Introduction to
Programming using C++

Lecture Three: Functions

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

Calculating Binomial and
Poisson Probability

« Consider question 3(b) from Tutorial 1:

P(r:p.n)=p" (1- p)"~"

* The program could be
extended to include other
probability distributions,

such as the Poisson P(r.n) =
distribution [prob1.cppl]. 7!

Mathematical Functions

// calculate poisson probability

float poisson = (exp(-mean) * pow(mean,r))/fct;

In the above statement the mathematical functions pow()
and exp() are called.

These common mathematical applications are not implicit
in the C++ language; they're in the math library.

The pre-processor command #include<cmath> needs to
be included at the top of the program to use them.

It also includes other useful math expressions, such as ...

— abs/fabs absolute value of integer/float
— cos/sin/tan trig expressions (+ inverse acos/asin/atan)
— log/log10 natural/base-10 log

— floor round down float

Function Declaration

return_type function_identifer (argument_list)

A function has to be declared before it is called. This is
also known as the functions prototpye

double sin (double x); //declaration before main (in math.h)

int main() {

double pi = 3.14;

double y = sin(pi); //variable name need not be the same

} //return value assigned to variable of same type

A function declaration acts as a contract between the
author and the user and a function definition is an
implementation of that declaration.

* Functions in C++ are strongly typed.

Writing Functions

* ltis desirable to delegate work outside the main block.

« To identify a function use case, looked for a repeated
sequence of statements that share some form of

commonality.

« | don’t care how the work is done, I'm only interested in

return value.

Calculate

combinatorics:

1!

rli(n—r)

double triesfct = 1;

for (int i = 15 i<=tries; i++) triesfct *= i;
double winsfct = 1;

for (int i = 1; i<=wins; i++) winsfct *= i;
float losses = tries - wins;

double lossesfct = 1;

for (int i = 1; i<=losses; i++) lossesfct *= i;

float comb = triesfct / (winsfct * lossesfct);

Writing a factorial function

An n! function
can be added to
the program
(this is needed
3 times from the
main for the
combinatorics):

Variable type
‘Number’ is an
example of a
typedef (see
later).

[prob2.cpp]

// tunction prototype (outside main)
double factorial(int n);

int main() {
// calculate combinations
Number triesfct = factorial(tries);
Number winsfct = factorial(wins);
Number lossesfct = factorial(tries-wins);

float comb = triesfct / (winsfct * lossesfct);

¥
double factorial(int n) {

int fact = 1;

for (int i = 1; i<=n; i++) fact *= i;

return fact;

}

Switch Statements

switch (expression) {

The switch statement evaluates case valuer:
an expression and executes a set statement;
of statements depending upon it's break;
value case value2:

statementr;

The result of the expression in the
switch statement must be of type statementN:
integer. break;

If the result does not match any of |:
the case labels the default block case valueN:
IS executed. :

A break must be included at the
end of each case otherwise the .
next statement will be executed }

break;
default:

Switch statements for a menu

 If the number of menu options will increase then it is
preferable to use a switch statement instead of an if —

else if chain: switch (request) 1
if (request == 1) { case I:
} else if (request == 2) { break;
: case 2:
} else if (request == 3) { ‘
: break;
}else { case 3:
} | break;

default:
« Statements shouldn’t be to long .

or code looses readability 3

Enumerations

enum label {namer1 = valuer, name2 = valuez, .. nameN = valueN}

enum label {namei1, name2, .. nameN};

« For alarge enough menu system, it can be difficult to
recall the correspondence between the menu options
and the routines they refer to.

« For this problem enumerations can be applied which
map an integer value to a user defined name.

