ATLAS Experiment

Carl Gwilliam (obo the Liverpool ATLAS group)

23rd May 2025

HEP Annual Meeting

Liverpool ATLAS Group

- 7 Academics
 - Andy, Carl (TL since Jan), Jan (DTL), Monica, Nikos, Uta, Sergey (low FTE)
- 2 Physics Analysis PDRAs
 - Jordy Degens + John Anders (who returned in October)
 - Goodbye to Cristiano (CERN fellow) and Joe (DESY PDRA)

SCT + **Analysis** Software

Lumi Measurement

SM Precision + rare processes

W mass, W/Z p_T, low/highmass DY, ttZ, single top, rare tau decays

Tau reco. and ID

> b/c –jet tagging

- 9 PhD students (+2 incoming)
 - Y1: Shirsendu, Stephen
 - Y2: Mehul
 - Y3: Bhupesh, Josh, Rob
 - Y4/5: Conor, Rebecca, Sam (submitted)
 - Graduated: Dr. Ting
 - (PDRA at York, CA)

Higgs physics

> SM Higgs, Di-Higgs, **BSM Higgs**

New physics searches

SUSY, Dark Matter, Dark Sector, LLPs, LQs, ALPs, ...

Along with upgrade staff (see Helen's talk)


Ubiquitous use of Machine Learning across almost all areas ²

Liverpool ATLAS Group

- Work on wide variety of areas
 - Operations, performance, physics
 - Excellent feedback from CG
- Leadership across the board

(Deputy) Publications Coordinator	Jan
(Deputy) ATLAS UK Spokesperson	Monica
CB chair advisor group member	Monica
SCT offline coordinator	John
Analysis release coordinator	Andy
Computing Resource Mgmt Board chair	Carl
Luminosity Z-counting contact	Uta
Tau Reco + ID convener (~30)	Jordy
Strong SUSY convener (~100)	John
ATLAS LHC Higgs group coordinator for extended Higgs sector + NMSSM	Nikos

- ATLAS published 127 papers in 2024
 - Significant Liverpool input to 11 papers

Ubiquitous use of Machine Learning across almost all areas ³

Operations and Performance

SCT + Analysis Software

Lumi Measurement

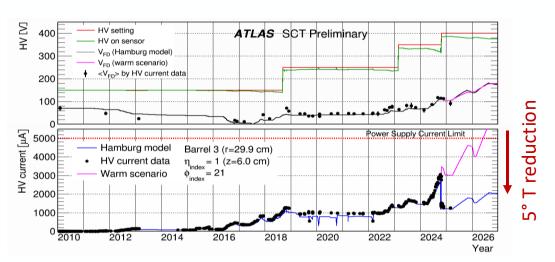
SM Precision+ rare processes

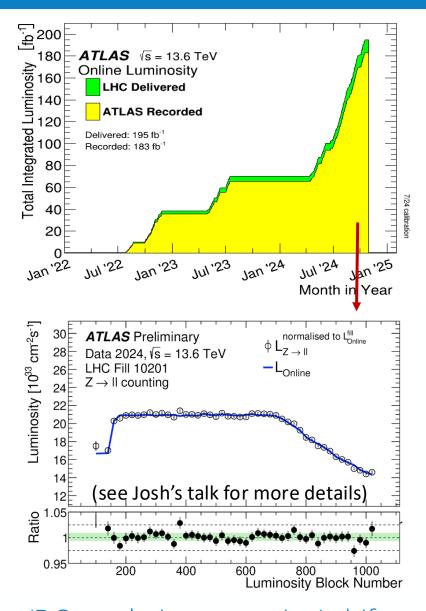
W mass, W/Z p_T , low/high-mass DY, ttZ, single top, rare tau decays

Tau reco.

b/c –jet tagging

Higgs physics


SM Higgs, Di-Higgs, BSM Higgs

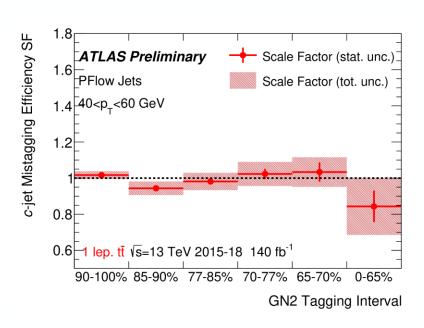

New physics searches

SUSY, Dark Matter, Dark Sector, LLPs, LQs, ALPs, ...

