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2 Introduction

Evidence for dark matter is littered all across the universe. One of the main indications of its
existence is that when observing galaxies, the mass of normal matter is not nearly large enough
to hold the galaxies together. There must be an invisible ’dark matter’ that compensates for the
lack of mass in order to have enough gravity to hold the galaxies together [1]. Evidence suggests
dark matter makes up 27% of the universe. It does not interact with the electromagnetic force,
nor does it absorb, reflect or emit light, making it incredibly difficult to detect [2].

It is widely accepted that dark matter (DM) exists, yet it is far more unknown about what
it is. One prediction is that it is a new particle with some non-gravitational coupling. Super-
symmetry (SUSY) is a theory that involves a partner particle for each standard model (SM)
particle [3]. The lightest of these SUSY particles would be stable and hence serve as a good
candidate for a DM particle. If this is the case, it may be produced and studied at the LHC,
however it is yet to be detected. There are ongoing analyses of the data collected by the ATLAS
experiment at the LHC to try to change this. In this specific study we consider heavy SUSY
particles decaying into DM candidates in association with a W boson and a Higgs boson (H).

The difficulty with this ongoing search is that the events for this process are relatively rare
in comparison to the amount of events for known SM processes that serve as background. Not
only this, but the events are also similar to the known SM processes, making this event even
harder to distinguish. Artificial Intelligence (AI) in the form of machine learning (ML) can learn
to recognise the difference between background and signal, helping to optimise analysis of the
signal without the need for direct instruction.

Machine Learning has different branches such as branch decision trees and artificial neural
networks. Multivariate classifiers are a form of machine learning that are useful for identifying
small signals in large data sets containing mostly background. Graph neural networks (GNNs)
can analyse the relationships (edges) between different objects (nodes) leading to predictions be
able to be made on individual nodes or edges [4].

2.1 Physical Motivation

The standard model encapsulates our current best understanding of how fundamental particles
and three of the four fundamental forces are related to each other [5]. The standard model
has limitations to the explanations of some physical phenomena observed in reality. The last
fundamental force, gravity, is completely unexplained by the SM. Gravity is extremely weak in
the subatomic world, however in phenomena such as black holes or the first moments of the
big bang, gravity becomes extremely important [6]. On top of this, the SM predicts a massless
neutrino. Neutrino oscillation experiments have shown that neutrinos have a small mass and
behave like other particles. Rectifying this by adding mass to neutrinos in the SM leads to new
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theoretical problems, and is therefore unable to incorporate a non-massless neutrino [7]. The
hierarchy problem is unexplained by the SM. The Higgs field couples proportionally to mass,
in theory massive particles should give a quantum ’loop’ that drives the mass up to the Planck
scale. In reality however, the Higgs is ten quadrillion times smaller than the Planck scale [8].
This discrepancy between them cannot be explained by the SM as the SM offers no mechanism
to negate this. The SM also doesn’t explain the imbalance between matter and anti-matter
abundance in the universe[7]. If the universe did in fact originate in a big bang, the number of
matter and anti-matter should be equal, thus there must be a mechanism unexplained by the
SM preventing this from being the case. Perhaps most obviously, the SM only accounts for the
5% of the universe that is made up by visible matter, unable to offer any particles that are good
candidates for DM. These are just some of the reasons for the needs of solutions beyond the SM.

Supersymmetry is an extension of the SM that predicts a superpartner particle for each known
particle in the SM. Each partner particle would differ by half a unit of spin to that of its SM
counterpart, i.e. for each fermion there is a corresponding boson and for every boson there
is a corresponding fermion [3]. The additional fermionic and bosonic partners postulated in
supersymmetry cancel the contributions to the Higgs mass made by SM particles, causing the
Higgs mass to remain low, solving the hierarchy problem [9]. SUSY offers the possibility of ’loop
induced’ neutrino masses through a theory called the ’soft see-saw mechanism’ [10], aswell as
having some theories that contain a fermion superpartner to the hypothetical gravitational force
carrying particle, the graviton, called the gravitino [11]. Much like the existence of anti-matter
solved the question of how the electron could be such a small size, SUSY allows the SM to
describe physics down to the Planck length, and makes the unification of the strong, weak and
electromagnetic forces possible [12]. Supersymmetry however, also poses new problems, there
is currently no explanation for why superpartners are heavier than their ordinary counterparts,
why they are so well hidden in rare phenomena and how they can be discovered experimentally.
This last problem is currently trying to be solved by multiple ongoing experiments that are
attempting to discover DM.

