
Introduction to

Programming using C++

Lecture Ten: File I/O and Streams

Carl Gwilliam

gwilliam@hep.ph.liv.ac.uk

http://hep.ph.liv.ac.uk/~gwilliam/cppcourse

mailto:gwilliam@hep.ph.liv.ac.uk

A Note on Namespaces

• Namespaces allow us to localise the names of identifiers

(vars, funcs, …) so as to avoid collisions between them.

– e.g. if you define a function called pow() in your code it could

override the std library pow().

• To group entities under a name we use the namespace

keyword:
namespace name {

// declarations
}

namespace first {
int x = 1, y =2;

}

e.g.

• A namespace must be declared outside all other scopes.

• All members of the standard C++ library (e.g. cout, endl,

vector …) are within the std namespace.

– We have been using this all along without knowing it!

A Note on Namespaces
• To access elements of a namespace from outside we

use the scope resolution operator (::) :

cout << first::x << endl;

• If you have to use elements of a namespace often you

can avoid having to scope them each time by using the

using keyword to:

using namespace first;
cout << x << endl;

– bring all elements of the

namespace into view:

– bring only particular elements

of the namespace into view:
using first::x;
cout << x << endl; // OK
cout << y << endl; //error

• Using multiple namespaces simply brings all set of

elements into view (which is fine of they don’t clash)!

Streams

• Although you may not realise it, we have already come

across streams: cin and cout!

• These are objects of type istream and ostream

respectively. Together they make up iostream.

• There are also complementary file streams:

– ofstream: class to write to files

– ifstream: class to read from files

– fstream: combined class to read/write

• Reading and writing from/to files is very similar to using

cin/cout; we just need to associate the streams to files!

#include<ofstream>
#include<ifstream>
#include<fstream>

Opening/Closing a File

• The first thing we want to do with a stream is associate it

to a real file i.e. open the file. This can be done by:

– using the open member function

– or, more simply, using one of the constructors:

• Both methods take the filename as a character array.

• It is the same for reading or writing, except you use

ifstream and ofstream resepctively.

fstream file; // input or output
file.open(“myfile.txt”);

fstream file(“myfile.txt”);

Opening/Closing a File

• To test if the file has been successfully opened there is

an is_open() method:

• Once we’re finished with a file we must close it:

if (file.is_open()) {
// file is open, do something

}

• Once the file is closed, the stream object file can be

used to refer to a new file.

file.close(); // close myfile.txt

File Modes

• Both the methods to open a file mentioned above take

an optional mode arg, describing how it is to be opened:

• The various modes, which are in ios namespace, are:

iostream file(filename, mode);
file.open(filename, mode);

ios::in open for input

ios::out open for output

ios::app append to end of current file (output only)

ios::trunc delete previous content of file (output only)

ios::ate start at the end of the file (default is start)

ios::binary open in binary (rather then text) mode

File Modes

• Several modes can be combined using OR operator (|):

• Often, the mode isn’t explicitly specified since there are

default modes for the different streams:

– ofstream: ios::out

– ifstream: ios::in

– fstream: ios::in | ios::out

• We will only cover text files in this course, not binary

mode files.

file.open(“myfile.txt”, ios::out | ios::app);

Writing to a File

• Writing to a file is done

in exactly the same

way as writing to the

screen with cout, using

<< operator.

• A new line is delimited

with either endl or \n.

// writing on a text file
#include <fstream>
:
int main () {

ofstream file(“myfile.txt");

if (file.is_open()) {
file << "This is a line“ << endl;
file << "This is another.\n";
file.close();

} else {
cout << "Unable to open file\n";

}
return 0;

}

[myfile.txt]

This is a line

This is another

File States

• There are several useful functions to check the state of

the read/write operation:

bad() True if reading/writing fails (e.g. file not open or no

space left on device)

fail() As bad() but also true if a format error occurs (e.g.

read an alphabetical char where num expected)

eof() Returns true if a file open for reading reaches end

good() Combination: false if any of above is true

• These are used to see

when we should stop

reading/writing. E.g.

int i = 0;
while (i++<10 && ! fiile.bad()) {

file << “Line of text ” <<i<< \n”
}

File Stream Pointers

• We often need to specify where in a file to get text from

or put text to. We can do this with the functions seekg()

and seekp() respectively.

• These have several forms but the most useful are:

– setting cursor to beginning of file

– setting cursor to the end of file

• To see where the cursor currently is we can use the

functions tellp() and tellg()

file.seekg(0);
file.seekp(0, ios::end);

Reading from a File

• Reading from a file is

done in exactly the

same way as reading

from the screen with cin,

using >> operator.

• Reading stops at any

blank character.

• Often used to read

tables of input data:

#include <fstream>
:

int main() { //reading a text file
ifstream file("mytable.txt");
string name;
float mass, charge;

if (file.is_open()) {
file.seekg(0); //beginning
while (!file.eof()) {

file >> name >> mass >> charge;
cout << name << "\t" << mass

<< "\t" << charge << endl;
}
file.close();

} else cout << "Unable to open file";
return 0;

}

electron 0.000511 -1

muon 0.106 -1

tau 1.7771 -1

proton 0.938 +1

neutron 0.940 0

Reading by Line

• Files can also be read

by line using the

getline() function:

#include<fstream>
:

int main() { // read by line
ifstream file("myfile.txt");
string line;

if (file.is_open()) {
file.seekg(0);

while (!file.eof()) {
getline(file, line);
cout << line << endl;

}
file.close();

} else cout << "Unable to open file";
return 0;

}

getline (ifstream& stream,
string& line,
char delim)

• The optional delim arg

can be used to specify

what is used to delim

lines (default is \n).

Formatting Output

• We can control the way the output of any stream (be it

cout or a file) is formatted in C++.

• This is done via an associated set of format flags, e.g.

left left justify output

right right justify output (default)

dec output numbers in decimal (default)

oct output numbers in octal

hex output number in hexidecimal

fixed display floats as normal (default)

scientific display floats in scientific notation

(no)showpos show leading + sign for +ve numbers

(no)showpoint show decimal point & trailing 0’s for floats

In
 i
o

s
n

a
m

e
s
p

a
c
e

Formatting Output
• There are two separate ways to set these flags.

• Using the setf() and unsetf() functions of the stream:

– Again these can be compined using the OR operator (|)

• Using manipulators included in I/O stream between << :

– Note that in this case the ios namespace is not needed!

• The formatting applies to all subsequent output

statements unless explicitly unset:

cout.setf(ios::left); // left justify
cout.unsetf(ios::left); // back to right

file << scientific << 10.12345 << “\n”

file << 10.1234 << “\n” //still scientific
file << fixed << 10.1234 << “\n” //back

Precision and Width
• We can also vary the width of the output field and the

precision of floats. Again there are two parallel methods.

• By default output only occupies as much space as num

of characters, but we can specify a minminum width:

• We can change the number of significant figures (not

d.p.) displayed for floats from the default value of 6:

– If use fixed & precision together we can set num decimal places!

• Whether these alterations apply to all subsequent output

or just the next output is implementation dependent .

cout.width(10); // min width is 10 chars
cout << setw(10) << 100 << endl; //alternative

cout.precision(3); // 3 significant figures
cout << setprecision(3) << 10.1234 << endl; //alternative

10.1

iomanip
header

Formatting Output: Example
#include<iomanip>
:

int main() {
int inum = 100;
cout << left << setw(15) << "Integer"

<< right<< setw(15) << dec << inum // decimal
<< setw(15) << oct << inum // octal
<< setw(15) << hex << inum // hexidecimal
<< setw(15) << showpos << dec << inum << endl; // with sign

cout.unsetf(ios::showpos);

double fnum = 10.1234567;
cout << left << setw(15) << "Float"

<< right << setw(15) << fnum // default (6 s.f.)
<< setw(15) << setprecision(3) << fnum // 3 s. f.
<< setw(15) << fixed << setprecision(3) << fnum // 3 d. p.
<< setw(15) << scientific << setprecision(3) << fnum << endl; // scientific

cout.unsetf(ios::scientific); cout.precision(6);
cout << "Back to normal = " << inum << " " << fnum << endl;

return 0;

}

Integer 100 144 64 +100

Float 10.1235 10.1 10.123 1.012e+01

Back to normal = 100 10.1235

Stringstream #include<sstream>

• Stringstream allows a string to be used as a stream.