Status and Operations

- ATLAS well into successful run-3 data-taking → 183 fb⁻¹
 - Expect total run-2+run-3 yield of 460 fb⁻¹ by summer 2026
 - Followed by LS3 for HL-LHC upgrade (see Helen's talk)
- Uta, Jan, Josh, Sam contribute to precision lumi measurement
 - Using Liv-pioneered Z-counting method for rapid results
 - Public preliminary results for 2024 + run on 2025 as data arrives
- John coordinates the SCT offline activities
 - Crucial to keeping SCT operating with high efficiency
 - Leading final run-3 performance paper

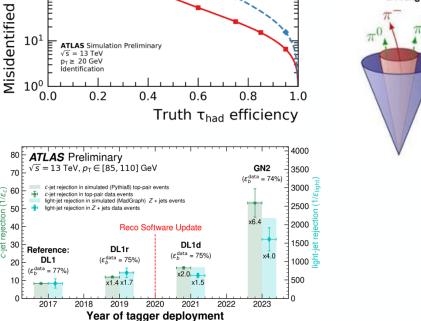
Many people performing control room (ID, run control) and remote (DQ, analysis, computing) shifts 5

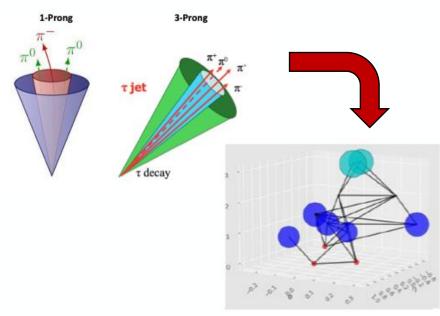

Tau and Heavy-Flavour ID

- Liverpool heavily involved in ID of third-generation, key for Higgs measurements + BSM searches
- b/c-jet calibration (Andy, Nikos)
 - Simultaneous b-tagging efficiency + c-mis-ID probability from data using 1-lepton ttbar events

 τ_{had} rejection

 10^{2}


Dedicated c-tag calibration on-going



Two publications in progress

- Led by Jordy as subconvener
- Focusing on improving ID of hadronically decaying taus using graph NNs (GNNs)
 - Liverpool developed one of two GNNs and currently comparing perf to b-tag approach
 - See Mehul's talk for more details

