0)/ better
Point itsUpperRight; }
It :

Initilaisation Lists

 Initialisation lists can be used to call a non-default
constructor for an object belonging to a class directly
when an object of that class is created.
— this is faster as it avoids an extra assignment step

Name::Name(input_args):

memVarl(init_expr),..,memVarN(init_expr)
{
statements; | // constructor with start and direction
} Line::Line(Point o, float x, float y, float z):
the_startPoint(o),
itsXdir(x),
itsYdir(y),
itsZdir(z)
{...}

 The order of the objects in the initialisation list should be
that in which they were declared (compiler will reorder)

Pointers to Objects

A pointer can be used to point to an object as well as the

built-in types.

An object’s member variables and functions are then

accessed through the indirection operator (->).

— This is equivalent to dereferencing the pointer to get the object
itself and the using the dot operator (see next slide).

Pointers enable objects to be passed by ‘reference’ to

non-member and member functions => Allows the object

to modified through a function call.

The efficiency of the program is increased if a large
object is passed by reference rather than by value (as
only the address is passed).

Pointers to Objects

float getDist(Point* pPoint) {//pointer .
return pPoint->distance(); //indirection We can also u >€
/I equivalent to (*pPoint).distance(); references with
} objects.
float getDist(Point& rPoint) {//reference
return rPoint.distance()//no indirection « These have the
_} maing same advantages,
int main -
Point a(2,1,3): but without the
/Ipointer to object of type Point need for the use
Point* b = &a; JURRE :
// reference to object of type Point of an indirection
Point& ¢ = a: Operator.
float dist = b->distance();
cout << "distance b: " << dist << endI; e So why so we need
cout << "distance b: " << getDist(b) << end|; pointers?
cout << "distance c: " << getDist(c) << end|; '
return O;
}

The Stack

* All the variables & user-defined objects in the programs
so far have been stored in an area of memory called the
stack.

int main() {
int & = 1;, b = 2, C = 3;
if (a == 1) {

int 4 = 4, @ = 5
1
J
int £ = 6, g
return 0;

 This is a simple and effective method of managing
memory. There are never any residual objects that
remain on the stack at the end of the program.

Limitations of the Stack

* For large programs holding variables on the stack there
are two limitations:

— Objects do not persist after the block they were declared in.

— The stack is a relatively small area of memory. Programs that
have to deal with a number of large objects will encounter
problems with memory size (it's not infinite!).

* Global variables are a possible solution to the first
limitation. But it is generally bad practice to use global
variables for anything else than constants.

 Need an area of computer memory capable of containing

persistent large objects that can still enforce the same
access restrictions that the stack provides...

The Heap

 The heap (or free store) is a large reserved area in
computer memory able to store persistent objects.

e To get an address (i.e. pointer) for the allocated memory
on the free store you have to use the new keyword.

« The class (or built-in type) after new tells the compiler
how much memory to allocate to store the new object.

INt* px = new int; // Int on heap
float* py = new float(5); // float initilaised to 5 on heap
float* par = new float[10]; /[array of floats on heap

Point* pA = new Point(1,2,1); // Point object on heap (used earlier)
cout << "x coord of A: " << pA->getX() << endl;

 Class methods for an object on the free store are
accessed through the indirection operator.

e |nitialisation i1s done via the constructor formalism

Lifetime of Objects on the Heap

* Objects created on the
free store exist beyond
scope of the block in

which they’re declared.

However, the returned
pointer to the object is
located on the stack.

To accesses the object
from a function the ptr
to the object must be
passed to that function.

Placing the ptr on stack
enables func interface
to remain intact.

Int main() {
getPoint(2,1,7);
Point* b = getPoint2(3,4,3);
Il error
cout << "x(a)=" << a->getX() << endl;
//ok
cout << "x(b)=" << b->getX() << endl;
return O;
}
void getPoint(float x, float y, float z) {
// object persists but ptr not passed
// back to main, so we can’t use it
Point* a = new Point(x,y,2);
return;
}
Point* getPoint2(float x, float y, float z) {
Point* b = new Point(x,y,2);
return b;

}

Memory Management

What happens to the allocated memory once the pointer
runs out of scope?

C++ delegates the responsibility of allocating and freeing
memory on the heap to the software developer.

This is one of the most contentious issues surrounding
C++. Other OO languages, such as Java, automatically
de-allocate memory used on the heap.

Unfortunately, you will have to use to free store. It is
better to be aware of the traps and pitfalls associated
with memory management now before you lose
complete contral...

The delete Keyword

« Memory allocated for an

object on the heap has to
be freed when the object is
no longer needed or, at the
latest, before the object
goes out of scope.

The memory is freed by
using the delete keyword.

» All objects stored on the

heap (declared with new
keyword) must have a
corresponding delete
statement.

int main() {
getDistance();
return O;
}
void getDistance() {
Point* a = new Point(2,3,2);
Point* b = new Point(2,6,-4);
cout << "dist ato b="
<< a->distance(*b);
<< endl;
delete a; // clean-up
delete b; // memory
return;

}

delete in Objects

If a class has data
members on the heap, the
memory associated to
them must be freed when
an object of that class
goes out of scope.

This is done by placing
delete statements in the
class’s destructor.

“I don’t need to bother
with that. The compiler
doesn’t even warn me.
Will it really affect the
running of my program?”

: [Point.cpp]
/I constructor
Point::Point(float x, float y, float z) {
// value placed on heap
itsX = new float(x);

.}
)/ destructor: delete memory on heap
Point::~Point() {

delete itsX; class Point {
; public:

} :_
; private:

float Point::getX() { float* itsX;

/Ideref ptrto get val | float* itsY;
return *itsX; float* itsZ;

) 5 [Point.h]

