
Introduction to
Programming using C++

Lecture Eight: Toward OO Design

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

The Pillars of OO Design
• An Object Orientated program should have the following

three features:
– Encapsulation:

The implementation of an object is hidden from the it’s interface.
– Delegation:

Effort is delegated to well defined single purpose objects.
– Categorisation:

The subject of this lecture…

• An OO designed program determines how the modeled
system responds to a given event.

• An OO program is not written to answer a specific
question, it is written to answer any number of questions
that may be asked in the future.

Inheritance
• In C++, categorisation is given by public inheritance.
• Inheritance hierarchies capture the

relationship between objects: an object
inherits all the characteristics of other
objects higher up inheritance hierarchy.

• Inheritance = is a kind of relationship
Alternatively:
• Each object should be distinct and provide a well defined

service but there can be great deal of overlap in
functionality between different objects.

• Commonality across multiple classes can be extracted and
placed in a “super” class.

• Inheritance can provide reusability AND categorisation but
the two concepts are not the same.

Indicating Inheritance in C++
• Inheritance is signified in the derived class by placing

the base class, from which it derives, after a colon:

Class One {
public:

:
protected:

:
private:

:
};

Class Two: public Class One{
public:

:
protected:

:
private:

:
};

• The derived class inherits the public and protected
(but not private) members of the base class.

• We have a new keyword, protected. These members
can be accessed by base class & derived classes only.

Revisiting the Rectangle Class
• The rectangle could be

viewed as a specialisation
of a more general shape:
the parallelogram.

• A rectangle is a kind of
parallelogram. Therefore
the Rectangle class can
be written to inherit from
a Parallelogram class.

class Rectangle {
public:

Rectangle();
Rectangle(Point ll, Point ur);
Rectangle(double length,

double width);
Rectangle(Point ll, double length,

double width);
~Rectangle();
double length();
double width();
double area();
bool isOverlap(Rectangle a);

private:
Point itsLowerLeft;
Point itsLowerRight;
Point itsUpperLeft;
Point itsUpperRight;

};

[Rectangle.h]

Applying Inheritance
• Rectangle class inherits

the member data and all
the class methods from
the Parallelogram class.

• The Rectangle class still
needs to contain its own
c’tors and d’tors.

#include “Parallelogram.h”
// rectangle class declaration
class Rectangle : public Parallelogram {
public:

Rectangle();
Rectangle(Point ll, Point ur);
:
~Rectangle(); // d’tor automatically

}; // calls base d’tor

//parallelogram class decleration
class Parallelogram {
public:

Parallelogram();
Parallelogram(double len_a,

double len_b,double angle);
~Parallelogram();
//angle between non-para sides
double angle();
double base();
double height();
double area();
double perimeter();

protected:
Point itsLowerLeft;
:
double itsAngle;

}; [Shapes2.cpp]

Derived Class Constructors
What happens when the rectangle constructor is called?
• Inherited data members are initialised by calling the

base constructor from constructor of the derived class.
• Base constructors are called from outside the body of

the constructor of the derived class (extension of
initialisation list):

#include “Paralleologram.h”
// default c’tor for unit rectangle
Rectangle::Rectangle(): Parallelogram(1,1,90.)
{…}
:
// constructor for length and width
Rectangle::Rectangle(double length, double width):

Parallelogram(length,width,90.)
{…}

Overriding Class Methods
• Functionality of rectangle class

can be extended by adding new
methods.

• The new class method area()
overrides the method inherited
from the Parallelogram class.

Rectangle beta(Point(2,2,0),Point(5,5,0));
cout << "beta base: "

<< beta.base() << endl;
cout << "beta length: "

<< beta.length() << endl;
cout << "beta area: "

<< beta.area() << endl;
cout << "beta area: "

<< beta.Parallelogram::area()<<endl;

• As soon as a member
function is created with
same name as one in
base class all overloaded
instances of base class
method are hidden.

• The area() method from
the base class can be still
called using the full scope
of the function.

//rectangle class declaration
class Rectangle : public

Parallelogram {
public:

: //overrides parallelogram…
double area(); //… area()
double length(); //same as base
double width();
bool isOverlap(Rectangle a);

} [Shapes3.h]

More than One Derived Class
• Inheritance becomes

useful once multiple
classes inherit from
a single base class.

• Rhombus class, as
well as Rectangle
can inherit from
Parallelogram class.