Precision SM Measurements & Rare Processes

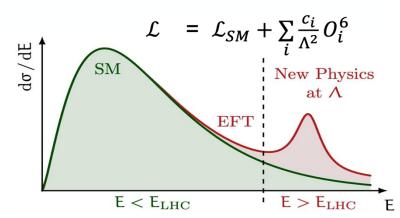
SCT +
Analysis
Software

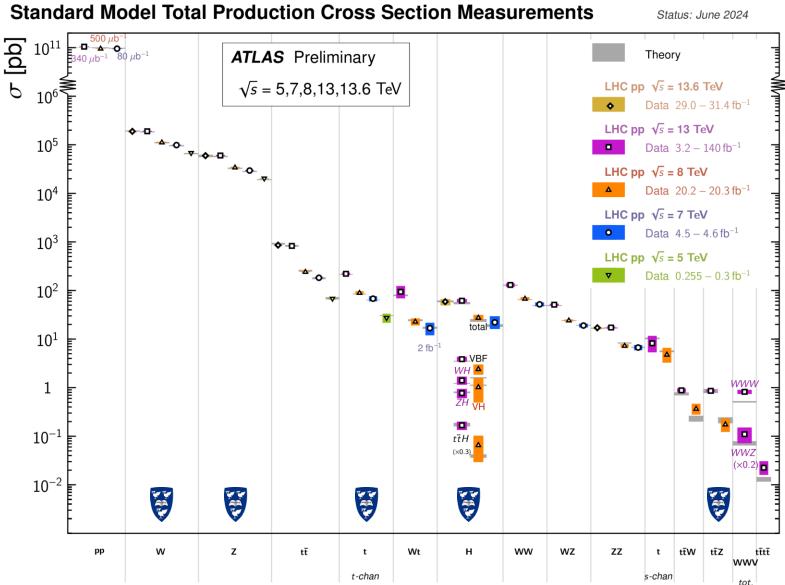
Lumi Measurement + rare processes

W mass, W/Z p_T, low/high-mass DY, ttZ, single top, rare tau decays

Tau reco. and ID

b/c –jet tagging

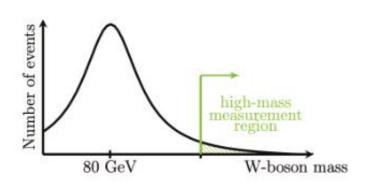

Higgs physics

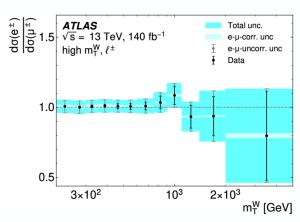

SM Higgs, Di-Higgs, BSM Higgs New physics searches

SUSY, Dark Matter, Dark Sector, LLPs, LQs, ALPs, ...

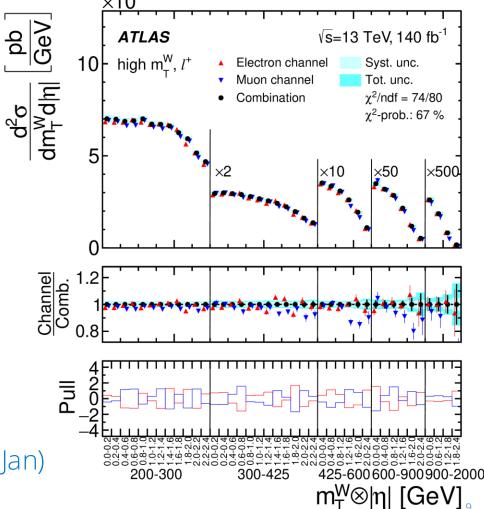
Standard Model Measurements

- The LHC can make highly precise measurements of fundamental SM particles and interactions
 - Probing cross sections over 12 orders of magnitude down to some of rarest SM processes
 - Rivalling LEP sensitivity
- Tests SM consistency in extreme phase space + searches for new physics effects beyond E_{LHC}
 - Model independent constraints in Effective Field Theories (EFTs)



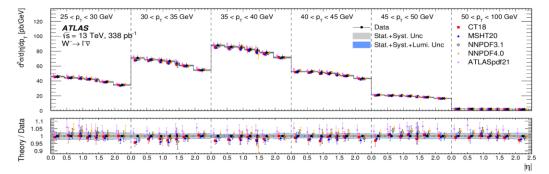

Low/High mass Drell Yan

 NC and CC Drell-Yan (DY) measurements away from W/Z peak are a powerful tool to study the proton structure (PDFs), test precision pQCD predictions and probe the EW sector of the SM


• As well as LFU test and search for new physics effects

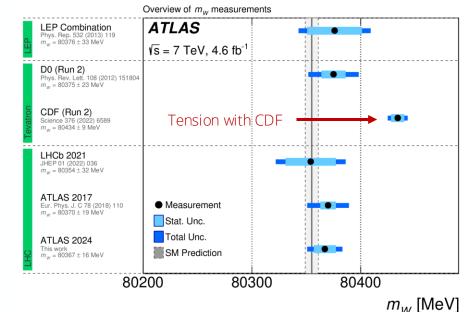
- Recent full run-2 CC DY paper is first ever measurement of W cross-section at high m_T (Uta, Sam)
 - Double differential cross-section in m_T & η for e/μ up to 5 TeV
 - Ratio of e/µ shows no significant evidence of LFU
 - Place limits on lepton-quark operator in SM EFT
 - Subject of Sam's PhD thesis

