New Physics Results (boosted signatures) from the LHC

Josh Xi August 25, 2017

University of Michigan

- Many searches at LCH look for new physics with multiple bosons in the final sates.
- Data collected at LHC so far have been found to be in good agreement with the predictions from the Standard Model.
- However, many questions remain unanswered:
 - Baryogenesis: imbalance of matter and anti-matter
 - The Hierarchy problem
 - Dark matter and gravity
- Many theories attempting to address these issues predict new physics with multiple bosons in the final states; finding such new physics via multi-boson final states will be expedited in Run 2 of LHC with an increased center-ofmass energy.

Theoretical models

- 1. Heavy Vector Triplets (HVT)
- A simplified phenomenological Lagrangian:
 - Model A: coupling to fermions dominating; weakly coupled vector resonances from extension of the gauge group, $g_v \sim 1$, $c_H \sim -g^2/g_v^2$
 - Model B: coupling to fermions suppressed; produced in a strong scenario, $1 < g_V < 4\pi$, $c_H \approx c_F \approx 1$
- *WW, WZ* final states
- 2. Warped Extra Dimensions
- Randall-Sundrum (RS) models
- Bulk graviton models allow SM particles into 5D-bulk
 - Production width dependent on k/\bar{M}_{pl}
- *WW, ZZ, hh* final states
- 3. MSSM/2HDM etc.

Identification of hadronic decays of boosted bosons

Boosted Tagging: ATLAS

Arbitrary units 0.16 0.14 0.12

0.1

0.08

0.06

0.04

0.02

0 0

- ́ **Β**(g, g) A Β(g, g) A Δ Large-*R* jet: anti- $k_T R = 1.0$ trimmed jets
- Jet grooming technique: trimming
 - To remove the effects of pile-up and underlying event
 - Trimming parameters: $R_{sub} = 0.2$ and $f_{\rm cut} = 5\%$

JHEP09 (2013) 076

ATLAS Simulation

Pythia Z' \rightarrow t \overline{t} , t \rightarrow Wb

200

180

160

140

- Jet mass combined mass
 - Track-assisted mass: $m^{\text{TA}} = m^{\text{track}} \times \frac{p_{\text{T}}^{\text{calo}}}{p_{\text{T}}^{\text{track}}}$
 - Spatial granularity of tracks can improve the mass resolution at high $p_{
 m T}$
 - Combined mass based on both calorimeter and track:

$$m^{\rm comb} = \frac{\sigma_{\rm calo}^{-2}m^{\rm calo} + \sigma_{\rm TA}^{-2}m^{\rm TA}}{\sigma_{\rm calo}^{-2} + \sigma_{\rm TA}^{-2}}$$

where σ_{calo} and σ_{TA} are the calorimeter and track-assisted mass resolutions

- W/Z tagger: 2-var optimized tagger which provides 50% and 80% signal efficiency working points. The two variables are:
 - Jet substructure $D_2^{(\beta=1)}$ (cut is p_T dependent)
 - Large-R jet mass window (cut is p_T dependent)
- Higgs-jet tagger:
 - b-tagging of ghost-associated track jet
 - MV2c10 algorithm for *b*-jet ID
 - Large-*R* jet mass window cut

Boosted Tagging: CMS

EXO-17-001 B2G-17-002

- PUPPI AK8 jets Pile-up suppression:
 - Particles are assigned weights using the pileup per particle identification (PUPPI)
 - Four momenta of particles are rescaled based on the weights
 - Particles are subsequently clustered into AK8 jets (anti- k_T , R = 0.8)
- Jet mass soft-drop algorithm:
 - Applied to PUPPI AK8 jets
 - Recursively removes soft wide-angle radiation from a jet
 - Infrared and collinear safe

Boosted Tagging: CMS

- Substructure variable N-subjettiness τ_{21} :
 - τ_N describes the degree to which a jet is consistent with having $\leq N$ sub-jets;
 - $\tau_{21} = \tau_2/\tau_1$ separating bosons jets from q/g jets; high- and low-purity regions based on the value of τ_{21}
- In addition to τ_{21} , **double-***b* tagger for boosted Higgs candidates:
 - MVA to discriminate between $H \rightarrow bb$ and background multi-jet production
 - "Loose" requirement: > 0.3; "tight" requirement: > 0.9

B2G-17-002

Search for resonances decaying into VV (V=W/Z)

- Dijet final state: *WW, WZ, ZZ*
- SM Multi-jet background dominates

- Background estimation using functional shape:
 - Di-jet function to model the monotonously falling spectrum
- Boosted W and Z mass windows partially overlap
- ATLAS: 50% efficiency *W/Z* tagger; *WW+WZ* or *WW+ZZ* for interpretation
- CMS: High-purity + low-purity signal regions. *WW, WZ* and *ZZ* interpreted separately.