Diagonals of
rhombus
intersect at
right angles

return Line(itsLowerRight,itsUpperLeft);

// rhombus class declaration
class Rhombus : public Parallelogram {
public:

Rhombus();
Rhombus(double length, double angle);
Rhombus(Point ll, double length,

double angle);
Rhombus(Point ll, Point lr, double angle);
~Rhombus();
double length() {return itsLength;}
Line diagonalLine(int corner=1);
Vect diagonalVect(int corner=1);
//overrides base class method :
double perimeter() {return 4*itsLength;}

protected:
double itsLength;

}; [Shapes4.h]

Diagonal line returned via line c’tor:

Runtime Object Initialisation
How can an object be
initialised if type is only
decided when run program?
• Declare object in if

statement?
– pointer to heap won’t

persist beyond end of
if block.

• Declare all shape
possibilities outside if
statement?
– Not scaleable when more

shapes are introduced.

• What is proper solution?

cout << "type of parallelogram?
1 - rectangle, 2 - rhombus\n";

int request; cin >> request;
??* newShape = NULL; //what is type?
if (request == 1) {

newShape = new Rectangle(1,2);
} else if (request == 2) {

newShape = new Rhombus(2,45);
}

if (request == 1) {
Rectangle* newShape = new Rectangle(1,2);

}

Rectangle* newShape = NULL;
Rhombus* newShape2 = NULL;
if (request == 1) {

newShape = new Rectangle(1,2);
}
:

Dynamic Binding
• This problem can be solved by exploiting the inheritance

relation between the Rectangle (+ Rhombus) and the
Parallelogram.

cout << "type of parallelogram? 1 –
rectangle, 2 - rhombus\n";

int request; cin >> request;
Parallelogram* newShape = NULL;
if (request == 1) {

newShape = new Rectangle(1,2);
} else if (request == 2) {

newShape = new Rhombus(2,45);
}

• If pointer newShape is
declared with a type of
Parallelogram it can refer
to either a Rectangle or
Rhombus because both
of these objects are kinds
of Parallelograms

• Attaching the pointer to an object at runtime is known at
late or dynamic binding (c.f. compile-time or static).

• But if pointer newShape refers to a parallelogram how can it access
class methods of rectangle or rhombus?

Virtual Functions
• newShape is a pointer to a Parallelogram, not to a

Rectangle. When area() is called it is the Parallelogram
method that is invoked.

Parallelogram* newShape = new Rectangle(1,2);

• Methods overridden by derived class can be accessed if
the base method is made virtual.

// parallelogram declaration
class Parallelogram {
public:

virtual double area();
virtual double perimeter();
:

}; [Shapes5.h]

// rectangle class declaration
class Rectangle : public

Parallelogram {
public:

double area();
:
}; [Shapes5.h]

Virtual Functions

• This is because calls to virtual functions are decided
(binded) at run-time not compile-time, so it can check
what object is actually pointed at.

• Be aware, this makes virtual function calls slower

• If method is virtual but not overridden by derived class
then base class method will be implemented instead.

• Virtual functions enable polymorphism in objects.

myShape->area(); //rectangle methods
myShape->perimeter() // are invoked
//can call base class method by using it’s full scope
myShape->Parallelogram::area(); [UseShapes.cpp]

Virtual Destructors
• newShape refers to an object on the heap so memory

has to be released using delete. But rectangle d’tor not
called as ptr of type Parallelogram => could cause a
memory leak. Parallelogram* newShape = new Rectangle(1,2);

delete newShape;

// parallelogram declaration
class Parallelogram {
public:

:
virtual ~Parallelogram();
:

};

// rectangle class declaration
class Rectangle :

public Parallelogram {
public:

~Rectangle(); // automatically
: // calls base d’tor
}; // as well after

• Again this is fixed by maxing the base d’tor virtual,
which ensures the proper sequence of d’tors is called

• Base destructor will still be called even if the pointer is cast to
derived object.

Multiple Inheritance
• A Square class can

be constructed that
inherits from both
Rectangle and
Rhombus:

// square class declaration
class Square : public Rectangle,

public Rhombus {
public:

Square();
Square(double size);
Square(Point ll, double size);
~Square(); //all functionality inherited

}; //from rectangle & rhombus

// rhombus class declaration
class Rhombus : public Parallelogram {
:

};

// rectangle class declaration
class Rectangle : public Parallelogram {

:
};

Multiple Inheritance
• The constructors for each of the base classes need to be

called in turn:

• But multiple inheritance can be dangerous. Can you see
why?

