Introduction to
Programming using C++

Lecture Two: Further Syntax

Carl Gwilliam

gwilliam(@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

Factor calculation example

int myNumber, nfactors = o;
cout << "Give me a number\n";
cin >> myNumber;
for (int factor = 1; factor <« myNumber; factor++) {
if ((!(myNumber oo factor)) && (factor !=1)) {
cout << factor << " is a factor\n";

++nfactors;

}
}

if (Infactors) cout <« myNumber << " is prime\n";

The for loop

statement I;

statement n;

}

for (initialisation; condition; action) {

* In the lifetime of the for statement:
— the initialisation statement is called only once.
— the action statement, along with all the statements within the
block, are repeatedly executed (or looped) until..
— the expression in the condition statement is false.

for (int i=1; i<10; i++) {
statements;

}

* Variable i initialised to 1.

* Process statements in block.
* Incrementi by 1.

* |filess than 10 continue.

Using the for loop

« The for loop is much more than a simple iterator.

« The initialisation, the condition and the action parts of the
for statement are all optional. Each of these statements
can also include multiple expressions.

// multiple expressions for (5;) { // infinite loop
// in initialisation cout << “hello world\n”;
for(i=1,j=o0;i<105) { }

// iterator inside block hello world

L= hello world
. hello world ...

Increment Operators

factor++

The ++ operator increments the value of an integer
variable by 1.

This is the origin of the name “C++" |

Similarly, the -- operator decrements the value of an
integer variable by 1.

i++ //thesameasi=1i+1

i-- //the same asi=1-1

Pre and Post-fix Operators

* These both increment the value of
the variable by 1 but they are not
iIdentical. e EyerL
« Both operators will have specific ++nfactors
uses in your code, know when to
use them and use them properly.

int X = 2,y = 0;

y = X++; // x incremented after assignment -> y =2

y = ++X; // x incremented before assignment -> y = 4

* The increment and decrement operators are unary
operators. The mathematical operators are binary
operators.

PRECEDENCE

Logical Operators

if ((!(myNumber oo factor)) && (factor !=1))

« Expressions are evaluated as false if their value is zero,
true if non-zero.

« A conditional statement can therefore consist of multiple
expressions with logical and, or and not operators.

if ((x == 2) && (y >5))
if (x==2)|(y>5))

Ix Logical negation
X && y |Logical AND
X||y |Logical OR

Intx =1,y =1,z = 2;
if(X::I&&y>2||Z<3){

cout << “condition true\n”;

}

condition true

Simple statistics example

 We will now focus on the development of the small
statistical calculation program [stats1.cpp]

> stats1.exe

1

g B~ OO O

> stats1.exe

2
S
6
4
0.816397

> stats1.exe
3

3)

6

4

456

« What is the purpose of this program??

Purpose of the program

« The program performs one of the following routines:
— calculate the mean of the input sample.
— calculate the standard deviation of the input sample.
— order the input sample from lowest to highest value.

1 & Order
X = Z X, L2 —2 .
N< O =VX —X Lowest..Highest

« Was this obvious from looking at the source code?

Purpose of the program

The function of the code is unclear to everyone apart
from the author.

Comments are required to explain the purpose of the
code.

Annotations are not just required within the source code.
Explanatory text is required for the user of the program.

New input routine:

// get a routine to run

cout << "\nWhat would you like to do?" << end];
cout << "1 - Calculate the mean" << endl;

cout << "2 - Calculate the standard deviation" << endl;

cout << "3 - Order the sample lowest first” << endl;
cin >> r;

Adding whitespace

Source code needs spacing out // calculate x_i - mean
to increase readabillity. md = o;)

The efficiency of the program sIm = SI - m_2;
does not decrease if whitespace | stms = pow(sim,2);
IS liberally used throughout the s2m = $2 - m_2;

source code. sams = pow(s2m,2);
Often useful to add line breaks to | 3™ = S3 ~ M2
partition chunks of code s3ms = pow(s3m,2);
[stats2.cpp]. md = sims + s2ms + s3ms;
md=0; sim=s1-m_2;sims=pow(s1m,2); // Calc,ul?te =
// deviation

s2m=s2-m_2;s2ms=pow(s2m,2); s3m=s3-
) P (a>,3 3 m_3:md/3;

m_2;s3ms=pow(s3m,2);md=sims+s2ms+s3 <12 sqet(m.3)

ms; m_3=md/3;s=sqrt(m_3);

Variable Naming

Variable names bear no relation to their role in the program.

