Introduction to
Programming using C++

Lecture Eight: Toward OO Design

Carl Gwilliam

gwilllam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

The Pillars of OO Design

* An Object Orientated program should have the following
three features:
— Encapsulation:
The implementation of an object is hidden from the it's interface.
— Delegation:
Effort is delegated to well defined single purpose objects.
— Categorisation:
The subject of this lecture...

 An OO designed program determines how the modeled
system responds to a given event.

 An OO program is not written to answer a specific
guestion, it is written to answer any number of questions
that may be asked in the future.

Inheritance

o In C++, categorisation is given by public inheritance.

* Inheritance hierarchies capture the
_ _ _ _ Employee
relationship between objects: an object
Inherits all the characteristics of other -
PostDoco

objects higher up inheritance hierarchy.
* Inheritance = is a kind of relationship
Alternatively:

 Each object should be distinct and provide a well defined
service but there can be great deal of overlap In
functionality between different objects.

« Commonality across multiple classes can be extracted and
placed in a “super” class.

* Inheritance can provide reusability AND categorisation but
the two concepts are not the same.

Indicating Inheritance in C++

* Inheritance is signified in the derived class by placing
the base class, from which it derives, after a colon:

Class One { Class Twopublic Class Oneg{
public: public:

prlotected: pr.otected:

pr.ivate: pr.ivate:

} b

 The derived class inherits the public and protected
(but not private) members of the base class.

 We have a new keyword, protected. These members
can be accessed by base class & derived classes only.

Revisiting the Rectangle Class

 The rectangle could be
viewed as a specialisation
of a more general shape:
the parallelogram.

A rectangle is a kind of

parallelogram. Therefore
the Rectangle class can
be written to inherit from

a Parallelogram class.

class Rectangle { [Rectangle.h]
public:
Rectangle();
Rectangle(Point ll, Point ur);
Rectangle(double length,
double width);
Rectangle(Point JIdouble length,
double width);
~Rectangle();
double length();
double width();
double area();
bool isOverlap(Rectangle a);
private:
Point itsLowerLeft;
Point itsLowerRight;
Point itsUpperLeft;
Point itsUpperRight;

I

Applying Inheritance

 Rectangle class inherits
the member data and all
the class methods from
the Parallelogram class.

 The Rectangle class still
needs to contain its own
c'tors and d’'tors.

#include “Parallelogram.h”
I/ rectangle class declaration
class Rectangle : public Parallelogram
public:
Rectangle();
Rectangle(Point ll, Point ur);

;Rectangle();// d’'tor automatically
J# // calls base d’tor

//[parallelogram class decleration
class Parallelogram {
public:
Parallelogram();
Parallelogram(double len_a,
double len_b,double angle);
~Parallelogram();
/langle between non-para sides

double angle();

double base(); E
double height();

double area(); —
double perimeter(); hedght ()
protected: angle ()

Point itsLowerLeft;

double itsAngle;
1 [Shapes2.cpp] Q

Derived Class Constructors

What happens when the rectangle constructor is called?

* Inherited data members are Iinitialised by calling the
base constructor from constructor of the derived class.

e Base constructors are called from outside the body of
the constructor of the derived class (extension of
Initialisation list):

#include “Paralleologram.h”
// default c’tor for unit rectangle
Rectangle::Rectangle(): Parallelogram(1,1,90.)

{}

)/ constructor for length and width
Rectangle::Rectangle(double length, double width)):
Parallelogram(length,width,90.)

(.}

S

Overriding Class Methods

Functionality of rectangle class |//rectangle class declaration

can be extended by adding new | ¢lass Rectangle : public
thods Parallelogram {
me ' public:

The new class method area() : [loverrides parallelogram...
overrides the method inherited goug:e Iafea(r)]; _//// area()b
from the Parallelogram class. ouble length();//same as base

double width();
As soon as a member bool isOverlap(Rectangle a);
function is created with } [Shapes3.h]
Same name as one in Rectangle beta(Point(2,2,0),Point(5,5,0));
base class all overloaded | cout << "beta base: "
instances of base class << "beta.base() == endl;
method are hidden. cout << "beta length:

<< beta.length() << end];
The area() method from | cout << "beta area: "

the base class can be still << beta.area() <<endl;

called using the full scope | cout << "beta area.
of the function << beta.Parallelogram:.area()<<endl;

"

More than One Derived Class

e |nheritance becomes |// rhombus class declaration

useful once multiple
classes inherit from

a single base class.

* Rhombus class, as
well as Rectangle
can inherit from
Parallelogram class.

i
S
)
&

class Rhombus : public Parallelogram {
public:

Rhombus();

Rhombus(double length, double angle);

Rhombus(Point I, double length,
double angle);

Rhombus(Point I, Point Ir, double angle);

~Rhombus();

double length() {return itsLength;}

Line diagonalLine(int corner=1);

Vect diagonalVect(int corner=1);

//loverrides base class method :

double perimeter() {return 4*itsLength;}

/ o\ protected:

double itsLength;

(&) b

[Shapes4.h]

Diagonal line returned via line c’tor:

return Line(itsLowerRight,itsUpperLeft);

Runtime Object Initialisation

How can an object be
initialised if type is only
decided when run program?

 Declare object in if
statement?

— pointer to heap won't
persist beyond end of

If block.

* Declare all shape
possibilities outside if
statement?

— Not scaleable when more
shapes are introduced.

 What is proper solution?

cout << "type of parallelogram?
1 - rectangle, 2 - rhombus\n";
Int request; cin >> request;
??* newShape = NULL//what is type?
if (request ==1) {
newShape = new Rectangle(1,2);
} else if (request == 2) {
newShape = new Rhombus(2,45);
}

if (request == 1) {
Rectangle* newShape = new Rectangle(1
}

Rectangle* newShape = NULL,;
Rhombus* newShape2 = NULL,;
if (request ==1) {

newShape = new Rectangle(1,2);
}

2);

Dynamic Binding

This problem can be solved by exploiting the inheritance
relation between the Rectangle (+ Rhombus) and the

Parallelogram.
] . cout << "type of parallelogram? 1 —
If pointer newShape Is rectangle, 2 - rhombus\n";

declared with a type of int request; cin >> request;

Parallelogram it can refer | Parallelogram newShape = NULL;
: If (request ==1) {

to either a Rectangle or newShape = new Rectangle(1,2);

Rhombus because both |} else if (request == 2) {

of these objects are kinds |, "éwShape = new Rhombus(2,45)
of Parallelograms ,

Attaching the pointer to an object at runtime is known at
late or dynamic binding (c.f. compile-time or static).

But if pointer newShape refers to a parallelogram how can it access
class methods of rectangle or rnombus?

Virtual Functions

« newShape Is a pointer to a Parallelogram, not to a

Rectangle. When area() is called it is the Parallelogram
method that is invoked.

Parallelogram* newShape = new Rectangle(1,2);

 Methods overridden by derived class can be accessed if
the base method is made virtual.

// parallelogram declaration I/ rectangle class declaration
class Parallelogram { class Rectangle : public
public: Parallelogram {

virtual double area(); public:

virtual double perimeter(); double area();
% [Shapes5.h] }; [Shapes5.h]

Virtual Functions

e This is because calls to virtual functions are decided
(binded) at run-time not compile-time, so it can check
what object is actually pointed at.

myShape->area(); //rectangle methods
myShape->perimeter() /[are invoked

//lcan call base class method by using it's full scope
myShape->Parallelogram::area(); [UseShapes.cpp]

e Be aware, this makes virtual function calls slower

 If method is virtual but not overridden by derived class
then base class method will be implemented instead.

 Virtual functions enable polymorphism in objects.

Virtual Destructors

 newShape refers to an object on the heap so memory
has to be released using delete. But rectangle d’'tor not
called as ptr of type Parallelogram => could cause a

memory leak. | parallelogram* newShape = new Rectangle(Z,2):
delete newShape;

« Again this is fixed by maxing the base d’tor virtual,
which ensures the proper sequence of d’tors is called

/[parallelogram declaration I/ rectangle class declaration
class Parallelogram { class Rectangle :
public: public Parallelogram {

; public:

virtual ~Parallelogram(); ~Rectangle();// automatically

; ; I/ calls base d'tor
H H /[as well after

« Base destructor will still be called even if the pointer is cast to
derived object.

Multiple Inheritance

A Square class can
be constructed that
Inherits from both
Rectangle and
Rhombus:

diagonalLins I;_!l'l

ln.ng'th“"- i
".I diagonalvect (f
widthi)h I-'
I perimetar | i
aresil)
langthiy
imoverlap [y {
!
3 i

4

// rectangle class declaration
class Rectangle : public Parallelogram {

};'

// rhombus class declaration
class Rhombus : public Parallelogram

};'

// square class declaration
class Square : public Rectangle,

public:

~Square();//all functionality inherited

public Rhombus {

Square();
Square(double size);
Square(Point ll, double size);

/[from rectangle & rhombus

Multiple Inheritance

called in turn:

/[constructor for rhnombus
Rhombus::Rhombus(double length
double angle):