The superpartners of the SM Higgs, Z and W bosons are called higgsinos, binos and winos
respectively, collectively they are referred to as electroweakinos [13]. The mass eigenstates
of electroweakinos come in two forms: linear combinations of higgsino and wino fields, called
charginos, χ̃±

i (i = 1, 2) and linear combinations of higgsino, wino and bino fields, called neutrali-
nos, χ̃0

j (j = 1, 2, 3, 4) . Both of these are ordered in value of increasing mass. SUSY particles
have an R-parity (also known as ’matter-parity’) with a value of −1. In contrast to this SM
particles have an R-parity of +1, leading to the theoretical existence of a lightest SUSY particle
(LSP) that would be unable to decay into SUSY particles due to R-parity needing to be con-
served. This stable LSP therefore serves as a good DM particle.

Detection of dark matter particles at CERN involves colliding beams of normal matter par-
ticles, causing dark matter matter particles to be produced [14]. The ATLAS experiment at
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CERN (Figure 1) is concerned with analysing the products of high energy particle collisions.
At the center of ATLAS, particles collide at a rate of a billion collisions per second [15].

Figure 1: The layout of the ATLAS detector (left) [16] and the paths of each type of particle
inside the detector (right) [17].

Transverse momentum, pT is one of the features measured for events measured by ATLAS. The
transverse momentum corresponds to the momentum in the transverse plane of the ATLAS
detector, i.e. the directions that the two colliding particles travel. This is a useful measurement
as due to the nature of the head on collision of the two protons, the total transverse momentum
of all the objects produced should be 0. If this isn’t the case, there is some missing transverse
momentum that hasn’t been detected [13]. The azimuthal angle feature, ϕ corresponds to the
position in the ATLAS detector on the z axis that the energy corresponding to an object was de-
tected. The pseudorapidity, ηT is another geometric feature measured by the ATLAS detector.
Rapidity is a property used to measure angles at highly relativistic speeds. When dealing with
objects moving close to the speed of light, angles tend to grow and shrink, rendering normal
angle measurements less useful. Rapidity accounts for these relativistic effects. It has a value of
0 for trajectories perpendicular to the beam and positive and negative values [?, PSEUDORA-
PIDITY]

The incomprehensible number of collisions creates a lot of products, some of which could be
SUSY particles through processes such as the focus of this project, shown in Figure 2 . The
experimental signature is characterised by energies relating to the presence of two b-quarks (pro-
duced from the decay of the Higgs), a lepton (produced in the decay of the W boson), along
with missing transverse energy (MET). This MET accounts for that taken by the dark matter
candidate (pair of neutralinos) and the neutrino (the other decay product of the W boson). This
was searched for in run 2 of the LHC using a ML approach [13].

While this creates potential SUSY events, it also produces a high number of background pro-
cesses, some of which produce signals that are incredibly similar to that of the SUSY process

5

gwilliam
Highlight
Here I would start by defining the ATLAS coordinate system

gwilliam
Highlight
This is confusing: you mean in the plane transverse to the breams (i.e. x-y), which you can define as pT = p sin(theta) where p is the momentum and theta the angle to the beam that you need to introduce)

gwilliam
Highlight
Here you should say that this is a signature of something e.g. a neutrino leaving the detector.

gwilliam
Highlight
No T superscript

gwilliam
Highlight
Here you should define theta first as the angle to the beams (see above).  Then you can say that this is not Lorentz invariant and hence we use pseudorapdidity, for which you need to give the definition.  I don't think you need to worry about rapidity here.

gwilliam
Highlight
You need to change the order here since you talk about the signature before saying what your process of interests is.

I would move the Feynman diagrams from below to the end of the SUSY section above, before going on to the ATLAS detector and how it observed.  In doing so you can also give some brief info (linked to figure 1b which you don't talk about at the moment) on which subdetectors are used to reconstruct the various particles in your signal.

You also need to give some brief details on how a b-quarks are identified and explain what the quantiles you will use later are.



Figure 2: SUSY decay process

being searched for. Two of the main background processes are top, anti-top pair production or
single-top production, leading to similar decay products to that of the signal process, shown in
Figure 3. The background processes significantly overwhelm the signal, making selections on
individual variables to try to separate the background from signal sub-optimal. The analysis
of run-2 data previously considered multiple variables together using a multivariate approach.
.The Boosted Decision Tree (BDT) output of the background and signal processes from the
previous run-2 data analysis [13] are shown in figure 4. From the figure high BDT scores are
shown to have picked up the signal, however there is still a lot of background. There is still
a need for improvement using more advanced machine learning in order to separate the signal
from the background further, this is studied in this project.