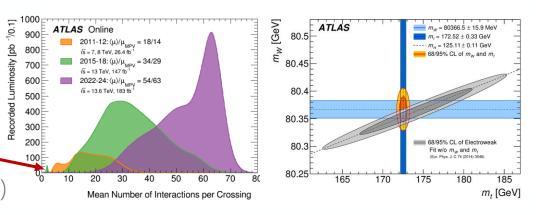
- Measurement of low and high-mass NC DY in progress (Uta, Jan)
 - Liverpool particularly involved in HO theory predictions


W mass

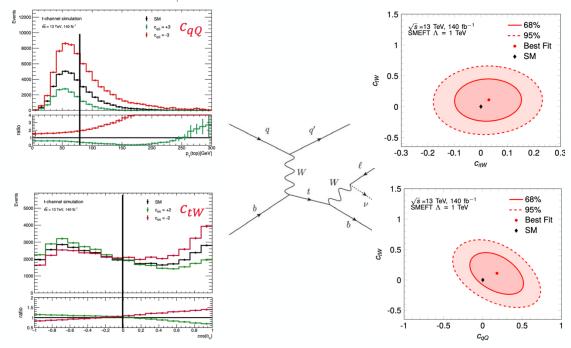
• W mass is one of most precisely calculated quantities in the SM and LHC measurements are able to

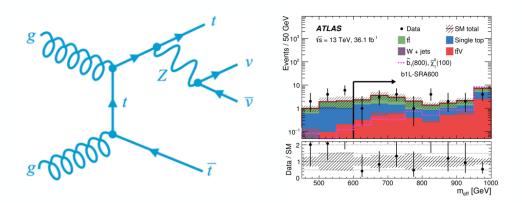
probe deviations at the level of 1 part in 10000.


• Unique test of SM consistency + probe for new particles/forces


- Long standing Liverpool leadership (Jan et al)
 - Precise run-1 measurement of mass (16 MeV)
 - First LHC measurement of width ($\Gamma = 2202 \pm 47 \text{ MeV}$)
- Recently measured W x-sect differentially in lepton p_T & η
 - Dominant uncertainty on previous m_w + probe of pQCD/PDFs

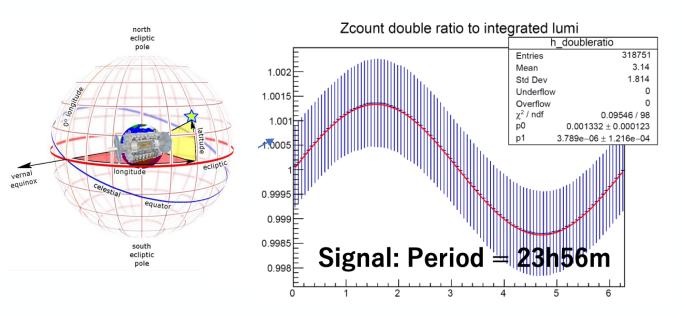
Currently lead effort with 5 & 13 TeV low-pileup data


• Josh working on in-situ electron E calibration + FSR (see talk)

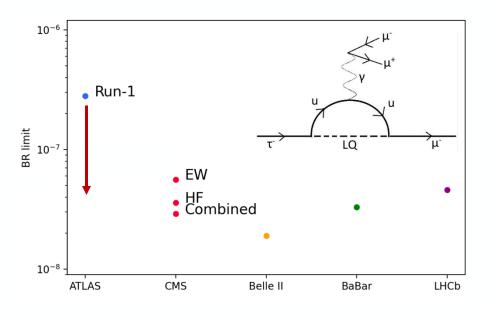

Top-quark Measurements

- Heaviest SM particle provides unique access to bare quark and can only be produced at the LHC
- t-channel single top analysis (Jordy's thesis)
 - First simultaneous EFT determination in t-chan.
 - Measure x-section, p_T spectrum + angular vars to extract 3 Wilson coefficients: O_{ω}^3 , O_{do}^3 & O_{tW}
 - Latter split into Re+Im → World best limits on Im