Parallelogram(length,length,90.)
{...}

| Rectangle::Rectangle(double lengtl

The constructors for each of the base classes need to be

// constructor for rectangle

double width):
Parallelogram(length,width,90.)
{...}

—

\/

/[constructor for square

(.}

Square::Square(double size):
Rectangle(size,size Rhombus(size,90)

e But multiple inheritance can
why?

be dangerous. Can you see

Base Class Ambiguity

The reason is that the class Dreaded Diamond:
method base() has been
Inherited via both Rectangle
and Rhombus.

baoa I;:l/ bama i)

The call to base() from hadght () had ght ()
Square is ambiguous!
Further, a Square object H '
actually contains two sub- = >
objects of Parallelogram pei i Y yf Xussi

. _ _]1-:-.1.;;]11:1]&,1 ;;“ haight)
This ambiguity can be solved N/

by virtual inheritance ... g

Virtual Inheritance

- - // rectangle class declaration
Each directly derived class class Rectanglevirtual public

now inherits virtually from Parallelogram {

Parallelogram base class. }_' / rhombus class declaration
This ensures the most ' | class Rhombusvirtual public
. Parallelogram {
derived class, Square, only .
inherit b-obiect of | /I empty square constructor
INNeErits one sub-ob]) Square::Square():
type Parallelogram. Rectangle(1,1),
: Rhombus(1,90),
It doesn’t affect Rectangle Parallelogram(1,1,90)
or Rhombus classes. {...} [Shapes6.h]

Base constructor must now be called directly from most
derived class (unless using default).

Programs are much easier to read if object relationships
are implemented through single public inheritance. Don’t
use multiple inheritance unless you really have to.

Reassessing Inheritance Hierarchy

e Multiple inheritance
IS not required for l?'--.d_i?mmmu

- — .. diagonalVeoti)
the Square class. o =

A square is a kind E []

of parallelogram:

But how does square inherit functionality of rectangle and rhombus?

e Consider if the diagonal() functions were really unigue
to the Rhombus class.

 The diagonal() methods can be moved up inheritance
hierarchy so all three derived classes can access them.

e This is known as percolating functionality upward.

The Quadrilateral Class

diagonalLinei)]

. . . diagonmalVeat (]
A future iteration of the code will make use azandd| ¥4
of several quadrilaterals, including the perimatantl] 2

parallelogram.

/[quadrilateral class declaration
class Quadrilateral {
public:
Quadrilateral(){}
virtual ~Quadrilateral(){}
Line diagonalLine(int corner=1);
Vect diagonalVect(int corner=1);
virtual double area@ O;

y

virtual double perimeterg O;
protected:

Point itsLowerLeft;

Point itsLowerRight;

Point itsUpperLeft;

Point itsUpperRight;
| [Shapes8.h]

/[parallelogram class

class Parallelogram :
public Quadrilateral {

public:
Parallelogram();

;/irtual ~Parallelogram();
double base();

virtual double area();
virtual double perimeter();
protected:
double itsAngle;
} [Shapes8.h]

Abstract Base Classes

The virtual functions contained in the Quadrilateral
class had no implementation. These are pure virtual
functions:

virtual double area@ O; /[must be
virtual double perimeter§ O; // set to zero

A Quadrilateral class is included in the program to
provide a general definition (interface) without providing
all the implementation.

It is expected that a sub-class will implement the methods
outlined in the Quadrilateral interface (in fact it must).

These classes are known as Abstract Base Classes

Objects cannot be instantiated from ABCs since they
would not be fully defined.

Purely Abstract Base Classes

* A base class that provides no implementation and has
no members is known as a purely abstract base class.

// shape class declaration

class Shape {

public:
Shape(){} virtual arsai)
virtual ~Shape(){} virtual perimster()
virtual double area() = 0;

virtual double perimeter() = 0; ﬁ /
1 [Shapes9.h]

« The Shape class provides a statement of intent for all
“shape-like” classes; Each shape object must have
access to class methods that return area and perimeter.

 pPABCs are often written once the overall design of the classes has
been fully established.

Has-a-kind-of Relationships

e C++ distinguishes between is-a-kind-of relationships and
has-a-kind-of relationships:

\

Also have protected

. . H h H : I
/Irectangle declaration | | //rectangle declaration inheritance: public
: : members of base

class Rectangle { class Rectanglqarivate Point {

class become private

g g in derived -/
private: private:

Point itsLowerLeft; float itsX; //must redefine Point’s data

; ; //members as they were private
I %

« The Rectangle class makes use of the Point class
Implementation but as it’s not a kind of Point it doesn’t
iInherit from it. This is called containment.

e An alternative to containment is private inheritance =>
public members of base become private to derived class

e Derives implementation of the class but throws away the
Interface => breaks encapsulation => not in OO style!