2.2 Machine Learning

Deep learning is a machine learning technique that learns from examples. It teaches a computer
to filter information through layers in order to predict and classify further information. Neural
networks can be classified into two camps. Feedforward networks only filter inputs one way,
putting the inputs through a given number of hidden layers until you get an output. Feedback
networks contain feedback paths, allowing information to travel in all possible directions and
allowing all possible connections. Feedback networks are often utilised for tasks in which opti-
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Figure 3: The the top, anti-top decay process (left) and a single-top decay (excluding a light
quark from radiation) (right).

misation comes from the best arrangement of interconnected factors. [18].

Generally, feedback networks operate in the following sequence: Neural networks are first trained
on known data with expected outputs to learn from. For a classification task like separating
signal from background, the neural network would be trained on known signals and backgrounds
to learn how to distinguish between the two. Information is given to an input node in the form
of an activation value. The activation value is then passed to the next node based on the con-
nection strengths between the nodes. This node now calculates the sum of the weighted inputs
(linear function)[19] from the previous layer and applies a transfer function. The node then
applies an activation function. This activation function represents the likelihood that the node
will pass information. There are different activation functions used depending on the nature of
the data being processed. This is repeated until the activation value reaches an output node.
The output is compared with the expected output and the difference between them (the cost
function) is calculated. The neural network then tweaks the weights between each node with the
goal of minimising the cost function (backpropagation). Once the weights have been optimised
the neural network moves to the testing phase, in which it makes predictions without expected
values using the optimised weights from the training phase.

The overall performance of a neural network can be measured using ROC curves. ROC curves
are commonly used to show the performance of a classification model at all classification thresh-
olds [20]. It plots the true positive rate against the false positive rate at varying threshold levels
for the probability that classifies a result as positive. The true positive rate, TPR is calculated
using:

TPR =
TP

TP + FN
(1)
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Figure 4: Comparison of SUSY signal and background processes in terms of number of events,
signal tends to be closer to an XGB Signal score of 1 while background tends to be closer to a
signal score of 0 [13].

where TP is the true positive, i.e. the number of times a classification model correctly classifies
a positive result as a positive result. FN is false negative, i.e the number of times a classification
model incorrectly classifies a positive result as a negative result. The false positive rate, FPR
is calculated using:

FPR =
FP

FP + TN
(2)

where FP is the false positive, i.e. the number of times a classification model incorrectly classifies
a negative result as a positive one. TN is true negative, i.e the number of times a classification
model correctly classifies a negative result. The classification threshold dictates what minimum
probability the classification model has to give a result for it to be considered positive. This
means that the lower the threshold, the greater the number of false positives and true positives
there will be. The area under the curve (AUC) is a measure of the probability that a classifi-
cation model’s prediction is correct. It is calculated by taking the area under the ROC curve
plotted by varying the classification threshold across all values from 0 to 1, with a threshold of 0
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Figure 5: Basic layout of neural networks, many inputs are taken in and the network outputs
an optimal value based on the correlations between inputs. [19]

meaning everything will be classified as a positive result and 1 meaning nothing will be classified
as a positive result.

A graph can be used to show the relationships (edges) between a collection of objects (nodes).
Graphs can be used to represent many different things. The range of types of information
that can be represented as a graph is far greater than you might initially think. Graph Neu-
ral Networks are a machine learning tool that formats information as graphs in order to make
their predictions. GNNs can make predictions about some property of a node (node-level), the
property or presence of edges in a graph (edge-level) and also a single property of the whole
graph (graph-level). It works by acquiring embeddings from each feature of the graph. These
embeddings are pooled together, allowing the nodes to apply a linear function, resulting in an
updated embedding for that node. Neighbouring nodes and edges can exchange information to
influence each other’s updated embeddings (message passing). Message passing GNN layers can
be stacked together, potentially resulting in each node prediction eventually being influenced
by information from across the entire graph. The GNN’s complexity allows it to be a vastly
customizable model. The number of GNN layers (depth), the dimensionality of each character-
istic, the function used for pooling, and which features of the graph that get updated can all
be changed in order to optimise the GNN based on the type and amount of information being
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processed. Not only this, but it is possible to understand how a GNN is learning by analysing
the penultimate layer activations [21].

10



3 Experimental Method

3.1 Individual features

The measurements taken at ATLAS can be used to provide further features that can indicate
more about individual events, these features are the following. The jet quantile is the likelihood
that a jet measured at ATLAS corresponds to a b-quark. The two b-jets each have a mass
calculated using the relativistic momentum of the jet. It is found by rearranging the relativistic
energy-momentum relation to get:

mb =
√
E2 − p2T (3)

where E is the accepted value for the rest mass energy of the b-quark. The missing energy has
the feature of significance attached to it, ET

missSig.. This is a feature that indicates how likely a
result of MET is to be attributed to a weakly interacting particle (neutrinos or something more
exotic) rather than a sum of resolution smearing [22]. The measurements pT , η and ϕ outlined
in secton 2.1, were combined with these further variables to form all the features that were used
as information for each object in each graph.

Graphs sometimes contained 6 objects and sometimes contained 7 depending on whether or
not a non b-jet was present in that event. This made object identification for analysis slightly
more complicated, as after the jets, the other objects would have different order depending on
how many jets an event contained. On top of this, the jets in each graph had an object order
number based on the transverse momentum of the jets. The jet with the highest transverse
momentum always had the lowest object number, however the jets with the highest two mo-
menta weren’t always the two b-jets, so the non b-jets object number could change from graph
to graph. Luckily the next two objects were the two b-jets, which had the same properties as
the jets representing the two b-quarks. This varying object order can be shown by the layout
of the graphs in table 1 which only contains 6 objects and table 2 which contains 7 objects due
to the presence of the non b-jet. Therefore equation 4 was used to calculate which object was
the non b-jet and allow plots to be created on the properties of it:

∆η = |ηi − ηj | (4)

where η1 was the pseudorapidity of a given jet and η2 was the pseudorapidity of a given b-quark
object. If ∆η ≈ 0, then this would indicate that the jet in question was that of a b-quark. From
identifying with which jets this happened for for ηb1 and ηb2, the object number of the non b-jet
could be identified.

The individual features of each object in each event were investigated to learn which of these
were better indicators of the differences between a dark matter process signature and a back-
ground signature. The individual features that proved to have the largest difference in signature
between signal and background was η of the non b-jet, as shown in figure 6. The feature that
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pT [GeV ] η ϕ[rads] quantile mass[GeV/c2] Significance

jet1 146.949 -2.155 -1.183 5.0 nan nan

jet2 53.620 -1.249 -0.136 5.0 nan nan

b1 146.949 -2.155 -1.183 5.0 13.676 nan

b2 53.620 -1.249 -0.136 5.0 7.334 nan

lepton 41.106 -1.907 2.303 nan nan nan

energy 189.534 nan 1.794 nan nan 8.663

Table 1: Objects and features of the 1st graph

pT [GeV ] η ϕ[rads] quantile mass[GeV/c2] Significance

jet1 112.468 1.507 1.188 5.0 nan nan

jet2 45.432 -2.212 -0.255 1.0 nan nan

jet3 43.096 2.157 2.260 5.0 nan nan

b1 112.468 1.507 1.188 5.0 10.933 nan

b2 43.096 2.157 2.260 5.0 5.007 nan

lepton 42.533 0.218 -0.853 nan nan nan

energy 132.924 nan -2.321 nan nan 8.686

Table 2: Objects and features of the 486th graph, here the non b-jet was identified as jet 2.

had the least importance for differentiation was ϕ, which was indistinguishable between signal
and background for all applicable objects, as shown in figure 7.

By learning this it allowed the knowledge of what the GNN should be learning itself. It also
allowed the planning of measuring the change in the GNNs performance when more important or
less important features are witheld from the inputs for the GNN. This was measured by plotting
histograms of the values for signal and the two main background processes and observing the
differences by eye.

