$H \rightarrow ZZ \rightarrow IIqq$ Higgs Approval

Carl Gwilliam

(on behalf of $H \rightarrow ZZ \rightarrow IIqq$ group)

16th December 2014 Higgs Meeting

Outline

1 Introduction + Motivation

- 2 Datasets + Selection
- 3 Control Plots
- 4 Background
- 5 Results + Expected Limits

6 Summary

Carl Gwilliam

Introduction

- Update of published 7 TeV result using full 2012 dataset
 - https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2012-15/
 - Based heavily on SM $Zh \rightarrow Ilbb$ and very similar to $A \rightarrow Zh \rightarrow Ilbb$
- Many improvements (above lumi increase) $\rightarrow \times 15$ @ 600 GeV :
 - Increased acceptance + reoptimised cuts
 - Add explicit VBF category + merged category for highest m_H
 - $\bullet\,$ Merged jet channel being finalised (backup) $\rightarrow\,$ only resolved here
 - Improved b-tagging (MV1c) and reduced uncertainties $(t\bar{t} \text{ calib})$
 - Extended *m_{IIjj}* range up to 1 TeV
- Split into *b*-tag categories and use m_{IIJJ} (m_{IIJ}) as discriminant
- Set limits in several models:
 - Model-independent $\sigma \times \mathsf{BR}$ for ggF and VBF channels in NWA
 - 2HDM NWA ($\tan \beta$ vs $\cos(\beta \alpha)$; $\cos(\beta \alpha)$ or $\tan \beta$ vs m_H)
 - EW singlet (varying H width and taking into account ZZ interference)
 - First two shown here; EWS in progress

$H \rightarrow ZZ$ Sensitivity Comparison

• Includes ZZ decay BR but can compare to "SM-like" line

Carl Gwilliam

Datasets

- Muon/Egamma streams: 20.3 fb⁻¹ @ $\sqrt{s} = 8$ TeV
- Signal: Powheg ggF and VBF
 - From 200-1000 GeV in 20 (50) GeV steps below (above) 600 GeV
 - Both narrow width approx (NWA) and complex-pole scheme (CPS)
 - Reweight CPS to BW + ZZ interference (ggF:gg2VV/VBF: REPOLO)
 - Plots currently show "SM-like" but will be updated to given σ and/or 2HDM point (to be agreed amongst channels)

• Background MC:

- Z/W+jets (dominant):
 - ggf: Inclusive + boosted Sherpa I/c/b samples
 - Make most of stats for b/c by truth tagging for 1/2-tag case
 - VBF: Alpgen+Pythia (better describes VBF vars due to N_p samples)
- $t\overline{t}$: Powheg
- Single top: Powheg (*Wt/s*-chan) / Acer (*t*-chan)
- Diboson (ZZ/WZ/WW): Powheg
- QCD multijet from data in *ee* (negligible in $\mu\mu$)
 - SR: Reversed track isolation; TopCR: SS $e\mu$ events

Carl Gwilliam

Event Selection

Based closely on HSG5 selection and very similar to $A \rightarrow Zh$

- Preselection + recommended single/dilepton triggers
 - GRL, LAr/tile error veto, jet cleaning, LAr hole veto, $N_{trk}(PV) > 2$
- Exactly 2 electrons/muons (no additional lepton with $p_T > 7$ GeV)

Electron	Muon
 VeryLooseLH 	• CB/ST + CB/ST/SA/Calo
• $p_T > 25/7$ GeV	• $p_T > 25/7$ GeV
• $ \eta < 2.47$	• $ \eta < 2.7$
• $\sum p_T (\Delta R = 0.2) / p_T < 0.10$	• $\sum p_T (\Delta R = 0.2) / p_T < 0.10$
• OQ cuts	• MCP + IP cuts
 Trigger matched 	 Trigger matched

- 83 < m_{II} < 99 GeV
- $E_T^{\rm miss}/\sqrt{H_T} < 6$ (3.5) GeV^{0.5} in untagged/tagged
 - H_T from sum of selected leptons + jets
- Separate ggF and VBF categories ...
 - Final discriminant is m_{IIjj} with m_{jj} constrained to m_Z
 - Simple scaling of jet four vec by m_Z/m_{ii}

Carl Gwilliam

Event Selection (2)

Based closely on HSG5 selection and very similar to $A \rightarrow Zh$

VBF

- ≥ 4 jets (EM+GSC)
 *p*_T > 20/30 GeV
 |η| < 4.5
- $\eta_1 \times \eta_2 < 0$
- Pick highest m_{jj} pair
 Non b-tagged
- *m_{jj}* > 500 GeV
- $\Delta \eta > 4$
- Follow ggF cuts
- Continuous *b*-tagging using MV1c @ 70%
- Pick highest *b*-weight iets, then highest *p*_T

ggF

- Veto VBF events
- \geq 2 signal jets
 - $p_T > 45/20~{\rm GeV}$ and $|\eta| < 2.5$
- $70 < m_{jj} < 105 \text{ GeV}$
- Untagged/tagged channels
- Optimised cuts (untagged/VBF)
 - $p_{T}^{ll} > \min[-54 + 0.46 m_{lljj}, 275]$
 - $P_T^{\rm jet} > 0.1 m_{IIqq}$
 - $\Delta \phi_{II} > 3.2e8/m_{IIqq}^{3.5} + 1$
- Optimised cuts (tagged)
 - $p_T'' > \min[-79 + 0.44 m_{IIjj}, 275]$

Carl Gwilliam

VBF Bug

Since circulating, found 2 bugs in the VBF analysis (ggF unaffected):
METSig cut not being applied due to mistake in units

- Will be a very small effect (< 1%) for VBF as inclusive in $N_{\rm jet}$
- Old optimised p_T^Z cut was being applied
 - $\bullet\,$ Will change limits by up to $\approx 10\%$
 - Effects both ggF and VBF model-indep limits as profile VBF for ggF git

 Results in talk updated except rankings (pull are) and 2HDM limits (little effect from VRF here)

Carl Gwilliam

 $m_{||}$

Small QCD in electron channel, well described by data-driven method

Carl Gwilliam

$\mathsf{Jet} + E_T^{\mathrm{miss}}$

- E_T^{miss} reasonably described with systs but some slope
- Slope in Data/MC for $N_{\rm jet}$ but 2/3 jet OK and few events in tail
 - Similar slope of ~ 20% seen in ongoing SM 8 TeV Z+jets analysis
 Checked no effect on limits if reweight (backup)

Carl Gwilliam

$VBF + m_{jj}$

VBF vars and m_{jj} (ggF after opt cuts; VBF before) well described
 b-jets corrected for semi-lep μs and p_T^{reco}/p_T^{true} when forming m_{bb}