X→VV→qqqq: ATLAS Results

<u>EXOT-2016-19</u>

 $W \rightarrow qq \rightarrow J$ and $Z \rightarrow qq \rightarrow J$ mass windows overlap; high-purity only Background: $\frac{dn}{dx} = p_1 \cdot (1 - x)^{p_2 - \xi p_3} \cdot x^{-p_3}, x = m_{JJ}/\sqrt{s}$

$X \rightarrow VV \rightarrow qqqq$: CMS Results

<u>B2G-17-001</u>

$X \rightarrow VV \rightarrow qqqqq$: ATLAS and CMS Results

- Semi-leptonic channel: $Z \rightarrow \ell^{\pm} \ell^{\mp} / vv$; $W/Z \rightarrow qq$
- Both high-purity and low-purity regions are present to enhance the sensitivity
- ATLAS
 - High purity: 50% W/Z tagger WP; low purity: 80% W/Z tagger WP
 - Results of $\ell^{\pm}\ell^{\mp}qq$ and vvqq are combined; merged analysis is prioritized, followed by resolved analysis
- CMS
 - High purity: τ_{21} < 0.35; low purity: 0.35 < τ_{21} < 0.75
 - Only *vvqq* results are public with the complete 2015+2016 dataset

Latest CMS *llqq* results: 12.9 fb⁻¹

$X \rightarrow VV \rightarrow \ell^{\pm} \ell^{\mp} qq l vvqq$: ATLAS Results

EXOT-2016-29

To appear soon

- *llqq* analysis:
 - $V \rightarrow qq \rightarrow J$: merged analysis first
 - V→qq→jj: resolved analysis next
 (untagged and b-tagged categories for Z→qq)
- Dominant backgrounds for *llqq*: Z
 +jets, *tī* (*b*-tagged category only)
- Dominant backgrounds for *vvqq*: Z
 +jets, W+jets, tī
- Background templates taken from MC; normalized to data in control regions

CR summary plot

$X \rightarrow VV \rightarrow \ell^{\pm} \ell^{\mp} q q l v v q q$: ATLAS Results

EXOT-2016-29

- Large-*R* jet mass window: 65 105 GeV
- Background estimation using simulation-assisted "alpha-ratio method"
 - Exploit the correlation between soft-drop jet mass and resonance mass.
 - Essentially, take ratio of simulation to data and extrapolate to signal region

B2G-17-005

$X \rightarrow VV \rightarrow \ell^{\pm} \ell^{\mp} qq l v v qq$: Results

2 TeV [dd] (*MZ* $\begin{array}{c} (\mathsf{p}\mathsf{p} \to \mathsf{G}_{\mathsf{K}\mathsf{K}}) \times \mathcal{B}(\mathsf{G}_{\mathsf{K}\mathsf{K}} \to \mathsf{ZZ}) \ \mathsf{[pb]} \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0^{-2} \\ 1 & 0^{-2} \end{array}$ Asymptotic limits below 2 TeV ATLAS Preliminary Observed 95% CL Observed 95% CL **ATLAS** Preliminary 10² 10² Expected 95% CL Expected 95% CL \sqrt{s} = 13 TeV, 36.1 fb⁻¹ $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^$ pseudo-experiments above *llqq* Expected 95% CL *llqq* Expected 95% CL \uparrow 10 10 vvqq Expected 95% CL vvqq Expected 95% CL W' limit G* limit $imes \mathcal{B}(\mathcal{W}'$ Expected $\pm 1\sigma$ Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Expected $\pm 2\sigma$ HVT Model A, $g_V = 1$ Bulk RS, $k/\overline{M}_{Pl} = 1$ <u>کُ</u> 10-HVT Model B, $q_V = 3$ 6010 。 6 10⁻³¹ 10⁻³ 10 10^{-4} 2 3 2 3 4 $m(G_{\rm KK})$ [TeV] *m*(*W*′) [TeV] 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) $W' \rightarrow WZ \rightarrow qqvv$ $G \rightarrow ZZ \rightarrow qqvv$ → VZ) (fb) $\sigma(G) \times B(G \rightarrow VZ)$ (fb) CMS CMS 95% CL limits 95% Cl limit Preliminary Preliminary Observed Observed Expected ----- Expected 10 10^{2} $\sigma(W') \times B(W')$ ± 1 std. deviation ± 1 std. deviation **Asymptotic limits** ± 2 std. deviations ± 2 std. deviations im spin-2 signal spin-1 signal G (Bulk), k=1.0 W' (HVT model B) spin-2 signal spin-1 signal W' (HVT model A) G (Bulk), k=0.5 10 10 W limit 10⁻¹ 4000 2000 2500 2500 1500 3000 3500 4000 1500 2000 3000 3500 m_G (GeV) m_{w'} (GeV)