On track for publication this summer


- ttZ cross-section in Z→vv channel (John)
 - Mayor background to many SUSY searches but has not yet been measured directly
 - Convert BSM search into x-section analysis benefiting from large Z → νν BR c.f. Z → ee, μμ

- EFT interpretation sensitive to left-handed lepton and top-boson Wilson coefficients
- Aiming for publication by the end of the year


Measurements as Model-Independent BSM probes

- Precision measurements and rare processes are powerful model-independent new physics probes
- Searches for Lorentz + CPT invariance violation
 - Non-isotropic background field leads to time-dependent periodic modulations
 - Uta initiated novel time-dep. Z→II measurement
 - Build on SM expertise and Z-counting lumi

Suffering a bit from lack of person power

- Search for cLFV τ → 3μ (Carl, Conor, Jan)
 - Flavour not a fundamental symmetry of SM
 - cLFV searches provide model-indep NP probe
 - Tau limits 10⁴ less stringent than muon
 - SM rate tiny ($\sim 10^{55}$), but many BSM enchantments

- Conor's PhD thesis is first run-2 ATLAS analysis
 - Submission by end of Sept, followed by paper

Higgs Physics

SCT + Analysis Software

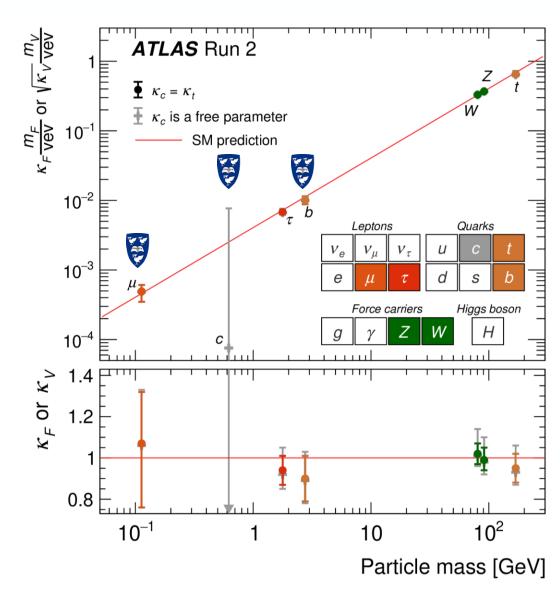
Lumi Measurement SM Precision+ rare processes