 If the values are not explicitly defined in the enum
statement then the first argument will be assigned 0, the
second 1 and so on

Enumerations

enum DaysOf Week {mon=1,tue,wed,thr,fri,sat,sun};
cout << "Enter day (mon=1 to sun=7)" << endl;

int day;

cin >> dayj;

if (day == thr) {

cout << "C++ Lecture at rram!\n";

}

 If you only want to use the enum to refer to constants

(but don't plan to use the type to declare variables, func
arguments, etc) you can use an unnamed enum

enum {namel, namez, .. nameN};

Enumerations for a menu

In a menu routine, enumerations can be used in the
switch statement to clarify the case expressions.

switch (request) {

case I:

break;

case 2:

break;

case 3:

break;
default:

enum Menu {mean=1,stdev=2,order=3};
switch (request) {

case mean.

break;

case stdev:

break;

case order:

break;
default:

Typedefs

typedef name type;

* Itis sometimes uncertain which type will be needed for a
set of variables

typedef long double Number;

e.g. An integer variable | int main() {
storing the value of a
factorial calculation will // calculate combinations

only be useful up to 12!
y P Number triesfct = 1;

« Use typedef to
aid redefinition of
a variable type
across an entire for (int i = 1; i<=wins; i++) winsfct *= i;
program.

for (int i = 1; i<=tries; i++) triesfct *= i;

Number winsfct = 1;

Writing probability functions

« When identifying function use cases, look for reusable
chunks of code that exist to calculate a single value.

 Functions to calculate Binomial and Poisson values can
be added to the program.

float binomial(float prob, int wins, int tries) {
// calculate combinations and then binomial

Number triesfct = factorial(tries); //function calling function

Number winsfct = factorial(wins);

Number lossesfct = factorial(tries-wins);

float comb = triesfct / (winsfct * lossesfct);

return(pow(prob,wins) * pow(i-prob,tries-wins) * comb);
} // can perform calculations within the return statement

float poisson(int r, float mean) {

return (exp(-mean) * pow(mean,r))/factorial(r);

}

Calling the probability functions

int main() {

// get probability, successes and tries

// get binomial

float binom = binomial(prob,wins,tries);

cout << "Binomial probability: " << binom << end];

// get r and mean

// get poisson
cout << "Poisson probability: " << poisson(r,mean) << end];
return o;

} [prob3.cpp]

* Now that the probability calculations have been taken
outside main() these functions have the potential to be
called from other programs.

Some questions about functions

« We will spend the rest of the lecture and the next lecture
answering the following questions concerning the use of
functions:

— Can my functions be used by other programs?
— How do | supply a default value for a function argument?
— Can a function call itself?

— Do | have to write separate functions for each type, even though
the function will be exactly the same?

— Is it possible to call a function that modifies the input arguments?
— How do | return more than one value from a function?

— Can the value of a function variable be made constant
throughout the entire program?

Creating function libraries

// function declarations [problib.h]
float binomial(float prob, int wins, int tries);

float poisson(int r, float mean);

* The pre-processor
- copies the
relevant contents

#include “problib.h” _
1) o - Do asd
float binomial(float prob, int wins, int tries) {
// calculate combinations
// calculate binomial
}

float poisson(int r, float mean) {

return (exp(-mean) * pow(mean,r))/factorial(r);

}

of the header
file into the
translation unit ...

#include “problib.h”
// main program

int main() { C++ pre-

processor

} [prob.cpp]

// func declarations
// func definitions

// func declarations
/[main program

The C++ program

In general, a C++ program has source code distributed
across multiple files.

It is useful to separate source code larger than 500+
lines into separate translation units.

To compile code distributed across multiple files include
all the translation units in the compilation command.

The program will not compile unless the translation units
defining all the necessary functions are inculded

Default arguments

function_identifer (argumentr = valuer, .. ,argumentlN = valueN)

 Itis often useful to supply a default value for a function
argument.

« The default is entered in the function prototype.
double getAngle(double vecti] [,double vectz| |,int radorDeg = 1);
double getArea(double PI = 3.14,double radius);

int main() {

double angle = getAngle(vecti,vect2); // get angle in radians
double angle = getAngle(vecti,vect2,2); // get angle in degrees

// get area of circle

double Arear = getArea(3.14157,3); // ok
double Areaz = getArea(,3); // error

}

 If a function takes multiple arguments it is not possible to
have a default value for the first argument.

Recursion

« Recursion routines are a powerful and elegant tool in
programming.