3.2 Relational features

Variables between the objects in the events were not initially given to the GNN, but could serve
as good indicators of the differences between signal and background processes. This had already
been shown by the SHAP (Shapely Additive Values) plot from the BDT analysis carried out in
[13] shown in figure 8. The figure shows that among the most important features for signal and
background discrimination were the distance between the two b-jets, ∆Rbb and most notably,
the invariant mass of the two b-jets.
∆Rbb and Mbb were calculated using:

∆R =
√
(∆η)2 + (∆ϕ)2 (5)
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Figure 6: Plot comparing values of eta of the non b-jet for signal and the two main background
processes.

and:
M =

√
2pT1pT2(cosh(∆η)− cos(∆ϕ)) (6)

respectively, where pTb1 and pTb2 are the transverse momenta of each b-jet, ηb1 and ηb2 were used
in equation 4 to get ∆η and ∆ϕ was calculated using:

∆ϕ = |ϕb1 − ϕb2| (7)

Finding these types of inter-object features could then be used to measure how well the GNN
was learning these relationships on its own, or whether it needed to be given these to begin
with. These relational features were analysed in the same way that the individual features of
each object were. As a result of this, the plots shown in figures 9 and 10 were produced.

These would be useful once the GNN had made its predictions on the events. If the GNN
had learned these properties that it had not been given as inputs, it would reproduce similar
looking plots.

3.3 The GNN

In the search for SUSY processes, the decay products’ masses, energies and directions of the
previously discussed processes could all be applied as the nodes and edges of a graph. This
allowed individual variables to all be considered at once meaning the artificial intelligence could
better understand the relationships between each variable and polarise the separation of the
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Figure 7: Plot comparing values of phi of the first b-jet for signal and the two main background
processes.

signal and background to a more optimal level. The information of simulated data was created
so that it was as close to the data collected by ATLAS for this particular experiment as possible.
In order to get the best comparison with the analysis previously done using BDT’s, as outlined
in [13], the simulated data with features across the same feature ranges were used, as outlined
in table 3

Graphs for each event were created, with each node representing an object: the 2-3 jets, 2
b-quarks, a lepton and the missing energy all with the intrinsic properties: transverse momen-
tum (pT), pseudorapidity (η), the angle (ϕ), the mass of the b-quarks (for b-jets only) calculated

Variable Signal Region

Emiss
T > 50GeV

Nlepton, pT > 27GeV 1
Njets 2-3

Nbjets, pT > 30GeV 2
mbb ∈ [95, 140]

Emiss
T Sig. > 8

Table 3: Signal region that data was simulated within, taken from the previous study on analysis
using a BDT [13]

.
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Figure 8: Plot comparing importance of features of objects in terms of how useful they are for
indicating the difference between a signal event or a background event from previous analysis.

using relativistic momentum (m), the quantile of each jet and the significance (for missing energy
node only). Meanwhile, relationships between these features (e.g. distance apart and invariant
masses) were not added to the GNN edges at first. The layout of the graphs inputted in to the
GNN is shown in figure 11. The graphs were created so that they were fully connected, meaning
all nodes had edges between them. They were also undirected, this meant that information
could be passed between all nodes of the graph in any direction. In order to negate the ’not a
number’ (’nan’) values that can be seen in table 1 and table 2 the graphs had to be extended
from having a dimension of 6 corresponding to the 6 features, to 12. This was so that each
feature value could have a flag assosciated with it. Flags are used to signal to the computer
program that there is a ’nan’ value there for the program to deal with [23].

First the data was split into a testing and training part, with 80% of the dataset used for
training and 20% of the data used for testing. The uneven split was due to the fact that the
testing phase does not improve the GNN at all, so there was no need to use any more of the data
than this as it would just be a waste. It was split such that each of the three types of events,
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Figure 9: Plot comparing invariant mass of the two b-jets for signal and the two main background
processes.

signal, tt̄ and t decay had the same 80:20 split between training and testing for their number of
events.

Data loaders were used for the GNN. Data loaders are useful when working with large datasets
of graphs. They put the graphs into ’batches’ to increase the speed at which the data can be
processed. In the GNN used for this research they did this by stacking the graphs representing
single events in a diagonal fashion. This creates one giant graph holding multiple individual
graphs. This is effective because it causes the adjacency matrices to be saved in such a way that
only non-zero values are held (those representing the edges), allowing the batches to save space
[24]. To start with, a GNN with batch number of 96 was used, i.e. there were 96 graphs per
batch, meaning for a train dataset of 240,000 graphs, there were 2500 batches.

Data was inputted into a GNN with 12 input channels, 36 hidden layers and 1 output. The 12
input channels were due to the 12 features of each graph (6 features, 6 flags). The 36 hidden
layers were so that the GNN was fully connected, so that there were edges connected to all of
the objects. The single output was so that there was a single prediction made by the GNN as to
the probability of a graph representing a signal event. The GNN was created in a type of GNN
that supports message passing from neighbouring nodes, message passing with one-dimensional
edge weight information and supports message passing in static graphs. This meant that the
GNN could pass information from node to node (as long as the two nodes were connected which
they all were) and could pass information from weight on the edges (useful for when relational
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Figure 10: Plot comparing the distance between the two b-jets for signal and the two main
background processes.

features were introduced.

Models can be trained and tested on an epoch by epoch basis. A training epoch is when all the
information availabe to be inputted into the GNN has been i.e. all the graphs in the training
dataset had been passed through the GNN to have an output delivered once. A validation epoch
was then carried out where the testing data was ran through the GNN that had now updated
it’s weightings. The next training epoch was then ran, this time not based on random weightings
but the previously learned embeddings, and the cycle was repeated. The loss and accuracy of
the graphs as this cycle was carried out was plotted, in order to know that the GNN was getting
more accurate.

The GNN output is in terms of ’logits’ for each event. ’Logits’ are a prediction made by the
GNN that is expressed across the whole number line, rather than just between 0 and 1 [25]. Due
to this, they needed to be converted to a prediction between 0 and 1. This was done using one
of the activation functions. In this case, it was done using a sigmoid function. After all this the
GNN had outputted a prediction for a probability of how likely all the graphs were to be signal.

The GNN was trained by giving it a certain amount of events for signal and a certain amount
of events for the two main background events. The number of events chosen for each of these
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Figure 11: Diagram showing how information was inputted into the GNN as graphs.

was based on a happy-medium between overall performance of the GNN and the time taken to
run the GNN using that number of events. This lead to 150,000 signal events, and 75000 events
each for the two background events given to the GNN. In reality the number of signal events
is orders of magnitude less than that of the two background processes (as can be seen in figure
4) however in order to train the GNN effectively the signal events supplied were comparative in
number to that of the background processes.

The performance of the GNN was tested using a Reciever Operating Characteristic curve. In
the case of the GNN, the TP was the number of times the GNN correctly classified an event as
a signal, the FN was the number of times the GNN classified an event as background when the
event was signal, the FP was the number of times the GNN classified an event as a signal when
the event was background and the TN was the number of times the GNN correctly classified an
event as background. The AUC was used to measure how the performance of the GNN varied
when different settings, inputs and dataset sizes were changed.

A histogram was plotted with the predictions for each graph made by the GNN in terms of
probability of being signal. Further histograms were made based on specific features, with the
feature value being plotted against frequency density. Three different sets of data were initially
plotted onto the same histograms: the data that had been signal, the data that had been back-
ground that had been assigned a GNN score of less than 0.6, and background events that had a
GNN score of above 0.6. After this, similar histograms were plotted with signal data also split
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by the 0.6 threshold. This was done for the features that had previously been found to be the
most important based on previous analysis of the individual features in the method outlined in
sections 3.1 and 3.2 as well as the previous research from [13]. It was also done for ∆R and M
to get an idea of how well the GNN was recognising the importance of these relationships on
its own. If it was, this would be indicated by the histograms of GNN score above the threshold
to be clearly different from that of the histogram of the low GNN threshold. It would also
follow a similar trend to that of the histogram of signal data for these complex features plotted
previously.
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4 Results and Discussion

• Talk about AUC in general.

• Comparison of AUC of GNN with the AUC of the BDT

• Talk about the output distribution in comparison to that of the BDT

• Talk about how well GNN has learned about individual features

• Talk about how well the GNN has learned complex features.

4.1 GNN performance

The AUC of the ROC curve from modifying GNN settings only without modifying the input
information maximised at a value of 0.83. There was little to zero change in the overall per-
formance by changing the batch number. The only thing the batch number changed was the
proportion of data used before the train performance plateaued, where larger batch numbers
needed a higher proportion of data to optimise GNN performance. The GNN training perfor-
mance always plateaued before being trained on at least 50% of the training data. This in theory
meant it would be possible to reduce the proportion of data used to train the GNN, however
this would have no effect on the GNN’s performance. The amount of data used was decided on
due to the fact that that amount of data would take around 350s to run, which met the needs
for the amount of data with the need to be efficient with time management.

Figure 12: Plot of the model output distribution for the GNN for signal and background pro-
cesses.
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Figure 13: Plot of ROC curve of simple GNN without giving any information of complex vari-
ables.

4.2 GNN learning

5 Conclusion

• How effective research was

• What could be done further.
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6 Appendix

Extra graphs, uncertainty calculations and the like.
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