W mass, W/Z p_T , low/high-mass DY, ttZ, single top, rare tau decays

Tau reco. and ID

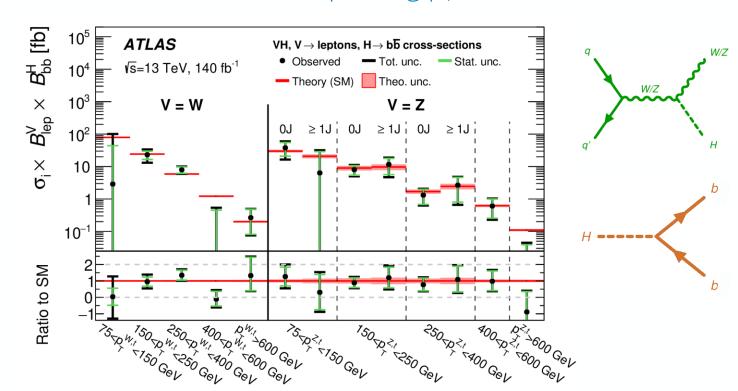
b/c –jet tagging

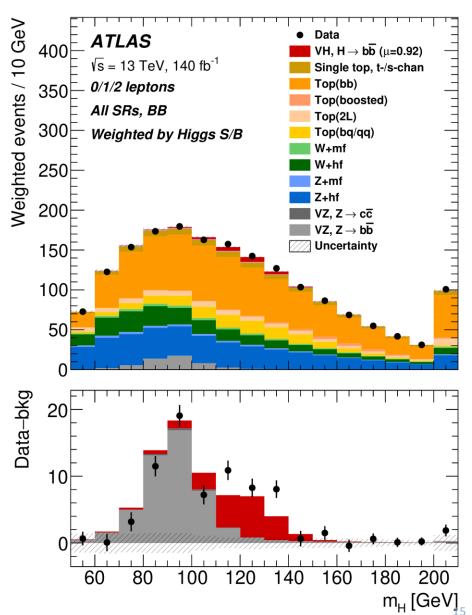
Higgs physics


SM Higgs, Di-Higgs, BSM Higgs

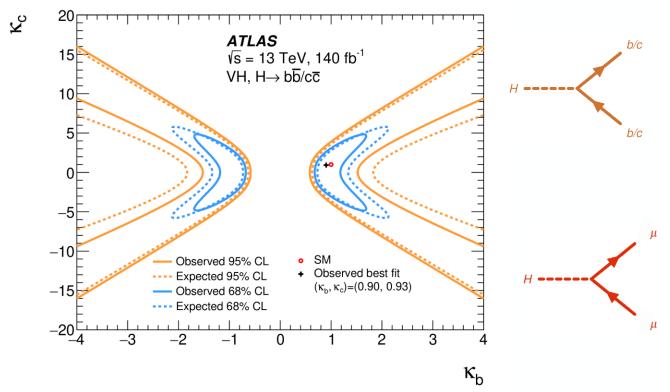
New physics searches

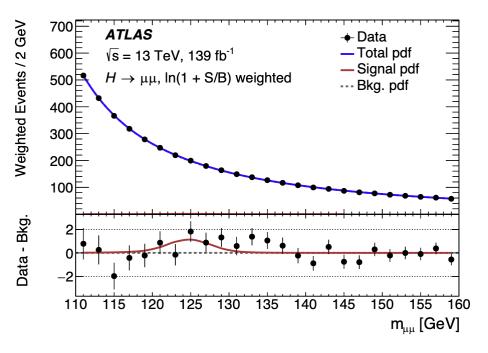
SUSY, Dark Matter, Dark Sector, LLPs, LQs, ALPs, ...


Higgs


- The Higgs boson is central to the standard model
 - Key to understanding EWSB and evolution of Universe
 - Constrains any new physics getting mass from Higgs
 - See John's talk for direct BSM Higgs searches
- Have made huge progress since discovery
 - Measured mass to < 0.1%
 - 125.11± 0.11 GeV
 - First measurement of width
 - 4.5 +3.3 -2.5 MeV (SM: 4.1 MeV)
 - Couplings to vector bosons all measured
 - Including differentially as a function of p_T^H & N_{jet}
 - Couplings to 3rd gen fermions all measured
 - Including differentially as a function of p_T^H & N_{jet}
 - Couplings to second generation fermions within reach

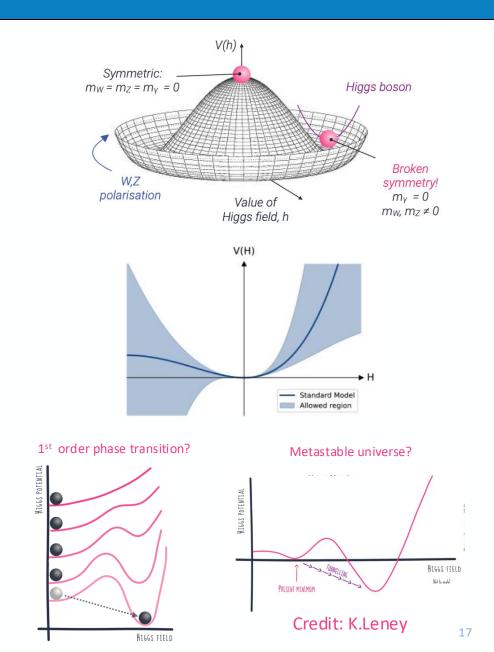
H → bb


- Long standing Liverpool involvement in H→bb (Andy et al)
- Legacy run-2 paper (edited by Andy) published this year
 - Combined fit to $H \rightarrow bb$ and $H \rightarrow cc$ (next slide)
- Subject of Ting's PhD thesis
 - Event selection, MVA, theory corrections, statistical analysis
- Differential cross-sections probing p_T^H > 600 GeV



$H \rightarrow cc$ and $H \rightarrow \mu\mu$

- $H \rightarrow cc$ (Andy, Ting)
 - Upper limit of 11.5 (10.6) x SM obs (exp)
 - Combined constraints on relative b- and c-coupling
 - Will continue HH → bb/cc with full run-3


- H → µµ (Jan)
 - 2σ evidence with run-2 data
 - Ongoing run-3 analysis aiming for 3σ evidence with run-2 + 2022-24 in summer
 - Followed by 5σ observation with full run-3 data from combined ATLAS+CMS

- Plan to reprise rare H→ee (first generation) and H → eµ (LFV) searches with full run-3 data
 - Giving a factor of 2-3 improvement in sensitivity

Higgs

- The Higgs boson is central to the standard model
 - Key to understanding EWSB and evolution of Universe
 - Constrains any new physics getting mass from Higgs
 - See John's talk for direct BSM Higgs searches
- Have made huge progress since discovery
 - Measured mass to < 0.1%
 - 125.11± 0.11 GeV
 - First measurement of width
 - 4.5 +3.3 -2.5 MeV (SM: 4.1 MeV)
 - Couplings to vector bosons all measured
 - Including differentially as a function of $p_T^H \ \& \ N_{jet}$
 - Couplings to 3rd gen fermions all measured
 - Including differentially as a function of $p_T^H & N_{jet}$
 - Couplings to second generation fermions within reach
- But shape of Higgs potential still unknown
 - Many BSM models alter this with huge consequences
 - Uniquely probed via Di- and Tri-Higgs production

ZZ

bbττ is sweet

0.069%

0.012%

spot of BR

& bkg

0.0005%

bb

3.1%

0.26%

ZZ

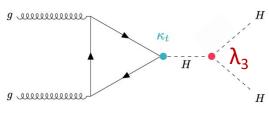
ww

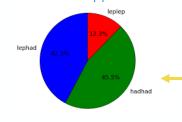
4.6%

1.1%

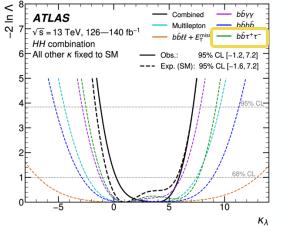
0.10%

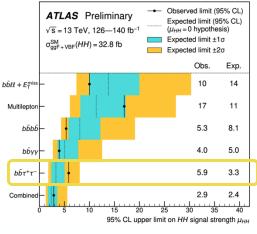
ττ

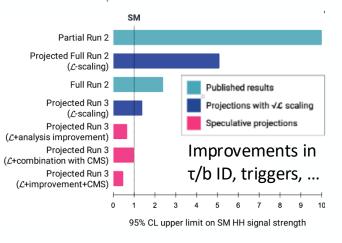

0.33%


0.028%

Di- and Tri-Higgs


• Di-Higgs production probes H self-coupling but $\sigma_{HH} \approx 1/1000$ of σ_{H}


$$V(h) \simeq \frac{1}{2} m_H^2 h^2 + (\lambda v h^3) + \frac{1}{4} \lambda h^4 + \dots$$



- Liverpool has been a driving force in HH→bbtt since start of run-2
 - Lead full run-2 lephad channel, giving most sensitive expected σ limit

- Currently working on hadhad channel for run-2+3 (Carl, Jordy, Bhupesh)
 - Lead developer of analysis fwk (Jordy), Top modelling (see Bhupesh's talk)
 - GNN S/B discriminant (Jordy, Carl) + NN di-tau mass regression (Alice MPHYS)
- Aim for partial run-3 result by end of '25 + 3σ evidence with full run-2+3

ZZ

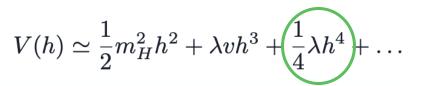
bbττ is sweet

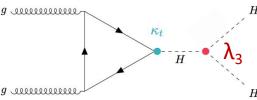
0.069%

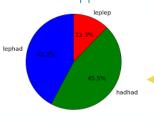
0.012%

spot of BR

& bkg

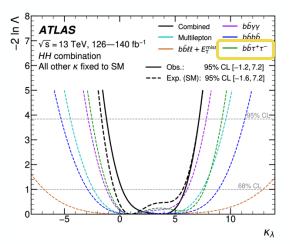

ττ

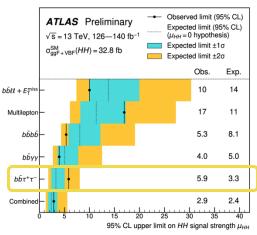

0.33%

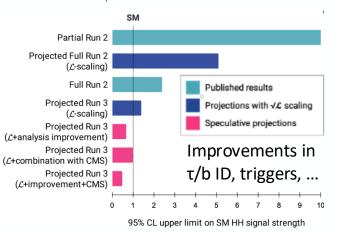

0.028%

Di- and Tri-Higgs

• Di-Higgs production probes H self-coupling but $\sigma_{HH} \approx 1/1000$ of σ_{H}







• Lead full run-2 lephad channel, giving most sensitive expected σ limit

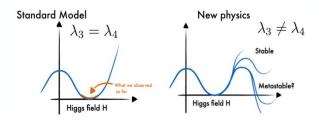
• SM predicts $\lambda_3 = \lambda_4$

4.6%

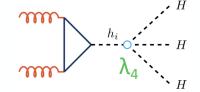
2.7%

1.1%

0.10%


bb

3.1%


0.26%

ZZ

 But BSM physics can make them different

 Measure via Tri-Higgs in HHH → bbbbtτ

- Currently working on hadhad channel for run-2+3 (Carl, Jordy, Bhupesh)
 - Lead developer of analysis fwk (Jordy), Top modelling (see Bhupesh's talk)
 - GNN S/B discriminant (Jordy, Carl) + NN di-tau mass regression (Alice MPHYS)
- Aim for partial run-3 result by end of '25 + 3σ evidence with full run-2+3

New Physics Searches

See John's talk

SCT + Analysis Software

Lumi Measurement SM Precision+ rare processes

W mass, W/Z p_T , low/high-mass DY, ttZ, single top, rare tau decays

Tau reco.

b/c –jet tagging

Higgs physics

SM Higgs, Di-Higgs, BSM Higgs

New physics searches

SUSY, Dark Matter, Dark Sector, LLPs, LQs, ALPs, ...

Conclusion

- ATLAS continues to perform vibrant and dynamic research covering a huge spectrum
 - From precise measurements to searches for new physics in unexplored phase space (John)
- Detector performing efficiently despite challenging pile-up conditions
 - Coupled with significant ML-enabled improvements in simulation and reconstruction
- Analysis of run-3 data, with factor >3 increase in luminosity expected, in full swing
 - Will provide a wealth of new results that form the long-term legacy of the LHC
- Liverpool continuing to play a central role across ATLAS, recognised by many leadership roles
 - From detector operations, via simulation and reconstruction software, to physics analysis
 - Proposing novel analyses and exploiting state-of-the-art ML techniques (e.g. MUCCA)
 - Expect ≈10 further publications by end of 2025
- With the HL-LHC just round the corner, we have only just scratched the surface of physics results
 - Liverpool playing a key role in ensuring ATLAS is ready to make the most of this (Helen)