
Introduction to

Programming using C++

Lecture One: Getting Started

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

Course Prerequisites

• What you should already know about C++

NOTHING!!

• I have assumed:

– You have never encountered C++ before.

– You have limited to no programming experience in any

language.

By the end of the course
• You should:

– Have a working knowledge of all of the common C++ syntax.

– Know how to avoid common coding pitfalls.

– Be able to use and create your own functions and classes.

– Recognise the advantages of using pointers and references.

– Be able to understand the fundamental ideas of object oriented
(OO) design.

• Be aware!
– This is not the comprehensive course for C++!

– Some advanced topics will not be covered in this course.

– Project specific C++ courses are worth attending if you have
time.

• You are learning a sophisticated language! It will take some time
and a fair amount of hands-on experience to become familiar with
C++.

Course format
• Lecture 1: Getting Started

– Statements, variables, types, operators, I/O, conditional

statements

• Lecture 2: Further Syntax

– For and while loops, increment and logical operators, sorting

algorithms

• Lecture 3: Functions

– Library and user functions, declarations, arguments, overloading

• Lecture 4: Pointers and References

– References, pointers, passing by reference, pointers and arrays,

consts

• Lecture 5: Introducing Classes

– Declarations, member variables and functions, accessors,

overloading

Course Format

• Lecture 6: Classes in Practice

– Constructors and destructors, constant functions, memory

management

• Lecture 7: Designing Classes

– Passing by const reference, copy constructors, overloading

operators

• Lecture 8: Towards OO Design

– Inheritance, virtual functions, multiple inheritance, abstract

classes

• Lecture 9: Templates & the STL

– Function & Class Templates, Specialisation, String, Vector, Map

• Lecture 10: File I/O and Streams

– Reading, writing, formatting, strings as streams

Why do you need to learn how to

write code?

"I am not a computer scientist!“

• Software development skills are usually required in every

element of your project - from extracting data to getting

your results published.

• It will be very useful to learn good programming

techniques now so you can save a lot of time later.

Why Learn C++?
"I already know how to program in FORTRAN/C/ASSEMBLER

so why do I have to bother with C++?“

• In recent times there has been a shift from procedural
languages such as FORTRAN to OO-style languages
such as C++ and Java.

• The language of choice, for now, is C++.

• C++ is ideally suited for projects where the active
developers are not located in the same place.

• Our survey says: almost all of the current HEP Ph.D.
students write and execute C++ code on a daily basis.

C++ is not the answer, it is a reasonable solution..

Hello World!

• Every C++ program must contain one (and only one)
main function.

• When the program is executed "Hello World" is
displayed on the terminal screen.

#include <iostream>
using namespace std;
int main() {

cout << "Hello World!";
return 0;

}

• The first complete C++ program in this course:

Compiling Hello World

• Once the code is written is has
to be compiled:

g++ -Wall -o Hello.exe
HelloWorld.cpp

• If the code compiles successfully
an object file (HelloWorld.o) is
created.

• This object file is then linked with
other object files and libraries
required to create the exe.

• The executable can be run at
the command prompt, just like
any other UNIX command.

A simple example

int a; float b; float c;

float d = 10.2;

float result;

// get two numbers

cout << "Enter two numbers" << endl;

cin >> a; cin >> b;

c = 2.1;

result = b * a + c;

result = (result + 2)/d;

// display the answer

cout << "Result of calculation: " << result << endl;

Statements
• Statements are used to control the sequence of

execution, evaluate an expression (or even do nothing).

• ALL statements are terminated with a semi colon ;

cout << "Enter two numbers" << endl;
result = b * a + c;

result= b* a
+c ;
//is the same as
result = b * a + c;

• One statement can trail over several lines.

• Code is easier to read with a sensible use of whitespace.

Comments
• Comments are useful for you and other developers!

// get two numbers
// display the answer

• A comment begins with // and ends with a line break.

• Comments indicate the purpose of the surrounding code.

• They can be placed anywhere in the program, except

within the body of a statement:

// this is a valid comment
result = b * a; // this is also valid
result = // this is NOT valid (result
+ 2)/d;
/* You may also use this „C‟ style
comment to span multiple lines */

Variables

• Variable ‘a’ has a type integer associated with some

object of type integer.

• Variable ‘d’ has a type float associated with some object

of type float with a value of 10.2

• A variable is a name associated with a location in

computer memory used to store a value.

• In order to use a variable in C++, we must first declare it

by specifying which data type we want it to be.

int a;
float d = 10.2;

Variable Types

• The compiler needs to know how much memory to set
aside for the object associated with the variable.

• Each type requires a specific amount of space in
memory.

• What does it mean to say a variable has a type?

• The C++ built-in types are:

int a; //integer

float b; //real

double c; //real

bool d; //boolean (o or 1)

char e; //character (ASCII value)

The Built-in Types

• That is all? How does C++ deal with complex numbers?

• C++ has the capacity to create user defined types. This
is a fundamental concept of the language.