« The purpose of the program can be interpreted much
easier if the variables have names that indicate their role
within the program.

* |n other words, descriptive names for variables enable
other developers to follow the "story" told by the code.

Some conventions:
Sum_of value
SumofValue
sumOfValue

ISum

=

// bad

S_I=SI+ S2+ S3;
// better

sum = sampler + sample2 + samples;

Declaration Styles

All the variables are declared at the top of the program.

int main() { « |n C++, a variable can be declared
oy - 1o anywhere within the body of the
// ermr’ program provided the declaration
y = x; precedes the assignment.
) : * All variables can be declared at
the top of main().
BUT:

 ltis preferable to declare variables close to where they
are first assigned a value.

« This seems too chaotic, why bother? This practice is
iIntroduced to implement an important feature of C++ ...

The Lifetime of Objects

* The lifetime of an object associated with a variable:
— starts with the declaration of the variable.
— ends with the termination of the containing block.

int X = 4;1nt y = 2;

if (y > 0) {
cout << "x = " << x << endl;
¥
if (y > 1) {
int x = 7; //diff object
cout << "x = " << x << endl;
X++;
¥

// original object

!

cout << "x = " << x << endl;

Same variable name can
be repeated in different
blocks.

Outside of the block the

variable runs out of scope.

Variable has a scope

A~ N B

local to the block in X=
which it was declared |[X=
See [stats3.cpp]. X =

Extending the sample size

The program can only handle a data sample of a fixed size.

« We would now like the program to accept a sample of
any size.

* The first step is to add an option to dictate the size of the
sample

cout << "How big is the sample?"” << end];
int size;

cin >> size;

« But this is not enough to extend the sample size. The
code has been specifically written to process three
values:

sum = sampler + sample2 + samples;
float sumDivSize = (sum / 3);

Extending the sample size

« Can a larger sample size be
accommodated by simply

adding more variables?

 Yes, but this is not scalable:

Sample size statements
3 13

4 22

5 34

10 139

 How does the program cope
with holding the sample values
if the sample size is only to be

decided at runtime?

float sampleSwap;

if (sampler > sample2) {
sampleSwap = sampler;
sampler = samplez;
sample2 = sampleSwap;

}

if (sampler > sample3) {
sampleSwap = sampler;
sampler = samples;
sample3 = sampleSwap;

}

if (samplez > sample3) {
sampleSwap = samplez;
sample2 = samples;
sample3 = sampleSwap;

}

Arrays

type variable [size]

An array is an ordered collection of objs of same type.

An object stored in an array is referred to as an array
element.

In the 15t example array x holds 10 objects of type int.
The first element in the x is x[0] and the last is x[9].

int x[10];

int y = x[4];

float x[s] = {5.0,4.3,6.1,2-1,9-2}3

int x[2][3] = {{1,2,3},{4,5,6}}; // 2D

Arrays are an integral part of most other computing
languages but are approached with suspicion in C++

Using for loops

« An array can be used to store a data sample of any
reasonable size (memory is limited).

cout << "How big is the sample?" << end];

int size;

cin >> size;

float sample[size]; //bad, but allowed
//by some compilers

float® sample = new float[size]; // better

* To dynamically assign memory (properly) you need to
use the new syntax and pointers, we’ll cover this later.

« However, this is not the final solution as the routines are
still imited to only accepting three values ...

Using for loops

 Remove this dependency by using a for loop to iterate
through all the data sample.

// calculate sum of sample
int sampleCount;

for (sampleCount = 1; sampleCount <= size;
sampleCount = sampleCount + 1) {
int sampleCountArray = sampleCount - 1;

sum = sum + sample[sampleCountArray |;

}

The Bubble Sort

float sampleSwap; « Using another (nested) for loop

if (sampler > sample2) { can significantly improve the
sampleSwap = sampler;

sampler = sample2; current ordering routine too:

sample2 = sampleSwap; for(inti=o;i<(size-1);i=1+1){

}f | | for (int j = 05 j < (size - 1); j = j+1) {
1 (samp el > samp 63) { if (sample[j] > sample[j+1]) {
float swap = sample[j];

sampleSwap = sampler;
sampler = samples;

sample[j] = sample[j+1];

sample3 = sampleSwap;

) sample[j+1] = swap;
if (sample2 > sample3) { }
sampleSwap = sample2; }
sample2 = samples; }
sample3 = sampleSwap;
} > [stats4.cpp]

Error Catching

There is no way of handling incorrect input by the user.

 If the input value for the routine is not in range 1 to 3 the
code will compile but the program will not indicate an

error back to the user.
> stats

What would you like to do?
1 - Calculate the mean

Do not assume that
2 - Calculate the standard deviation

everyone who uses 3 - Order the sample lowest first
your code will be 4

How big is the sample?
competent! 3

Sample 1: 4

Sample 2: 5

Sample 3: 6
>

Error Catching

* The solution is to replace the separate if blocks with one

if - else if - else block. [.¢ (request == 1) §

if (request ==1) { :
: } else if (request == 2) {

} :

if (request == 2) { } else if (request == 3) {

} } else {

if (request == 3) { cerr << "Routine doen’t exist\n”;
: return I;

} } [stats5.cpp]

* Non-zero return code indicates to os that program did
not terminate successfully

« cerr writes so stderr rather than stdout (also clog)

Unnecessary Code

Code is unnecessarily verbose.

* Itis good coding practice to attain a balance between
conciseness and clarity

// calculate sum of sample

int sampleCount; //declaration can be inside for loop
for (sampleCount = 1; sampleCount <= size;
sampleCount = sampleCount + 1) { //can use ++

int sampleCountArray = sampleCount - 1;
// above line is unneeded

sum = sum + sample[sampleCountArray];

}

* The less variables you have in an algorithm the less
potential mistakes you will make! Well, almost...

Self Assigned Operators

* Itis common coding practice to apply a mathematical
operation to a variable and assign the result back to the

same variable.

In C++, this can be achieved by _ -
applying self-assigned operators. |Subtraction |-

Addition +=

X =X+5; // add 5 to x Multiplication |*=
x +=5; // add 5 to x —
X += n: 7 el o 5 Division /=

The code is then
more concise
[stats6.cpp]

sum = sum + sample[sampleCount-1];
// more concise

sum += sample[sampleCount-1];

Alternatives to the for loop

Simplify the iteration routines in the code

// calculate sum of sample
int sampleCount;
for (sampleCount = 1; sampleCount <= size;
sampleCount = sampleCount + 1) {
sum = sum + sample[sampleCount - 1];

}

« The for loop is much more versatile than just iterating
the value of a conditional variable by 1.

* There are other loops that provide the same result with
less syntactic baggage ...

The while loops

» There are two other types of loops you can use in C++:

while (expression) { do {
statement; statement;
} } while (expression)

* The statements within the block are repeatedly executed
while expression is true.

Which loop should | use?

« Use the while loop if it is possible that the statement
block may never be executed.

« Use the do...while loop if the statement block has to be
executed at least once.:

Breaking the loop

It is possible to exit while, do..while and for loops even

if the condition is still true.

The break statement
can be used to exit the
nearest enclosed loop.

The continue statement
can be used to skip
remaining statements in
the block.

There's one other
unspeakable way out

of a loop ...

for (inti=o0;i<5;i++) {

if (i == 3) break;
cout << 1 << “\t”;

}

)
cout << “end\n”;

01 2 end

int X = 0,y = 2;
while (x <3) {

X++;

if (x == y) continue;

cout << x << “\t”;

}

{4 »
cout << “end\n”;

1 3 end

... goto, but don't use it or:

T COULD RESTRUCTURE
THE PROGRAM'S FLOW

OR USE ONE LITILE
‘GO INSTEAD.

Q;%

EH, SCREW GOOD PRACTICE.
HOW BAD CAN IT BE?

\ goto main-sub3;

!J'J

: : i? *COMPILE*

Iteration in a while loop

 How does the while loop become an iteration tool?

//increment in body //increment in
int x = 13 //condition

while (x < 10) { int x = 0;
: while (x++ < 10) {
X++;

})

for (int sampleCount=1; sampleCount<=size; sampleCount++) {
sum = sum + sample[sampleCount-1];
}

//replaced by ... [stats7.cpp]

int sampleCount = o;

while (++sampleCount<=size) sum += sample[sampleCount-1];