0+1 *b*-tag

= 400 [Ge

Carl Gwilliam

Background Modelling

Based on procedure used by $HSG5/A \rightarrow Zh$ result

- Norm: extract Z & top SF using CRs in final PL fit (see later)
 - "Flavour fit" as MC won't necessarily get ratio of flavours correct
 - Diboson from MC; QCD from data-driven method shown earlier
- Shape: taken from MC but checked/corrected using CRs
 - m_{jj} SB for Z and $e\mu$ events for top
- Sherpa Z+jets corrections (ggF)
- $\Delta \phi_{jj}$ mismodelled in 0/1 tag
 - Only at low $p_T^{\prime\prime}~(<120~{\rm GeV})$
 - Linear correction from 0 *b*-tag SB applied to *Z* + *l* jets
- $p_T^{\prime\prime}$ mismodelled in 1/2 tag
 - Correction from 1+2 b-tag SB using a + b log(p^{ll}_T) fit to Z+hf
 - Z + I and non-Z bkg subtracted

• In VBF channel use alpgen Z+jets and m_{IIjj} reweighed instead

Carl Gwilliam

Z+jets CR: m_{IIjj}

• *m_{jj}* SBs: before (top) and after (bottom) optimised cuts

• 50 $< m_{jj} <$ 70 GeV or 105 $< m_{jj} <$ 150 GeV (kinematics similar to SR)

Carl Gwilliam

Z+jets CR: $\Delta \phi_{ii} + p_T''$

• Good description of $\Delta \phi_{jj}$ (top) and p_T^{ll} (bottom) in SB after reweight

Carl Gwilliam

Top CR $(e\mu)$

• ggF $e\mu$ events with 83 $< m_{II} <$ 99 GeV (similar kinematics to SR)

- Opposite charge only (remove QCD)
- 1 *b*-tag with $E_T^{\text{miss}}/\sqrt{H_T}$ reversed as VR

Carl Gwilliam

Fit Configuration

• Simultaneous fit to ggF +VBF SR +CRs:

- ggF 0/1 and 2 tag SR (m_{IIjj})
- ggF 0/1 and 2 tag ZCR (MV1cSum)
- ggF 2 tag TopCR (m_{IIjj})
- VBF SR + ZCR (*m*_{IIjj})

	Categories								
N _{b-tag}		ggF		Me	rged 🦼	VBF			
	m _{jj} SR	m_{jj} CR	<i>eμ</i> CR	m_j SR	m; CR	m _{jj} SR	m_{jj} CR		
0 b-tag		MV1c	_						
1 b-tag	meejj	IVI V IC	_	meet	Millij	m _{ℓℓjj}	m _{ℓℓjj}		
2 b-tag	meljj	MV1c	m _{lljj}						

• Floating (all plots use SFs from fit)

- $\mu(ggF) / \mu(VBF)$ or $\mu(ggF+VBF)$
 - For model-indep, fit 1 & profile other; for 2HDM, fit μ (ggF+VBF) with correct ratio
- Sherpa ZI, Zbl, Zbc, Zhf(=bb,bc,cc)
- Alpgen Z (uncorrelated to ggF)
- Top (correlated between ggF/VBF)

- Zbb same as public VHbb
- Agrees with 7 TeV Z+jets

Carl Gwilliam

Systematics: Experiment/Signal

- Experimental
 - Lepton: energy scale/resolution + efficiency
 - Jet: JES (14 NP + multijes) + JER + ptreco syst + JVF syst
 - b-tag:
 - 10 EV variations for *I/b* SFs; 15 for *c* SFs
 - Uncertainty on MC-to-MC b/c SF correction comparing sherpa to pythia8
 - Uncertainty on truth-tagging correction in ΔR_{jj} (from HSG5 VHbb)
 - E_{T}^{miss} : Propagate object uncertainties to E_{T}^{miss} + soft scale/resol
 - Lumi + pileup: 2.8% lumi uncertainty + vary μ scale

• Signal: ISR/FSR, μ_F/μ_R , PDF + error on interference for EWS

• ggF untagged below

Systematics: Experiment/Signal

- Experimental
 - Lepton: energy scale/resolution + efficiency
 - Jet: JES (14 NP + multijes) + JER + ptreco syst + JVF syst
 - b-tag:
 - 10 EV variations for *I/b* SFs; 15 for *c* SFs
 - Uncertainty on MC-to-MC b/c SF correction comparing sherpa to pythia8
 - Uncertainty on truth-tagging correction in ΔR_{jj} (from HSG5 VHbb)
 - E_T^{miss} : Propagate object uncertainties to E_T^{miss} + soft scale/resol
 - Lumi + pileup: 2.8% lumi uncertainty + vary μ scale

• Signal: ISR/FSR, μ_F/μ_R , PDF + error on interference for EWS

• ggF tagged below

Carl Gwilliam

Systematics: Experiment/Signal

- Experimental
 - Lepton: energy scale/resolution + efficiency
 - Jet: JES (14 NP + multijes) + JER + ptreco syst + JVF syst
 - b-tag:
 - 10 EV variations for *I/b* SFs; 15 for *c* SFs
 - Uncertainty on MC-to-MC b/c SF correction comparing sherpa to pythia8
 - Uncertainty on truth-tagging correction in ΔR_{jj} (from HSG5 VHbb)
 - E_T^{miss} : Propagate object uncertainties to E_T^{miss} + soft scale/resol
 - Lumi + pileup: 2.8% lumi uncertainty + vary μ scale

• Signal: ISR/FSR, μ_F/μ_R , PDF + error on interference for EWS • **VBF** below

Systematics: Bkg Modelling

• Z+jets:

- m_{jj} shape uncertainty from comparing data/MC in SB
- ggF: Uncertainty on $\Delta \phi_{jj} \& p_T^{ll}$ reweights (50/100%; l/b + c uncorr)
- VBF: Uncertainty on *m*_{lljj} reweight (100%)

● *t***t**:

- m_{jj} shape uncertainty from comparing different generators/PDFs
- $p_T^{t\bar{t}}$ shape uncertainty by reweighting to ATLAS 7 TeV result

• Single top (*Wt* dominates):

- *m_{jj}* shape uncertainty from comparing Herwig/AcerMC
- Norm uncertainty by varying μ_F/μ_R , α_s , PDF (7%)

• Diboson:

- m_{jj} shape uncertainty from comparing Powheg and Herwig
- Uncertainty on $p_T^{\prime\prime}$ by comparing MC and NLO MCFM prediction via S-T
- Norm uncertainty from varying $\alpha_{s},$ PDF (3/4%)
- QCD: 50% norm uncertainty MC Stats: 1% threshold
- NP smoothed and small/noisy NP pruned using HSG5 VHbb method

NP Ranking gF at $m_H = 2/4/900$ GeV left/centre/right

Higgs Meeting

19/83

Carl Gwilliam

NP Ranking VBF at $m_H = 2/4/600$ GeV left/centre/right

Carl Gwilliam

NP Pulls: *b*-tagging ggF (black) and VBF (red) @ 400 GeV - pulls vs Asimov in backup

• Some small pulls/constraints in b-tagging but expected since fit MV1c so have power in analysis. Similar seen in HSG5 fits.