vvqq dominates at high mass

same limits based on narrow-width approximation signal

EXOT-2016-29 <u>B2G-17-005</u>

$X \rightarrow VV \rightarrow \ell^{\pm} v q q$: ATLAS Results

- Semi-leptonic channel: $W \rightarrow \ell^{\pm} v$; $W/Z \rightarrow qq$
- Merged analysis is prioritized, followed by resolved analysis
- Both high-purity (50% WP) and low-purity (80% WP) regions are present to enhance the sensitivity CR: mass sidebandof $V \rightarrow qq$
- Dominant background processes: W+jets, $t\bar{t}$
 - Templates from MC simulations
 - Normalizations obtained from *W*+jets and *t* control regions
 correspondingly.
 e.g. normalized to data in WCR

Latest CMS results: 12.9 fb⁻¹

CR: presence of *b*-jets in

addition to $V \rightarrow qq$

$X \rightarrow VV \rightarrow \ell^{\pm} v q q$: ATLAS Results

ATLAS-CONF-2017-051

ATLAS-CONF-2017-051

Search for resonances decaying into VH (V=W/Z)

- Vector boson and Higgs decays selected as large-R jets
- Dominant background: multijet
- ATLAS
 - 1-tag and 2-tag signal regions based on the number of *b*-tagged track jets associated to the *H* candidate
 - 2-tag SR prevails < 2.5 TeV and 1-tag SR becomes more sensitive
 > 2.5 TeV when the 2 track jets merge into a single one
- CMS
 - High-purity and low-purity signal regions, in which both loose and tight b-tagging are done on the H candidate using the double-b tagger

DT-2016-12

- Multijet (~90%) modeled directly from data, other minor backgrounds (~10% *tī*, ≤1% *V*+jets) from simulation
- 0-tag sample (99% multijet) is used to model the kinematics of the multijet background in the 1-tag and 2-tag SRs:
 - Kinematic corrections to multijet template are applied by reweighting events the debage sample
 - Normalization uncertainties assessed for the validation regions
 - Shape uncertainties assigned by fitting a variety of empirical functions and by varying 4the fit ramge
- Binned maximum-likelihood fit

Higgs boson candidate mass [GeV]

Higgs boson candidate mass [GeV]

orthogonal regions

$X \rightarrow VH \rightarrow qqbb$: ATLAS Results

EXOT-2016-12

- Background largely dominated by multijet production (≥95%)
- Events are divided into eight exclusive categories:
 - *b*-tagging discriminator: tight and loose categories
 - τ_{21} : high-purity (HP) and low-purity (LP) categories
 - *V* jet mass: *W* mass and *Z* mass categories
- The background is estimated directly from data by a smooth and monotonically decreasing parametric function
- F-test employed to identify the "best" function:

$$\cdot \quad \frac{p_0}{x^{p_1}}, \quad \frac{p_0(1-x)^{p_1}}{x^{p_2}}, \quad \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\log(x)}}, \quad \frac{p_0(1-x)^{p_1}}{x^{p_2+p_3\log(x)+p_4\log^2(x)}}$$

B2G-17-002

<u>B2G-17-002</u>

$X \rightarrow VH \rightarrow qqbb$: CMS Results

<u>B2G-17-002</u>

$X \rightarrow VH \rightarrow qqbb$: CMS Results

X→*VH*→*qqbb*: ATLAS and CMS Results

EXOT-2016-12 B2G-17-002

Semi-Leptonic VH: ATLAS

ATLAS-CONF-2017-055

Latest CMS results: 2015 data

Resolved analysis is prioritized!

- Final states explored: *vvbb, ℓvbb* and *ℓℓbb*
- 3 channels based on V decays: 0-/2-lepton (A, Z'), 1-lepton (W')
- *b*-tag categories based on *b*-tagged track jets: 1-/2-tag used for *A* and *V*, 3+ tag used for *A* (sensitive to *bbA*).

ATLAS-CONF-2017-055

Semi-Leptonic VH: ATLAS Results

Search for resonances decaying into HH

- Search for new physics with a pair of SM Higgs bosons. Only boosted resonant search updated with 35.9 fb⁻¹.
- In high-mass resonance searches, each
 H→*bb* is reconstructed as a large-R
 hadronic jet.
- Multi-jet background estimation:
 - *m_X* < 1200 GeV, data-driven "Alphabet" method
 - *m_X* > 1200 GeV, Alphabet Assisted Bump Hunt (AABH) with leveled exponential function
 - Normalization extracted from sidebands in b-tag and Mj

$$f(x) = N \cdot e^{-ax/(1+a \cdot b \cdot x)}$$

Latest ATLAS results: 13.3 fb⁻¹

<u>B2G-16-026</u>

HH→bbbb: CMS Results

HH→bbbb: CMS Results

<u>B2G-16-026</u>

- Di-Higgs search in $\tau\tau$ final state to investigate both the resonant and non-resonant production mechanisms.
- 3 channels: $\tau_H \tau_H$, $\tau_H \tau_e$, $\tau_H \tau_{\mu}$, which cover 85% of $\tau \tau$ decays.
- 3 categories: 2 *b*-tags, 1 *b*-tag, *high-mass boosted*.
- Main backgrounds: *tī*, Drell-Yan, QCD (data-driven estimates).
- 2 BDTs to reject $t\bar{t}$ process in $\tau_{\rm H}\tau_{\rm e}$, $\tau_{\rm H}\tau_{\mu}$ channels.
- Signal extraction from:
 - resonant: $m_{\rm HH}^{\rm KinFit}$
 - non-resonant: 'stransverse' mass m_{T2} .

*HH→bb***TT: CMS Results**

<u>HIG-17-002</u>

Resonant results

Summary

- Latest ATLAS and CMS Run II searches with boosted topologies of multi-boson final states are presented.
- No significant deviations from Standard Model observed .
- Looking towards the full Run 2 dataset:
 - Refine and improve the methods for the incoming data.
 - Benefit from more advanced boosted tagging techniques.
 - Exploring other ideas open-mindedly.

Boosted analysis

Selection		SR: HP (LP) W CR: HP (LP) $t\bar{t}$ CR: HP (LP)			
Production Category	VBF	$m^{\text{tag}}(j, j) > 770 \text{GeV} \text{ and } \Delta \eta^{\text{tag}}(j, j) > 4.7$			
$W \rightarrow \ell \nu$ selection	DY	Fails VBF selection			
	Num. of signal leptons	1			
	Num. of veto leptons	0			
	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 100 GeV			
	$p_{\rm T}(\ell \nu)$	> 200 GeV			
	$E_{\rm T}^{\rm miss}/p_{\rm T}(e\nu)$	> 0.2			
$V \rightarrow J$ selection	Num. of large-R jets	≥ 1			
	D_2 Eff. working point (%)	Pass 50 (80)	Pass 50 (80)	Pass 50 (80)	
	Mass window				
	Eff. working point (%)	Pass 50 (80)	Fail 80 (80)	Pass 50 (80)	
Topology cuts	$p_{\rm T}(\ell \nu)/m(WV)$	> 0.3 for VBF and > 0.4 for DY category			
	$p_{\rm T}(J)/m(WV)$				
Num. of <i>b</i> -jets	$\Delta R(J,b) > 1.0$	0 ≥ 1			

$X \rightarrow VV \rightarrow \ell^{\pm} v q q$: ATLAS Results

Resolved analysis

Selection		WW (WZ) SR	W CR	tī CR		
Production Cotogomy	VBF	$m^{\text{tag}}(j, j) > 770 \text{ GeV and } \Delta \eta^{\text{tag}}(j, j) > 4.7$				
Production Category	DY	Fails VBF selection				
	Num. of signal leptons	1				
	Num. of veto leptons	0				
$W \rightarrow cV$ selection	$E_{\mathrm{T}}^{\mathrm{miss}}$	> 60 GeV				
	$p_{\rm T}(\ell \nu)$	> 75 GeV				
	$E_{\rm T}^{\rm miss}/p_{\rm T}(e\nu)$	> 0.2				
	Num. of small-R jets	≥ 2				
$V \rightarrow jj$ selection	$p_{\mathrm{T}}(j_1)$	> 60 GeV				
	$p_{\mathrm{T}}(j_2)$	> 45 GeV				
	m(jj) [GeV]	[66, 94]	< 66	[66, 106]		
		([82, 106])	or [106, 200]			
	$\Delta \phi(j,\ell)$	> 1.0				
	$\Delta \phi(j, E_{\rm T}^{\rm miss})$	> 1.0				
Topology cuts	$\Delta \phi(j,j)$	< 1.5				
	$\Delta \phi(\ell, E_{\mathrm{T}}^{\mathrm{miss}})$	< 1.5				
	$p_{\rm T}(\ell \nu)/m(WV)$	> 0.2 for VPE and 0.25 for DV category				
	$p_{\rm T}(jj)/m(WV)$	> 0.5 101 V BF and 0.55 101 D1 category				
Num. of <i>b</i> -jets	$b \equiv j_1 \text{ or } j_2$					
	where $V \rightarrow j_1 j_2$	≤ 1(2)	≤ 1	> 2		
	$b \neq j_1$ and $b \neq j_2$			or		
	where $V \rightarrow j_1 j_2$	0		≥ 1		