Number factorial(int n) {
Number factorial(int n) { if(n>1){
int fact = 1; return (n * factorial(n-1));
for (int i = 1; i<=n; i++) } else §
fact *= i; return I;
return fact; }
} } // function calls itself

* Recursive functions are commonly used in computing
mathematical algorithms (factorials, series) and in
manipulating large data structures.

Changing function argument types

« The compiler forbids calling a function with different input
and return types than declared in the function prototype.

int conversion(int celsius);
int main() {
int celsius;
cout << "Temperature (C)?“ << endl;
cin >> celsius;
float fahr = conversion(celsius);

//error: float returned but assigned to int
}
// func converts celsius into fahrenheit
int conversion(int celsius) {

} return (int) (((9.0/5.0) * celsius) + 32);

* |t seems necessary to declare & define separate funcs to
accept input and return values of different types.

Changing function argument types

 Functions i_conversion and f _conversion are added to
the code to account for the two different types.

int i_conversion(int celsius); //return int
float f conversion(float celsius); //return float
int main() {
if (precis == 2) { //what precision is required
float celsius;
cout << "Temperature (C)?\n";
cin >> celsius;
float fahr = f conversion(celsius);
}else {
int celsius;
cout << "Temperature (C)?\n";
cin >> celsius;
int fahr = i_conversion(celsius);

¥

}

Function Overloading

* A function is distinct if the function name OR the number
and type of arguments is unique.

int conversion(int celsius); // same identifier but different
float conversion(float celsius); // argument and return types
int main() {

float celsius;

float fahr = conversion(celsius); // celsius is a float so float
: // version of function called
}
// functions convert celsius into fahrenheit
int conversion(int celsius) { return (int) (((9.0/5.0) * celsius) + 32); }
float conversion(float celsius) { return (((9.0/5.0) * celsius) + 32); }

« Although separate conversion functions have to be
defined, these functions have the same identifier. This is
referred to as function overloading.

« Templates allow the use of the same func for multiple types (see later)

Type conversion routines

Note: You don’t really have to write a separate function
for each input and routine type, but it's good practice!

« The compiler will use type conversion routines if there is
no exact type match:

fVval = 1daval;
ival = £vVal;

* The conversion routine will work here but do not rely on
this method to convert all types.

« Avariable type is not just a label to indicate the precision
of a value. In general, a type is much more than a single
value.

Function Overloading

« Function overloading is not just used for grouping
identical functions. Overloading can be used when two
functions have a similar purpose.

float probdist(float prob, int wins, int tries);

float probdist(int r, float mean);
int main() {

float binom = probdist(prob,wins,tries); // get binomial
float poisson = probdist(r,mean); // get poisson
: // the func to call depends only on input args
¥
float probdist(float prob, int wins, int tries) {...}
float probdist(int r, float mean) {...}

« This is the first example of polymorphism! In this case
the ability to implement a function in different ways.

Polymorphism
 DEFINITION:

“In object-oriented programming, polymorphism (from
the Greek meaning ‘having multiple forms’) is the
characteristic of being able to assign a different meaning
or usage to something in different contexts - specifically,
to allow an entity such as a variable, a function, or an
object to have more than one form. There are several
different kinds of polymorphism.”

http://searchsmb.techtarget.com/sDefinition/0,,sid44 qci212803,00.html

http://searchsmb.techtarget.com/sDefinition/0,,sid44_gci212803,00.html

The swap function

“l want to write a function that takes two integers and
transposes their values.”

Swapping the values in the
function will have no effect
on the variables in main()

Calling a function in this
way is referred to as

passing by value.

In fact, the object (variable)
within the funtion is actually
a copy not the original (just
has the same label).

Is there an alternative method that allows the modification
of the input variables?

int main() {
int x =2,y = 5;

cout << x << "}" <<y << end];
swap(x,y);
cout << x << "}" << y << endl];

void swap(int x, int y) {
//not same x and y (copies)
int tmp = y; y = X; X = tmp;

nmn

cout << x << "," <<y << end];

return; 2.5

} 5,2 |

2,5