// constructor for square
Square::Square(double size):
Rectangle(size,size),Rhombus(size,90)
{…}

// constructor for rhombus
Rhombus::Rhombus(double length,

double angle):
Parallelogram(length,length,90.)
{…}

// constructor for rectangle
Rectangle::Rectangle(double length,

double width):
Parallelogram(length,width,90.)
{…}

Base Class Ambiguity

• The reason is that the class
method base() has been
inherited via both Rectangle
and Rhombus.

• The call to base() from
Square is ambiguous!

• Further, a Square object
actually contains two sub-
objects of Parallelogram

• This ambiguity can be solved
by virtual inheritance …

Dreaded Diamond:

Virtual Inheritance
• Each directly derived class

now inherits virtually from
Parallelogram base class.

• This ensures the most
derived class, Square, only
inherits one sub-object of
type Parallelogram.

• It doesn’t affect Rectangle
or Rhombus classes.

• Base constructor must now be called directly from most
derived class (unless using default).

• Programs are much easier to read if object relationships
are implemented through single public inheritance. Don’t
use multiple inheritance unless you really have to.

// rectangle class declaration
class Rectangle : virtual public

Parallelogram {
:

};
// rhombus class declaration
class Rhombus : virtual public

Parallelogram {
:

};
// empty square constructor
Square::Square():

Rectangle(1,1),
Rhombus(1,90),
Parallelogram(1,1,90)

{…} [Shapes6.h]

Reassessing Inheritance Hierarchy

• Multiple inheritance
is not required for
the Square class.
A square is a kind
of parallelogram:

But how does square inherit functionality of rectangle and rhombus?

• Consider if the diagonal() functions were really unique
to the Rhombus class.

• The diagonal() methods can be moved up inheritance
hierarchy so all three derived classes can access them.

• This is known as percolating functionality upward.

The Quadrilateral Class
• A future iteration of the code will make use

of several quadrilaterals, including the
parallelogram.

// parallelogram class
class Parallelogram :

public Quadrilateral {
public:

Parallelogram();
:
virtual ~Parallelogram();
double base();
:
virtual double area();
virtual double perimeter();

protected:
double itsAngle;

}; [Shapes8.h]

// quadrilateral class declaration
class Quadrilateral {
public:

Quadrilateral(){}
virtual ~Quadrilateral(){}
Line diagonalLine(int corner=1);
Vect diagonalVect(int corner=1);
virtual double area() = 0;
virtual double perimeter() = 0;

protected:
Point itsLowerLeft;
Point itsLowerRight;
Point itsUpperLeft;
Point itsUpperRight;

}; [Shapes8.h]

Abstract Base Classes
• The virtual functions contained in the Quadrilateral

class had no implementation. These are pure virtual
functions:

• A Quadrilateral class is included in the program to
provide a general definition (interface) without providing
all the implementation.

• It is expected that a sub-class will implement the methods
outlined in the Quadrilateral interface (in fact it must).

• These classes are known as Abstract Base Classes
• Objects cannot be instantiated from ABCs since they

would not be fully defined.

virtual double area() = 0; // must be
virtual double perimeter() = 0; // set to zero

Purely Abstract Base Classes
• A base class that provides no implementation and has

no members is known as a purely abstract base class.
// shape class declaration
class Shape {
public:

Shape(){}
virtual ~Shape(){}
virtual double area() = 0;
virtual double perimeter() = 0;

}; [Shapes9.h]

• The Shape class provides a statement of intent for all
“shape-like” classes; Each shape object must have
access to class methods that return area and perimeter.

• pABCs are often written once the overall design of the classes has
been fully established.

//rectangle declaration
class Rectangle: private Point {

:
private:

float itsX; //must redefine Point’s data
: //members as they were private
};

Has-a-kind-of Relationships
• C++ distinguishes between is-a-kind-of relationships and

has-a-kind-of relationships:

//rectangle declaration
class Rectangle {

:
private:

Point itsLowerLeft;
:

};

• The Rectangle class makes use of the Point class
implementation but as it’s not a kind of Point it doesn’t
inherit from it. This is called containment.

• An alternative to containment is private inheritance =>
public members of base become private to derived class

• Derives implementation of the class but throws away the
interface => breaks encapsulation => not in OO style!

Also have protected
inheritance: public
members of base
class become private
in derived