Carl Gwilliam

NP Pulls: Jets

ggF (black) and VBF (red) @ 400 GeV - pulls vs Asimov in backup

JER constrained

- Not surprising as large stats in 0/1 tag and know overestimated
- Also seen in Asimov fit

- JetFlavComp for Z+jets constrained a bit
 - Unsurprising as input is 50% g/q fraction with 100% error

-0.33 ± 1.12 -0.06 ± 0.92 -0.11 ± 0.60 -0.03 ± 0.60

JetNonClos pulled

4	2	5	0	N	4 (o	4 4	5	0	N	4 (ີ
	0.50 ± 0.61 0.46 ± 0.61		+		JetEResol_Y	2012	+0.06 ± 0.66 +0.07 ± 0.66		#		JetNP1_Y201	2
	0.73 ± 0.65 0.77 ± 0.65	=	ŧ		JetEtaModel		+0.05 ± 0.57 +0.04 ± 0.58		#		JetNP2_Y201	2
	0.01±0.63 0.01±0.64		#		JetEtaStat_Y	2012	0.27 ± 0.77 0.27 ± 0.78		=		JetNP3_Y201	2
	0.12 ± 1.00 0.14 ± 1.00		=		JetFlavB		+0.04 ± 0.72 +0.04 ± 0.74		#		JetNP4_Y201	2
	0.06 ± 1.01 0.06 ± 1.02		=		JetFlavComp	o_Top	0.07 ± 0.69 0.07 ± 0.70		#		JetNP6_rest_	Y2012
	0.28 ± 0.54 0.33 ± 0.52		+		JetFlavComp	_ZjetsAlpC	0.10 ± 0.67 0.10 ± 0.69		#		JetNPV	
	0.04 ± 1.00 0.03 ± 1.00		==		JetFlavResp	_Top	0.42 ± 0.93 0.42 ± 0.92		#	=	JetNonClos	
	0.19 ± 0.63 0.19 ± 0.63		#		JetFlavResp	_ZjetsAlpO	+0.22 ± 0.87 +0.21± 0.86		=		JetPilePt_Y2)12
	0.55 ± 0.80 0.55 ± 0.80		#	=	JetMu		0.17 ± 0.84 0.17 ± 0.86		#		JetPileRho_Y	2012
	0.16 ± 1.08 0.13 ± 1.09		=		JetFlavComp	_VHVV	+0.00 ± 1.06 +0.00 ± 1.06		-		METResoST	Y2012
	0.08 ± 1.03 0.07 ± 1.03		=		JetFlavResp	_VHVV	+0.19 ± 1.01 +0.19 ± 1.02	:	=		METScaleST	_Y2012
	0.02 ± 1.04 0.02 ± 0.99		==		BJetReso		$\begin{array}{c} 0.76 \pm 0.68 \\ 0.82 \pm 0.68 \end{array}$		⇒	=	JVF_Y2012	

Carl Gwilliam

NP Pulls: Modelling

ggF (black) and VBF (red) @ 400 GeV - pulls vs Asimov in backup

- Only significant constraint is on VBF *m*_{llii} systematic
 - Comes from removing/doubling syst derived from SB so conservative

Carl Gwilliam

NP Pulls: Modelling/Leptons

ggF (black) and VBF (red) @ 400 GeV - pulls vs Asimov in backup

• Ratios are priors on flavour comps within Zhf = (Zbb + Zbc + Zcc), from comparing generators

Carl Gwilliam

Post-fit plots (in fit binning)

Other variables in backup

m_{Iljj} in ggF SR (top) and MV1c sum in ZCR (bottom)
 0/1 tag (L) & 2 tag (R); signal for NWA with *m_H* = 400 GeV

Carl Gwilliam

Post-fit plots (in fit binning)

Other variables in backup

- m_{IIjj} in ggF Top CR (top) and VBF SR (bottom)
 - 0/1 tag (L) & 2 tag (R); signal for NWA with $m_H = 400 \text{ GeV}$

Carl Gwilliam

Model-independent Limits (bug)

• Limit on $\sigma \times BR$ for NWA in both ggF and VBF channels

Carl Gwilliam

Model-independent Limits (fixed)

• Limit on $\sigma \times BR$ for NWA in both ggF and VBF channels

Carl Gwilliam

2HDM: Width & ggF:VBF

Both width (T) and ggF:VBF ratio (B) vary across the 2HDM plane Width is not negligible compared to experimental resolution (≈ 3%)

Carl Gwilliam

2HDM: Width procedure

- Cannot use CPS samples since are relatively small % width at low mH. Instead perform a BW smearing of NWA signals to account for non-zero natural width
 - Loop over each bin of signal hist and redistributing events according to BW, centred on bin centre with $\Gamma_H = m_H \times s$, where *s*=smearing factor and m_H =generated *H* mass
 - Doesn't account for interfrence but negligible if keep $\Gamma_H/m_H < 5\%$

• Estimate using CPS samples at $m_H = 440 - 460$ GeV, where $\Gamma_H/m_H \approx 5\%$

• Not fully correct as interference depends on *m_H*

m _H	Interf	obs	-2σ	-1σ	exp	$+1\sigma$	$+2\sigma$
440	no	0.073	0.047	0.062	0.088	0.122	0.164
GeV	yes	0.073	0.047	0.065	0.088	0.126	0.166
460	no	0.098	0.052	0.070	00960	0.132	0.179
GeV	yes	0.098	0.052	0.070	00960	0.135	0.181

Carl Gwilliam

2HDM: Implementation

- To avoid computationally-intensive limit fits for each point in the 2HDM parameter space, instead do the following ...
- First extract limit as function of width/ m_H and $\sigma_{VBF}/(\sigma_{ggF} + \sigma_{VBF})$
 - Smear *m_{lijjj}* with 0, 1, 2, 3, 4, 5, 6% (last to have a point beyond end)
 - For each $\widetilde{\text{of}}$ these the VBF fraction is varied from 0 to 1 in 0.1 steps
 - Need to divide out SM cross-section of course
 - Results in 77 fits for a given mass but won't do 2HDM $\tan\beta$ vs $\cos(\beta-\alpha)$ for many masses
 - Can ignore VBF for tan β vs m_H where sensitive (reduce fits)
- Use limits to construct TGraph2D of limit vs width & VBF fraction
- When draw 2HDM plot, find width/ m_H & VBF fraction for each point & use this to look up limit in TGraph2D via Interpolate(x,y)
- $\bullet\,$ Currently neglect bbH prod, which can be large at high $\tan\beta$
 - But $\sigma_{tot} \times BR(H \rightarrow ZZ)$ small \rightarrow little effect on limit at $m_H = 200$ GeV, but completely dominated by 4l here; no effect at 300 GeV
 - $\bullet\,$ Can add to ggF with diff in acceptance via gen-level study if needed

Carl Gwilliam

2HDM: Limits

- Results in tan β vs cos(β α) for 2/300 GeV and tan β vs m_H planes
 Grey region is Γ_H/m_H > 5% where limit not valid (to add to m_H plot)

Carl Gwilliam

Summary

- Search for high-mass $H \rightarrow ZZ \rightarrow IIqq$ in ggF and VBF very mature
 - Based on lots of work in HSG5 VHbb
 - Very similar to approved $A \rightarrow Zh \rightarrow Ilbb$
- Cuts and background modelling have been finalised for quite a while
- Main work recently on limit interpretations
 - Procedure fully setup up to incorperate width and ggf:VBF fraction
 - Common with $A \rightarrow Zh$
 - bbH can be added to ggF if needed but depends what done in 4I
 - EWS in progress in parallel but don't want to hold up the paper

To do

- EWS interpretation (in parallel)
- Merged regime
- Combination
 - Have first model-indep results and 2HDM in progress
- Paper
 - $\bullet~$ Aim for good first draft in $\sim~$ mid-January

Carl Gwilliam

ggF Post-fit plots: METSig,*m_{jj}*

Carl Gwilliam
ggF Post-fit plots: p_T''

ggF Post-fit plots: $p_T^J, \Delta \phi_{II}$

Carl Gwilliam

VBF Post-fit plots: METSig,*m_{jj}*

VBF Post-fit plots: p_T''

VBF Post-fit plots: $p_T^J, \Delta \phi_{II}$

Carl Gwilliam

Kinematics: leptons

Kinematics: jets

E_T^{miss} significance

• Improves signal efficiency at high m_H without affecting bkg rejection

- Check effect of $N_{\rm jet}$ description on exp limit by reweighting MC to match data
 - Compare blue deashed line to black dashed line
 - Very small effect ($\sim 1\%$) at lowest/highest m_H

ggF/VBF Efficiency

- No apriori ratio of ggF to VBF cross-section (except 2HDM)
- Efficiency for each channel and ratio below:

m _H	ggF channel			VBF channel		
(GeV)	ϵ_{ggF}	ϵ_{VBF}	$\epsilon_{ggF}/\epsilon_{VBF}$	ϵ_{ggF}	ϵ_{VBF}	$\epsilon_{VBF}/\epsilon_{ggF}$
200	4.06	2.09	1.94	0.11	1.66	14.95
400	11.56	5.52	2.09	0.20	3.12	15.48
600	13.44	7.45	1.80	0.32	4.36	13.63
800	12.35	7.55	1.64	0.40	4.12	10.30
1000	7.49	4.92	1.52	0.27	2.24	8.21

h(125) + Real EW Singlet Model

Heavy real singlet couplings rescaled from SM CPS signal
 Scan in two parameters for each m_H and set upper limit on σ×BR

• H_{new} coupling: κ' ($\kappa = h_{125}$ coupling)

• Constrained by: $\kappa_V'^2 + \kappa_V^2 = 1$ where $\kappa \equiv \kappa_V = \kappa_f = \sqrt{\mu}$

 $\bullet \ \mathrm{BR}_{\mathrm{new}}\text{:}$ new decay modes, e.g. to additional Higgses

 \bullet Width may be narrower/wider than SM; restrict to $\Gamma'_{\rm NWA} \leq \Gamma' \leq \Gamma'_{\rm SM}$

 ${\scriptstyle \bullet}$ Some constraints already from experimental measurements of μ

Carl Gwilliam

EW Singlet Tools

- Need to scan width and account for interference
 - Natural width sizable contribution to S + B interference
- Interference for nominal CPS SM width (also H
 ightarrow WW)
 - ggF: HTO Passarino results (Gen)
 - VBF: Results from REPOLO in VBF@NLO (Rikard et al)
- Width reweight for EW singlet scan (also $H \rightarrow WW$)
 - Lineshape predictions from POWHEG (Sara)
- Interference reweight for width scan
 - As width changes, the amount of interference also changes
 - ggF:
 - Results from gg2VV (Scott)
 - ($H \rightarrow WW$ using MCFM but doesn't do ZZ final state)
 - VBF:
 - Results from REPOLO in VBF@NLO (Rikard et al)

2HDM Model

- Two identical complex scalar fields (SU(2))
- The 2HDM scalar potential is a Z_2 broken symmetric 2HDM:

$$\begin{split} V(\Phi_1, \Phi_2) &= m_1^2 \Phi_1^{\dagger} \Phi_1 + m_2^2 \Phi_2^{\dagger} \Phi_2 + (m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c}) \\ &+ \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c}] \end{split}$$

• We are interested in the CP-conserving case \rightarrow parameters are:

- 3 masses: $m_h, m_H, m_{H^{\pm}}, m_A,$
- 2 angles: α , β
- 1 potential parameter: m_{12}^2
- Each parameter set gives specific predictions for σ/BR for h/H
- Follow method for benchmark points setup by HSG6
 - Common with $H \rightarrow WW$

Carl Gwilliam

2HDM Benchmarks

Recipe compatible with current knowledge on *h*:

- Light Higgs is 125 GeV CP-even particle
- m_A and m_H^{\pm} large, equal to m_H
 - Except very low m_H hypothesis where keep them above 300 GeV.
- Scan over m_H , $\cos(\beta \alpha)$ and $tan\beta$ planes
 - Restrict $\cos(\beta \alpha) \sim 0 \rightarrow h$ compatible with SM rates.
 - Explore both positive and negative quadrants
- Fix m_{12}^2
 - $m_{12}^2 = 0$ (exact Z_2 symmetry)
 - $m_{12}^2 = f(m_A, \tan \beta)$ (softly broken Z_2 symmetry e.g. MSSM)
- Do this for both Type I and II (no FCNC)

Optimisation: Cuts vs m_H

Applying kinematic selection makes $m(\ell \ell j j)$ distribution of background look more like signal.

Generally, applying cuts optimized for a given Higgs mass results in the background peaking around the same mass.

Optimisation: *p*²

Calculate signif for 90% window arround m_{lljj} peak for sliding cut
Fit optimal cut value vs m_{lljj}

Figure 57: Results of the $p_T^{\ell\ell}$ selection optimization for the untagged and tagged cases. The points are the optimal cut values, as a function of m_H , and the error bars show the range in which the significance is the same within uncertainties. The magenta line is the result of a linear fit, which is then cut off at 275 GeV as indicated.

Carl Gwilliam

Optimisation: p_T^j (after p_T^Z)

Calculate signif for 90% window arround m_{lljj} peak for sliding cut
Fit optimal cut value vs m_{llii}

Optimisation: $\Delta \phi$

- Calculate signif for 90% window arround m_{llji} peak for sliding cut
- Fit optimal cut value vs m_{IIjj}
 - No gain in applying $\Delta \phi_{II}$ ($\Delta \phi_{jj}$) from 700 (400) GeV
 - Reminder: point is max signif. but errors indicate where signif. same within uncertainty
 - Can apply funciton tending to 1 so no affect at high m_{llgg}

• Can gain from $\Delta \phi_{II}$ in intermediate m_H .

Optimisation: Shape-sensitive (1)

- Would like to fully take the shape of the mass peak into account in the significance calculation, rather than just doing a counting experiement in a window around the peak.
- If we imagine simultaneously normalizing the signal and background to the data, this will automatically penalize cuts that make the background look too much like the signal.
- Extend current aymptotic formula used for significance.
- Currently using eq. (97) from the asymptotic paper:

$$med[Z_0] = \sqrt{q_{0,A}} = \sqrt{2((s+b)\ln(1+s/b)-s)}$$
 (2)

Comes from discovery significance

$$q_0 = -2 \ln L(0)/L(\hat{\mu});$$
 $L(\mu) = \text{pois}(n; \mu s + b)$ (3)

evaluated at the Asimov value n = s + b. This can be done analytically and yields (97). (The asymptotic approximation is that the significance $Z_0 \approx \sqrt{q_0}$.)

Carl Gwilliam

Optimisation: Shape-sensitive (2)

• Extend likelihood for a binned histogram and add a nuisance parameter for the background strength:

$$L(\mu,\theta) = \prod_{i} \operatorname{pois}(n_i; \mu s_i + \theta b_i)$$
(4)

Then

$$q_0 = -2\ln L(0,\hat{\hat{\theta}})/L(\hat{\mu},\hat{\theta})$$
(5)

- Evaluate at n_i = s_i + b_i. Denominator is maximum of L; occurs at *μ̂* = θ̂ = 1. Numerator is evaluated at the maximum in θ with μ = 0; need to do this numerically.
- Difficulty: Bins with very low b_i (due to low background statistics) can give a large contribution to significance. Control by cutting off the high end of the mass distribution 3σ above the mean higgs signal mass, and by ignoring bins with unreasonably small backgrounds.

Optimisation: Results

Optimisation: VBF m_{jj} and $\Delta\eta_{jj}$

Optimisation: VBF $\Delta \phi_{jj}$, p_T^{ll} , p_T^{l}

m_{lljj} ggF untagged

m_{IIjj} ggF tagged

Carl Gwilliam

m_{lljj} VBF

Carl Gwilliam

m_{jj} binning

• Non-equidistant binning to keep backgroun uncertainties reasonable

 $\bullet~ggF$ untagged (TL) and tagged (TR); VBF (bottom)

JetNonClosure

NP smoothing

To mitigate these effects, two so-called "smoothing" algorithms (developed by HSG5) are used to merge consecutive bins in the MC templates. First, bins from one extremum to the next are merged until at most one local extremum remains in the $m_{\ell\ell jj}$ distribution. If there are more than two extrema, merging is performed at each step of this iterative process where the difference between merged and unmerged templates is smallest. Second, the bins resulting from this first algorithm are sequentially merged, starting from the upper end of the distribution, until the statistical uncertainty in each of the integrals of the nominal atemplate, is smaller than 5%. In each of these sets of bins, the integrals of the nominal and systematically shifted distributions are compared to give the $\pm 1\sigma$ variation. This value is then used as the associated uncertainty for all the nominal bins in the set. Figure 31 shows such a rebinned distribution.

In the MV1c distribution, it does not make sense to merge neighbouring bins since the MV1c distribution is discrete and hence the smoothing procedure described above is not applied.

NP pruning

- Reduce statistical fluctuations by the smoothing procedure described in Section 8.1.7 only for those systematic which require a re-sampling of the events (i.e. JES and not *b*-tagging)
- Neglect the normalization uncertainty for a given sample in a region if either of the following is true:
 - the variation is less than 0.5%
 - both up and down variations have the same sign
- Neglect the shape uncertainty for a given sample in a given region if either of the following is true:
 - not one single bin has a deviation over 0.5% after the overall normalization is removed
 - if only up or the down variation is non-zero and passed the previous pruning steps
- Neglect the shape and normalization uncertainty for a given sample in a given region if the sample is less than 2% of the total background:
 - if the signal <2% of the total background in all bins and the shape and normalization error are each <0.5% of the total background
 - if at least one bin has a signal contribution > 2% of the total background, only in those bins where the shape and normalization error are each < 2% of the signal yield

In the ggF Z control region, where the MV1c distribution (which cannot be smoothed as mentioned in Section 8.1.7) is fitted, the only pruning performed is to remove one-sided systematics in a given MV1c bin.

Carl Gwilliam

$\Delta \phi_{jj}$ (before corrections)

p_T^{II} (after $\Delta \phi_{jj}$ corrections)

$\Delta \phi_{jj}$ and p_T^{II} reweight

$\Delta \phi_{jj}$ and p_T^{ll} errors on m_{lljj}

m_{jj} systematic

Carl Gwilliam

Top Systematics: MC comp

Carl Gwilliam
Top Systematics: Effect on m_{lljj}

• Effect of p_T & m_{jj} uncertainty on m_{bb} & m_{lljj} shape (from $A \rightarrow Zh$)

Figure 80: The effect on the total background of the systematic SysTopPt for the m_{bb} (m_{llbb}) distributions left(right).

Figure 81: The effect on the total background of the systematic SysTtbarMBBCont for the mbb (mllbb)

Carl Gwilliam

MC Statistical Errors

• Adding in the bin-by-bin MC statistical errors degraded the limit at low m_{μ} but has lee effect at high m_{μ}

 As expected since have low stats for inclusive <u>Z+jets</u> MC but more for higher p_x^V slices

Tried different thresholds fro including MC stats errors in a bin

9	Choose	1%	threshold	as	negligible	change	to	limit	going	lower
---	--------	----	-----------	----	------------	--------	----	-------	-------	-------

mass [GeV]	No stat	Stat 5%	Stat 1%	Stat 0%
200	245.79	253.93	272.81	272.83
300	59.33	59.43	62.78	62.78
400	22.31	22.44	23.03	23.03
500	12.07	12.17	12.35	12.35
600	8.11	8.25	8.26	8.26
700	5.62	5.65	5.65	5.65
800	4.29	4.29	4.30	4.30
900	4.08	4.09	4.09	4.09
1000	5.05	5.07	5.07	5.07

24/07/2014

NP correlations (> 25%)

• ggF (top) and VBF (bottom); Asimov (left) and data (right)

ggF pulls @ 200 GeV (1) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 200 GeV (2) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 200 GeV (3) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

ggF pulls @ 200 GeV (4) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

ggF pulls @ 400 GeV (1)Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 400 GeV (2) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 400 GeV (3) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 400 GeV (4) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

ggF pulls @ 900 GeV (1) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 900 GeV (2) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 900 GeV (3) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

ggF pulls @ 900 GeV (4) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

VBF pulls @ 200 GeV (1) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

6 6	5	0		4 C	pull os	4 Å	0	,	4 0	ு pull	L Ń	0		N	د ا		pull ຫ
0.00 ± 0.94 -0.77 ± 0.94 0.00 ± 0.94	_	+		BTagB0Effic_	Y2012	0.00 ± 0.99 -0.06 ± 0.99 -0.00 ± 0.99	==		BTagC0Effic_Y2	2012	-0.00 ± 0.60 0.38 ± 0.58	-	.		BTagl 0F	ffic Y	2012
0.00 ± 0.97				DTD45#-	VOOAD	-0.00 ± 0.99 -0.20 ± 0.99 0.00 ± 0.99	===		BTagC10Effic_Y	2012	0.00 ± 0.60	-	÷.				
-0.00 ± 0.97				BTagBTEIIIC_	12012	0.00 ± 0.92 -0.49 ± 0.92 0.00 ± 0.92			BTagC11Effic_Y	2012	0.00 ± 0.95 0.47 ± 0.94		+		BTagL1E	ffic_Y	2012
0.13 ± 0.98 -0.00 ± 0.98		===		BTagB2Effic_	Y2012	-0.00 ± 0.97 -0.29 ± 0.97 0.00 ± 0.97			BTagC12Effic_Y	2012	0.00 ± 0.93						
+0.00 ± 0.97 +0.32 ± 0.97 0.00 ± 0.97	-			BTagB3Effic_	Y2012	0.00 ± 0.97 0.30 ± 0.96 -0.00 ± 0.97		-	BTagC13Effic_Y	2012	-0.29 ± 0.96 0.00 ± 0.93		-		BTagL2E	ffic_Y	2012
0.00 ± 0.96 -0.09 ± 0.96				BTagB4Effic	V2012	0.00 ± 0.99 0.19 ± 0.98 -0.00 ± 0.99	====	-	BTagC14Effic_Y	2012	0.00 ± 0.91		_		PTool 20	ffic V	2012
+0.00 ± 0.96		<u> </u>		DTagD4EIIIC_	12012	0.00 ± 0.91 -0.21± 0.89 -0.00 ± 0.91	=		BTagC1Effic_Y2	2012	-0.00 ± 0.91		-		Diageod	IIIC_1	2012
$\begin{array}{c} 0.14 \pm 0.98 \\ 0.00 \pm 0.98 \end{array}$			-	BTagB5Effic_	Y2012	-0.00 ± 0.97 0.14 ± 0.96 0.00 ± 0.97	=	-	BTagC2Effic_Y2	2012	0.00 ± 0.99 0.08 ± 0.98		_		BTagL4E	ffic_Y	2012
$\begin{array}{c} 0.00 \pm 0.94 \\ \text{+}0.42 \pm 0.95 \\ \text{+}0.00 \pm 0.94 \end{array}$	-			BTagB6Effic_	Y2012	-0.00 ± 0.95 0.14 ± 0.94 0.00 ± 0.95	=		BTagC3Effic_Y2	2012	0.00 ± 0.99						
-0.00 ± 0.99 -0.05 ± 0.99		_		BTagB7Effic	Y2012	-0.00 ± 0.97 0.04 ± 0.98 0.00 ± 0.97	=		BTagC4Effic_Y2	2012	-0.27 ± 0.99 0.00 ± 0.98		_		BTagL5E	ffic_Y	2012
-0.00 ± 0.99						0.00 ± 0.98 0.23 ± 0.98 -0.00 ± 0.98		-	BTagC5Effic_Y2	2012	-0.00 ± 0.97	_					
-0.01 ± 0.99 -0.00 ± 0.99		=		BTagB8Effic_	Y2012	0.00 ± 0.95 -0.34 ± 0.95 0.00 ± 0.95			BTagC6Effic_Y2	2012	0.00 ± 0.97		_		BTagL6E	ffic_Y	2012
-0.00 ± 0.99 0.15 ± 0.99 0.00 ± 0.99			-	BTagB9Effic_	Y2012	$\begin{array}{c} 0.00 \pm 0.95 \\ 0.61 \pm 0.96 \\ \text{-}0.00 \pm 0.95 \end{array}$		_	BTagC7Effic_Y2	2012	-0.00 ± 0.99 -0.05 ± 0.99				BTagL7E	ffic_Y	2012
+0.00 ± 0.99 +0.08 ± 0.99		-		BTagBPythia	8_Y2012	-0.00 ± 0.99 -0.04 ± 0.99 0.00 ± 0.99	===		BTagC8Effic_Y2	2012	-0.00 ± 0.99	-					
-0.00 ± 0.99		_				0.00 ± 0.90 -0.44 ± 0.90 0.00 ± 0.90			BTagC9Effic_Y2	2012	-0.06 ± 0.98 -0.00 ± 0.99				BTagL8E	ffic_Y	2012
0.00 ± 0.99		-		BlagBSherpa	a_r2012	$\begin{array}{c} 0.00 \pm 0.99 \\ 0.03 \pm 0.99 \\ 0.00 \pm 0.99 \end{array}$	=		BTagCPythia8_1	Y2012	0.00 ± 0.99						
+0.05 ± 0.99 0.00 ± 0.99		=		TruthTagDR_	Y2012	0.00 ± 0.95 0.47 ± 0.96 -0.00 ± 0.95		-	BTagCSherpa_1	Y2012	0.04 ± 0.99 -0.00 ± 0.99	=			BTagL9E	ffic_Y	2012

VBF pulls @ 200 GeV (2) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

VBF pulls @ 200 GeV (3) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

VBF pulls @ 200 GeV (4) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

VBF pulls @ 400 GeV (1) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

L 2.	~		pu	1 1	~		, pull	1 2	~		pull
0.00 ± 0.93 -0.80 ± 0.94 0.00 ± 0.93		·	BTagB0Effic_Y2012	0.00 ± 0.99 -0.06 ± 0.99 0.00 ± 0.99	=	,	BTagC0Effic_Y2012	-0.00 ± 0.60 0.36 ± 0.58	+		BTagL0Effic_Y2012
0.00 ± 0.97 -0.08 ± 0.97 0.00 ± 0.97	-		BTagB1Effic_Y2012	-0.00 ± 0.99 -0.21 ± 0.99 0.00 ± 0.99			BTagC10Effic_Y2012	0.00 ± 0.60 -0.00 ± 0.95	+		• -
0.00 ± 0.98 0.19 ± 0.98			BTagB2Effic V2012	-0.47 ± 0.92 -0.00 ± 0.92 -0.00 ± 0.97			BTagC11Effic_Y2012	0.51±0.95 -0.00±0.95	-+-	-	BTagL1Effic_Y2012
-0.00 ± 0.98 0.00 ± 0.97			DTagDZEIIIC_T2012	-0.29 ± 0.97 -0.00 ± 0.97 -0.00 ± 0.97			BTagC12Effic_Y2012	-0.00 ± 0.93 -0.29 ± 0.96	+		BTagL2Effic Y2012
-0.34 ± 0.97 -0.00 ± 0.97			BTagB3Effic_Y2012	-0.00 ± 0.97		-	BTagC13Effic_Y2012	0.00 ± 0.93			
0.06 ± 0.95 0.00 ± 0.96	=		BTagB4Effic_Y2012	0.00 ± 0.99 0.00 ± 0.91 -0.18 ± 0.89			BTagC14Effic_12012	-0.61±0.91 0.00±0.91			BTagL3Effic_Y2012
$\begin{array}{c} 0.00 \pm 0.98 \\ 0.10 \pm 0.98 \\ 0.00 \pm 0.98 \end{array}$		-	BTagB5Effic_Y2012	-0.00 ± 0.91 0.00 ± 0.97 0.12 ± 0.96 0.00 ± 0.97			BTagC2Effic_Y2012	-0.00 ± 0.99 0.08 ± 0.98	_		BTaol 4Effic Y2012
0.00 ± 0.94 -0.38 ± 0.95 -0.00 ± 0.94			BTagB6Effic_Y2012	-0.00 ± 0.95 0.11± 0.94 -0.00 ± 0.95	==		BTagC3Effic_Y2012	-0.00 ± 0.99			
0.00 ± 0.99 -0.05 ± 0.99			BTagB7Effic_Y2012	0.00 ± 0.97 0.03 ± 0.98 0.00 ± 0.97	==		BTagC4Effic_Y2012	-0.27 ± 0.99 0.00 ± 0.98			BTagL5Effic_Y2012
0.00 ± 0.99 -0.01 ± 0.99			PTooP8Effin V2012	0.00 ± 0.98 0.26 ± 0.98 -0.00 ± 0.98		•	BTagC5Effic_Y2012	0.00 ± 0.97 -0.08 ± 0.96			BTagl 6Effic Y2012
0.00 ± 0.99			BTayboEllic_12012	-0.34 ± 0.95 -0.00 ± 0.95			BTagC6Effic_Y2012	0.00 ± 0.97	-+		Drugeoenio_reore
0.14 ± 0.99 -0.00 ± 0.99			BTagB9Effic_Y2012	0.67 ± 0.96 -0.00 ± 0.95			BTagC7Effic_Y2012	-0.05 ± 0.99 -0.00 ± 0.99	_		BTagL7Effic_Y2012
-0.00 ± 0.99 -0.04 ± 0.99 0.00 ± 0.99			BTagBPythia8_Y2012	-0.07 ± 0.99 -0.00 ± 0.99	=		BTagC8Effic_Y2012	-0.00 ± 0.99			
-0.00 ± 0.99 -0.01 ± 0.99 -0.00 ± 0.99	-		BTagBSherpa_Y2012	-0.45 ± 0.90 -0.00 ± 0.90			BTagC9Effic_Y2012	0.00 ± 0.99	-		BTagL8Ettic_Y2012
-0.00 ± 0.99 -0.04 ± 0.99 0.00 ± 0.99			TruthTagDR_Y2012	-0.00 ± 0.99 0.00 ± 0.95 0.51 ± 0.96 0.00 + 0.95		_	BTagCPythia8_Y2012 BTagCSherpa_Y2012	0.00 ± 0.99 0.04 ± 0.99 0.00 ± 0.99	-		BTagL9Effic_Y2012

VBF pulls @ 400 GeV (2) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

VBF pulls @ 400 GeV (3) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

VBF pulls @ 400 GeV (4) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

VBF pulls @ 900 GeV (1) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

6 6	5	0		4 C	pull os	4 Å	0	,	4 0	ு pull	L 4	, ,	0		, .	•	pull ຫ
-0.00 ± 0.93 -0.80 ± 0.94 0.00 ± 0.93	_	+		BTagB0Effic_	Y2012	-0.00 ± 0.99 -0.03 ± 0.99 0.00 ± 0.99	=		BTagC0Effic_Y20	012	$\begin{array}{c} 0.00 \pm 0.60 \\ 0.35 \pm 0.58 \end{array}$		+		BTad 0	Effic)	(2012
-0.00 ± 0.97 -0.07 ± 0.97				PTogP1Effic	V2012	0.00 ± 0.99 -0.20 ± 0.99 -0.00 ± 0.99	===		BTagC10Effic_Y2	2012	0.00 ± 0.60		+				
0.00 ± 0.97				BTagBTEIIIC_	12012	0.00 ± 0.92 -0.46 ± 0.92 -0.00 ± 0.92			BTagC11Effic_Y2	2012	0.00 ± 0.95 0.47 ± 0.94 0.00 ± 0.95		+	-	BTagL1	Effic_\	(2012
0.21±0.98 -0.00±0.98		<u> </u>	-	BTagB2Effic_	Y2012	0.00 ± 0.97 -0.29 ± 0.97 0.00 ± 0.97			BTagC12Effic_Y2	2012	0.00 ± 0.93						
0.00 ± 0.97 -0.34 ± 0.97 0.00 ± 0.97	-			BTagB3Effic_	Y2012	-0.00 ± 0.97 0.30 ± 0.96 0.00 ± 0.97		-	BTagC13Effic_Y2	2012	-0.36 ± 0.96 0.00 ± 0.93	-	ᆃ		BTagL2	Effic_1	/2012
-0.00 ± 0.96 0.06 ± 0.95		_		BTagB4Effic	Y2012	-0.00 ± 0.99 0.21 ± 0.98 -0.00 ± 0.99		-	BTagC14Effic_Y2	2012	0.00 ± 0.91 -0.64 ± 0.91		<u> </u>		BTool 3	Effic \	/2012
+0.00 ± 0.96		<u> </u>		DTagD4EIIIC_	12012	0.00 ± 0.91 -0.20 ± 0.89 -0.00 ± 0.91	=		BTagC1Effic_Y20	012	0.00 ± 0.91				Brages	EIIIC_I	2012
0.09 ± 0.98 0.00 ± 0.98		≠		BTagB5Effic_	Y2012	0.00 ± 0.97 0.13 ± 0.96 0.00 ± 0.97	=		BTagC2Effic_Y20	012	-0.00 ± 0.99 0.12 ± 0.98				BTagL4	Effic_\	(2012
$+0.00 \pm 0.94$ $+0.38 \pm 0.95$ 0.00 ± 0.94	-			BTagB6Effic_	Y2012	0.00 ± 0.95 0.09 ± 0.94 0.00 ± 0.95	=		BTagC3Effic_Y20	012	-0.00 ± 0.99						
-0.00 ± 0.99 -0.05 ± 0.99		_		BTagB7Effic	Y2012	$\begin{array}{c} 0.00 \pm 0.97 \\ 0.03 \pm 0.98 \\ 0.00 \pm 0.97 \end{array}$	=		BTagC4Effic_Y20	012	-0.26 ± 0.99 0.00 ± 0.99	-	<u> </u>		BTagL5	Effic_1	/2012
-0.00 ± 0.99						-0.00 ± 0.98 0.23 ± 0.98 0.00 ± 0.98		-	BTagC5Effic_Y20	012	-0.00 ± 0.97						
-0.01 ± 0.99 0.00 ± 0.99		==		BTagB8Effic_	Y2012	0.00 ± 0.95 -0.34 ± 0.95 -0.00 ± 0.95	-		BTagC6Effic_Y20	012	-0.00 ± 0.97				BTagL6	Effic_1	/2012
0.00 ± 0.99 0.14 ± 0.99 0.00 ± 0.99			-	BTagB9Effic_	Y2012	0.00 ± 0.95 0.66 ± 0.96 -0.00 ± 0.95		-	BTagC7Effic_Y20	012	0.00 ± 0.99 -0.06 ± 0.99		+		BTagL7	Effic_\	(2012
-0.00 ± 0.99 -0.04 ± 0.99				BTagBPythia	8_Y2012	0.00 ± 0.99 -0.05 ± 0.99 -0.00 ± 0.99	==		BTagC8Effic_Y20	012	0.00 ± 0.99		-				
0.00 ± 0.99						-0.00 ± 0.90 -0.44 ± 0.90 -0.00 ± 0.90			BTagC9Effic_Y20	012	-0.05 ± 0.98 -0.00 ± 0.99				BTagL8	Effic_\	/2012
-0.00 ± 0.99		-		BlagBSherpa	a_r2012	+0.00 ± 0.99 0.02 ± 0.99 0.00 ± 0.99	=		BTagCPythia8_Y	2012	0.00 ± 0.99						
+0.03 ± 0.99 +0.00 ± 0.99		=		TruthTagDR_	Y2012	-0.00 ± 0.95 0.51± 0.96 0.00 ± 0.95		_	BTagCSherpa_Y	2012	0.04 ± 0.99 -0.00 ± 0.99		_		BTagL9	Effic_1	/2012

Carl Gwilliam

VBF pulls @ 900 GeV (2) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

VBF pulls @ 900 GeV (3) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

Carl Gwilliam

VBF pulls @ 900 GeV (4) Data (black) and $\mu = 1$ (red)/ $\mu = 0$ (blue) Asimov

2HDM: Variations in limit

Example variations for H->ZZ->llqq with width and vbf fraction

- As expected limit gets worse as width increases
- Limit gets "better" with increasing VBF fraction simply because VBF cross section is smaller

2HDM: Interference (1)

- Plan to stop at 5% as if get too wide the interference effect with ZZ continuum will be non-negligible (keep hashed band)
- Need to check when this becomes an issue
 - Run H->ZZ->llqq CPS samples for m_H where Γ/m ~ 5% with and w/o interference. Turns out this is somehwere between 440 and 460 GeV

Not completely correct as interference also depends on m_H

2HDM: Interference (2)

Reconstructed m_{llii} agrees within stat uncertainties: 20-22 m_{IIqq} (rec) 20 E m_{llga} (rec) - No | F = 27.7 (6.3%) No I F = 30.2 (6.6%) 18 16 16 14 F IΓ = 27.8 (6.3%) I Γ = 30.2 (6.6%) 300 350 400 450 500 550 300 350 400 450 500 550 600 700 Limits / pb Inter obs -2σ 1σ +1σ +2σ m_H exp fVBF=0 440 w/o 0.073 0.047 0.062 0.088 0.122 0.164 Smear=0 0.047 0.126 0.166 with 0.073 0.065 0.088 No change 460 w/o 0.098 0.052 0.070 0096 0.132 0.179 in obs/exp with 0.098 0.052 0.070 0096 0.135 0.181 1% diff in 27/11/2014 bands **Higgs BSM Meeting** 13

2HDM: Width Effect Limit (1)

 Solid (dashed) lines show H->ZZ->llqq results with (without) width taken into account

- Small effect for 200 GeV; 1σ effect at some parts of plane for 300 GeV
- Width only up to 5%, will completely cover (not just hash) outside this
 - For 200 GeV, width does not go above 5%

2HDM: Width Effect on Limit (2)

For 400 GeV only a small fraction of the region is < 5% Γ_H/m_H

- Hashed band should be inverted
- Unlikely to change significantly when add other channles

Propose to show for 200 & 300 GeV in paper + tanβ vs m_H plane

Possibly 350 GeV threshold region as aux material; nothing above that

2HDM: bbH (1)

Currently negelcting this, which makes limits consevative

- But CMS recently put out A->Zh with this included and helps exlcusion significanlty at high tanβ. Planning to add it in for ATLAS A->Zh
- What about H->ZZ?

2HDM: bbH (2)

Is it worth including it?

However, if you look at total oin region where bbH is large you find it is very small: < 0.2 pb, while our limit is ~ 0.5 pb Hence we are not so sensitive to this: small effect at 200 GeV (which is anyway completely dominated by 4l) and none at 300 GeV $(\sigma_{qqF}+\sigma_{bb}+\sigma_{VBF}) \times BR_{H \rightarrow ZZ}$ for Type 2 m_H=300 Limit assuming same acceptance for bbH anß 1.8 ATLAS bb/VV/aa -> H->ZZ m.=200 GeV Type II Internal 1.6 8 TeV 10 10 1.4 L dt = 20.3 fbBlack = w/o bbH1.2 Blue = w/bbHσ_m/(σ_{auf}+σ_m+σ_{unt}) for Type 2 m =300 0.8 1 0.6

Can include as additional σ to ggF channel, taking into account diff in 27/11/20/acceptance from gen-level study (simulated samples also being requested)

0.4

.8 1 s(β-α) 10-1

-0.8 -0.6 -0.4

-0.2

10-1 -0.8 -0.

Higgs Meeting

0.8

 $\cos(\beta - \alpha)$

Status of Merged regime

Not unblinding yet (hopefully get final limits very soon)

- Select events w/ 1 jet or 2 outside m_{jj}
 - Anti- k_t 0.4 jet with $m_J > 70$ GeV
- *m_J* and *m_{IIJ}* well described
 - m_{IIJ} checked in 30 $< m_J <$ 70 SB
- Working on jet mass calib + systs

• Jet group have approved results

Jet m response (pre-calib)

Carl Gwilliam