#include<sstream>
:

int main() {
stringstream s1("Carl is ");
s1 << 27 << " years old";
cout << s1.str() << endl;

stringstream s2("28");
int i; s2 >> i;
cout << "Next birthday he'll be "

<< i << endl;

return 0;
}

• This allows us to extract

and insert from/to strings

in same way as screen

or files, and is useful to

convert between nums

and strings.

• We insert to stringstream

via << and extract from it

via >>.

• To retrieve the string

from the stringstream we

use the str() function.

The Debugger (gdb)

• There are debuggers which can help you find errors.

– On linux with the g++ complier, the debugger is called gdb

:

void func(char* temp){
int i = 0;
temp[3] = 'F';

for (i =0 ; i < 5 ; i++)
cout << temp[i];

}

int main(){
char *temp = "Paras“
func(temp);
return 1;

}

• For a brief introduction to this

we will look at this code,

which causes a seg fault:

• For more info you can see:
http://sourceware.org/gdb/

• In order to make the most out

of the debugger we must

compile the code in debug

mode:

g++ –g debug.cpp –o Debug

The Debugger (gdb)

run <args> run the program (with any command line arguments)

break <place> create a place for the program to halt (e.g. line, func,…)

step execute current line of program and then stop

next same as step but will execute function call if on line

continue run until next breakpoint (or end)

backtrace display chain of function calls (most recent at top)

info locals display value of any local variables

info args display value of any arguments to a function

print <var> print the value of a specific variable

quit quit gdb (and stop and currently running program)

• Some of the more useful gdb commands are:

The Debugger (gdb)

• Finding simple information:

gdb Debug

(gdb) run

Starting program: /user1/gwilliam/cppcourse/Examples/lecture10ex/Debug

Program received signal SIGSEGV, Segmentation fault.

0x080486f7 in func (temp=0x80488d8 "Paras") at debug.cpp:9

9 temp[3] = 'F';

(gdb) backtrace

#0 0x080486f7 in func (temp=0x80488d8 "Paras") at debug.cpp:9

#1 0x08048758 in main () at debug.cpp:18

(gdb) quit

The Debugger (gdb)

• Getting more detailed information:

gdb Debug

(gdb) break main

Breakpoint 1 at 0x8048746: file debug.cpp, line 17.

(gdb) break func

Breakpoint 2 at 0x80486ea: file debug.cpp, line 8.

(gdb) run

Starting program: /user1/gwilliam/cppcourse/Examples/lecture10ex/Debug

Breakpoint 1, main () at debug.cpp:17

17 char *temp = "Paras";

(gdb) continue

Continuing.

Breakpoint 2, func (temp=0x80488d8 "Paras") at debug.cpp:8

8 int i = 0;

The Debugger (gdb)

(gdb) step

9 temp[3] = 'F';

(gdb) info args

temp = 0x80488d8 "Paras"

(gdb) info locals

i = 0

(gdb) step

Program received signal SIGSEGV, Segmentation fault.

0x080486f7 in func (temp=0x80488d8 "Paras") at debug.cpp:9

9 temp[3] = 'F';

(gdb) step

Program terminated with signal SIGSEGV, Segmentation fault.

The program no longer exists.

(gdb) quit

That’s it!

• Hopefully this course has provided you with an

understanding of the basics of C++.

• C++ is a complicated language and I certainly didn’t

cover everything.

• Please feel free to bug me if you have questions about

any of the material in the course.

• Finally, thank you for listening to me prattle on for 10

hours!

• And I leave you with …

… the best excuse for wasting time:

