Introduction to
Programming using C++

Lecture Ten: File I/O and Streams

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

A Note on Namespaces

Namespaces allow us to localise the names of identifiers
(vars, funcs, ...) so as to avoid collisions between them.
— e.g. if you define a function called pow() in your code it could

override the std library pow().

To group entities under a name we use the namespace

keyword:
name Sp dCe name {

// declarations

}

e.g.
>

namespace first {
int x = 1, y =2;

}

A namespace must be declared outside all other scopes.

All members of the standard C++ library (e.g. cout, endl,
vector ...) are within the std namespace.
— We have been using this all along without knowing it!

A Note on Namespaces

* To access elements of a namespace from outside we
use the scope resolution operator (::) :

cout << first::x << endl;

 If you have to use elements of a namespace often you
can avoid having to scope them each time by using the
using keyword to:

— bring all elements of the using namespace first;
namespace into view: cout << x << endl;

— bring only particular elements using first:x;
of the namespace into view: ot s << andllk /) OTF

cout << y << endl; //error

« Using multiple namespaces simply brings all set of
elements into view (which is fine of they don’t clash)!

Streams

Although you may not realise it, we have already come
across streams: cin and cout!

These are objects of type istream and ostream
respectively. Together they make up iostream.

There are also complementary file streams:

— ofstream: class to write to files #include<ofstream>
— ifstream: class to read from files #include<ifstream>
— fstream: combined class to read/write | #include<fstream>

Reading and writing from/to files is very similar to using
cin/cout; we just need to associate the streams to files!

Opening/Closing a File

The first thing we want to do with a stream is associate it
to a real file i.e. open the file. This can be done by:

— using the open member function

fstream file; // input or output

file.open(“myfile.txt”);

— or, more simply, using one of the constructors:

fstream file(“myfile.txt”);

Both methods take the filename as a character array.

It is the same for reading or writing, except you use
ifstream and ofstream resepctively.

Opening/Closing a File

To test if the file has been successfully opened there is
an is_open() method:

if (file.is_open()) {
// file is open, do something
}

Once we’re finished with a file we must close it:

file.close(); // close myfile.txt

Once the file is closed, the stream object file can be
used to refer to a new file.

File Modes

« Both the methods to open a file mentioned above take
an optional mode arg, describing how it is to be opened:

iostream file(filename, mode);

file.open(filename, mode);

 The various modes, which are in i0os hamespace, are:

los::in open for input
los::out open for output
los::app append to end of current file (output only)

jos::trunc | delete previous content of file (output only)

los::ate start at the end of the file (default is start)

los::binary | open in binary (rather then text) mode

File Modes

Several modes can be combined using OR operator (]):

file.open(“myfile.txt”, ios::out | ios::app);

Often, the mode isn’t explicitly specified since there are
default modes for the different streams:

— ofstream: ios::out
— ifstream: ios::in
— fstream: ios::in | ios::out

We will only cover text files in this course, not binary
mode files.

Writing to a File

» Writing to a file is done
In exactly the same
way as writing to the
screen with cout, using
<< operator.

* A new line is delimited
with either endl or \n.

[myfile.txt]

This is a line
This is another

// writing on a text file
#include <«fstream>

int main () {
ofstream file(“myfile.txt");

if (file.is_open()) {
file << "This is a line®“ << endl;
file << "This is another.\n";
file.close();

} else {

cout << "Unable to open file\n";

}

return o;

}

File States

 There are several useful functions to check the state of
the read/write operation:

bad() True if reading/writing fails (e.g. file not open or no
space left on device)

fail() As bad() but also true if a format error occurs (e.g.
read an alphabetical char where num expected)

eof() Returns true if a file open for reading reaches end

good() | Combination: false if any of above is true

int 1 = o;
while (i++<10 && ! fiile.bad()) {

file << “Line of text ” <<i<< \n”

* These are used to see
when we should stop
reading/writing. E.g. }

File Stream Pointers

« We often need to specify where in a file to get text from
or put text to. We can do this with the functions seekg()
and seekp() respectively.

* These have several forms but the most useful are:

— setting cursor to beginning of file file-Seekg(());
— setting cursor to the end of file file-Seekp(O, ios::end);

 To see where the cursor currently is we can use the
functions tellp() and tellg()

Reading from a File

« Reading from a file is ARG GBI
done in exaCtly the int main() { //reading a text file
same way as reading ifstream file("mytable.txt");
from the screen with cin, string name;
using >> operator. float mass, charge;
 Reading stops at any if (file.is_open()) {
file.seekg(o); //beginning
blank character. while (file.cof() {
« Often used to read file >> name >> mass >> charge;
tables of input data: cout << name << "\t" << mass
<< "\t" << charge << endl;
electron 0.000511 -1 ¥
muon 0.106 -1 file.close();
tau 1.7771 -1 } else cout << "Unable to open file";
proton 0.938 +1 return o;
neutron 0.940 0 }

Reading by Line

 Files can also be read #include<fstream>
by line using the '

getline() function: int main() { // read by line

ifstream file("myfile.txt");
string line;

getline (ifstream& stream, if (file.is_open()) {

string& line, file.seekg(o);

char delim) while (Ifile.eof()) {
getline(file, line);

cout << line << endl;

* The optional delim arg }
can be used to specify file.close();
what is used to delim } else cout << "Unable to open file";

return o;

lines (default is \n).)

Formatting Output

« We can control the way the output of any stream (be it
cout or a file) is formatted in C++,

« This is done via an associated set of format flags, e.qg.

left left justify output

Q right right justify output (default)

g dec output numbers in decimal (default)

$ oct output numbers in octal

% hex output number in hexidecimal

S fixed display floats as normal (default)

9O | scientific display floats in scientific notation

= (no)showpos | show leading + sign for +ve numbers
(no)showpoint | show decimal point & trailing O’s for floats

Formatting Output

There are two separate ways to set these flags.
Using the setf() and unsetf() functions of the stream:

cout.setf(ios::left); // left justify
cout.unsetf(ios::left); // back to right

— Again these can be compined using the OR operator (|)
Using manipulators included in |/O stream between <<

file << scientific << 10.12345 << “\n”

— Note that in this case the ios namespace is not needed!

The formatting applies to all subsequent output
statements unless explicitly unset:

file << 10.1234 << “\n” //still scientific
file << fixed << 10.1234 << “\n” //back

Precision and Width

« We can also vary the width of the output field and the
precision of floats. Again there are two parallel methods.

« By default output only occupies as much space as num
of characters, but we can specify a minminum width:

cout.width(10); // min width is 10 chars
cout << setw(10) << 100 << endl; //alternative [«

« We can change the number of significant figures (not
d.p.) displayed for floats from the default value of 6:

iornanip

header

cout.precision(3); // 3 significant figures|10.1

cout << setprecision(3) << 10.1234 << endl; //alternative

— If use fixed & precision together we can set num decimal places!

 Whether these alterations apply to all subsequent output
or just the next output is implementation dependent ®.

Formatting Output: Example

#include<iomanip> Integer 100 144 64 +100
' Float 10.1235 10.1 10.123 1.012e+01
int main() { Back to normal = 100 10.1235

int inum = 100;
cout << left << setw(15) << "Integer"

<< right<< setw(15) << dec << inum // decimal
<< setw(15) << oct << inum // octal
<< setw(1s) << hex << inum // hexidecimal

<< setw(15) << showpos << dec << inum << endl; // with sign
cout.unsetf(ios::showpos);

double fnum = 10.1234567;
cout << left << setw(i5) << "Float"

<< right << setw(15) << fnum // default (6 s.f.)
<< setw(15) << setprecision(3) << fnum // 3s. f.
<< setw(15) << fixed << setprecision(3) << fnum // 3 d.p.

<< setw(15) << scientific << setprecision(3) << fnum << endl; // scientific
cout.unsetf(ios::scientific); cout.precision(6);

nmn

cout << "Back to normal =" << inum << " " << fnum << endl;

return o;

}

Strl N g Stre adlM | #include<sstream>

Stringstream allows a string to be used as a stream.

This allows us to extract
and insert from/to strings
In same way as screen
or files, and is useful to
convert between nums
and strings.

We insert to stringstream
via << and extract from it
via >>.

To retrieve the string
from the stringstream we
use the str() function.

#include<sstream>

int main() {
stringstream s1("Carl is ");
sI << 27 << " years old";
cout << sLstr() << endl;

stringstream s2("28");
int 1; s2 >> 1;
cout << "Next birthday he'll be "

<< 1 << endl;

return o;

}

The Debugger (gdb)

There are debuggers which can help you find errors.
— On linux with the g++ complier, the debugger is called gdb

For a brief introduction to this |:
we will look at this code, void func(char® temp){
which causes a seg fault: mErE

temp[3] = 'F’;
For more info you can see:
http://sourceware.org/gdb/
In order to make the most out |}
of theldebugger we must int main()f
compile the code in debug char *temp = "Paras®
mode: func(temp);

g++ —g debug.cpp —o Debug

for (i=o;i<5;i++)
cout << temp[i];

return I;

}

The Debugger (gdb)

« Some of the more useful gdb commands are:

run <args> run the program (with any command line arguments)
break <place> | create a place for the program to halt (e.g. line, func,...)
step execute current line of program and then stop

next same as step but will execute function call if on line
continue run until next breakpoint (or end)

backtrace display chain of function calls (most recent at top)

info locals display value of any local variables

info args display value of any arguments to a function

print <var> print the value of a specific variable

quit quit gdb (and stop and currently running program)

The Debugger (gdb)

* Finding simple information:

gdb Debug

(gdb) run

Starting program: /user1/gwilliam/cppcourse/Examples/lecture10ex/Debug
Program received signal SIGSEGV, Segmentation fault.

0x080486f7 in func (temp=0x80488d8 "Paras") at debug.cpp:9

9 temp[3] = 'F";

(gdb) backtrace

#0 0x080486f7 in func (temp=0x80488d8 "Paras") at debug.cpp:9

#1 0x08048758 in main () at debug.cpp:18

(gdb) quit

The Debugger (gdb)

» (Getting more detailed information:

gdb Debug

(gdb) break main

Breakpoint 1 at 0x8048746: file debug.cpp, line 17.

(gdb) break func

Breakpoint 2 at 0x80486ea: file debug.cpp, line 8.

(gdb) run

Starting program: /user1/gwilliam/cppcourse/Examples/lecture10ex/Debug
Breakpoint 1, main () at debug.cpp:17

17 char *temp = "Paras";

(gdb) continue

Continuing.

Breakpoint 2, func (temp=0x80488d8 "Paras") at debug.cpp:8
8 inti=0;

The Debugger (gdb)

(gdb) step

9 temp[3] = 'F";

(gdb) info args

temp = 0x80488d8 "Paras”

(gdb) info locals

i=0

(gdb) step

Program received signal SIGSEGV, Segmentation fault.
0x080486f7 in func (temp=0x80488d8 "Paras") at debug.cpp:9
9 temp[3] = 'F";

(gdb) step

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

(gdb) quit

That's it!

Hopefully this course has provided you with an
understanding of the basics of C++.

C++ is a complicated language and | certainly didn't
cover everything.

Please feel free to bug me if you have questions about
any of the material in the course.

Finally, thank you for listening to me prattle on for 10
hours!

And | leave you with ...

. the best excuse for wasting time:

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BHCK
10 LJ’DRK‘