Type Size (bytes) Range

bool 1 true/false

char 1 256 chars

int 2 or 4 (see below)

short int 2 ± 32,768

long int 4 ± 2.1*109

float 4 ±3.4*1038

double 8 ±1.8*10308

1 byte = 8 bits = 28

possible combos.

Size determined

by the compiler.

Range can be

doubled by using

unsigned int

Initialisation
• When declaring a variable, it’s value is by default

undetermined.

• We can give the variable a value at the same moment it is
declared

• There are two ways to do this in C++.
– The more used c-like method:

– The constructor method:

• It is good practice to always initialise a variable to a value

// type identifier = initial_value
int a = 0;

// type identifier (initial_value)
int a(0);

Assignment

• Do not mistake the above statements for algebra!

• Value of the expression to the right of the assignment

operator (rvalue) is assigned to the variable on the left

(the lvalue). Remember assignment is right-to-left:

c = 2.1; //assignment operator
result = b * a + c;

c = 2.1; //c assigned the value 2.1
2.1 = c; //incorrect!

• A variable can be assigned (or reassigned) to a particular
value with the assignment operator (=).

Arithmetic Operators

• Be careful applying the division operator when
assigning a variable with a different type:

• There are five primary mathematical operators:

int a = 8; int b = 5;
float c = a / b; // c is 1
c = (float)a / (float)b; // c is 1.6

Addition +

Subtraction -

Multiplication *

Division /

Modulus %

the modulus is the

remainder from integer

division (e.g. 33%6 is

equal to 3).

Casting an integer

to a float (‘c’-style)

Multiple Operators and Precedence

• Do not assume that an expression is evaluated from left
to right by the compiler. In C++, an operator has a
precedence value.

result = b * a + c;
result = (result + 2)/d;

• There are no restrictions on the amount of operators in an

expression.

float a = 6 * 4 + 4 * 2; // answer is 32
float b = 6 * (4+4) * 2; // answer is 96
// expression is incomprehensible
float c = b+c * 2/d + 3 + b/c + d - b *c/d;
// still unclear!
float d = b + ((c*2)/(d+3)+(b/(c+d))-(b*c/d));

*

/

%

+

- P
R

E
S

E
D

E
N

C
E

Input and Output

• For now, you can use these
statements without fully appreciating
the syntax.

• cin reads information from the keyboard and cout prints

information to the terminal (they’re defined in the header

iosteam).

cin >> a;
cout << "Enter two numbers" << endl;

float a = 13.3;
cout << "This is a string" << endl;
cout << "Value of a: " << a << endl;
cout << "a: " << (int) a << endl;
cout << "a =\t" << a << "\n";

This is a string

Value of a: 13.3

a: 13

a = 13.3

New line \n

Horizontal tab \t

Backspace \b

Alert \a

Backslash \\

Equality example
float a, b, c = 0;
cout << "Enter two numbers“ << endl;
cin >> a; cin >> b;
c = a - b;
if (a == b) cout << "Two numbers are equal\n";
if (!c) {

cout << "Two numbers are equal\n"; return 0;
}
if (a > b) {

cout << "The first number is greater\n";
} else {

cout << "The second number is greater\n";
}
return 0;

Conditional Statements

• Apply the condition in the expression to determine if the
statement will be executed.

• The capability of altering the program flow depending on
a outcome of an expression is a powerful tool in
programming.

• The expression is a conditional statement is always
evaluated as false (0) or true (non-0).

if (expression) statement;

Conditional Statements
• A statement will be included in the program flow if the

condition is true.

• The greater than symbol > and the equivalence symbol
== are relational operators.

if (a > b) statement;
if (a == b) statement;

int x = 4; int y = 3;
if (x = 4) cout << “x equals 4\n”;
if (y = 4) cout << “y equals 4\n”;

x equals 4

y equals 4

Condition

is always

true

• Remember the difference between the assignment (=)
and equivalence (==) operators!

Relational Operators
• Relational operators are used to evaluate if an

expression is true or false.

• The negation operator ! inverts the logic of the result.

if (!(x > y)) cout << “x less than y”;

x < y Less than

x <= y Less than or equal to

x > y Greater than

x >= y Greater than or equal to

x == y equal

x != y Not equal

Boolean Logic

• Conditional statements use boolean logic to determine
whether the expression is true or false.

• A non-zero value is true, a zero value is false.

if (!c)

int x = 2; int y = 0;
if (x) cout << “x equals 2” << endl;
if (!y) cout << “y equals 0” << endl;

x equals 2

y equals 0

Boolean logic is used frequently in C++ so be prepared!

Compound Statements

• Compound statements (or blocks) act as a single
statement.

• They enable multiple statements to be attached to one
condition.

• Blocks are started and ended with braces { }

• A ; is not placed at the end of a block

{
statement 1;
:
statement n;

}

If-else Statements

• Note, else block is only executed if none of above is true

if (expression) {
block a;

} else {
block b;

}

if (a > b) {
:

} else if (a < b) {
:

} else {
:

}

if (a > b) {
if (a >= c) {

:
} else {

:
}

}

• A true condition in the if expression

will result in block a being executed

otherwise block b will be executed.

• The if statement can be used for

multiple conditions and nested

conditions:

