

LHCb Vertex Detector

T. Bowcock

LHCb

- Requirements for the Vertex Detector
- Design
- R&D
- Production
- Lessons ...

Experiment

Requirements Vertex Detector

- Resolution
- Mass
- Radiation tolerance
- Geometry

Cost

Detector with ~40fs resolution IP ~100microns or better

- vertex locator
- 8mm from LHC beam
- Vacuum

Radiation Levels

- maximum dose of ~10¹⁵p/cm²
- non uniform
 1/r²
- Sensors need to run ~-7°C
 - Reverse annealing
 - Thermal runaway

- Sensor needed to be used in the trigger
 - Pixels (too costly and not necessary)
- Strips
- R-Phi geometry for trigger (rather than x-y)
- Resolution 5-10microns
- 250,000 channels
- Readout at edge
- Close to beam (tight tolerances)

Silicon Sensor

- highly segmented
- double metal layer
- 2048 strips/sensor
- Two designs
 - R-measuring
 - Phi-measuring

Detector Foil

NIKHEF drawing TVD0008

Themis Bowcock – SiLC Liverpool

Design

- complex
- highly automated
- Simulated ISE-TCAD
- Designed in-house
 - Collaboration with Micron

Fabrication

- earliest n+n prototype Hamamatsu Photonics
 - n+n not available since ~2000
- Iater n+n and p+n designs Micron Semiconductor
 - Production with Micron
 - Delivery to schedule (almost complete)

Technology Choice (2001)

- ac coupled
- n+n
- p+n
- oxygenation

Vacuum tests

Requirements: Cost

- Entire R&D and production ~1MChF
 - Controlling cost v ease of production
 - Prototyping

- Sensors
- Mechanical
 - Cooling
 - Precision Construction Composites
- Electrical
- Module Construction Techniques

To keep alignment 0 CTE

Frames

Plastic Handling Frame Designed Double Sided Use

Second Generation Bonding Jig Now Capable of Accepting The Handling Frame

Closer look at chip to pitch adaptor bonds

Testing

Pitch Adaptors

Themis Bowcock – SiLC Liverpool

•Dispense Glue

•Place pitch adaptors

Circuit layout

Layout showing top layer metal and inner layer traces

Unusual build up-Top -Traces layer 2 - Vcc plane (split in 4) Layer 3 - inner traces Layer 4 – GND plane

Circuits on both sides identical

Themis Bowcock – SiLC Liverpool

Cables are manufactured by Photofabrication

Cable and clamp assembled and locked to the module base

Assembly Station

and hybrid to pedestal alignment

Results Gluing

- RMS of all modules:
 midRx=5.14 microns
 midRy=11.62 microns
 stereoR=0.14 mrad
- RMS of last 9 modules with optimal tuning: midRx=2.27 microns midRy=2.71 microns stereoR=0.02 mrad

LASER Tests

Tnemis воwсоск – SiLC Liverpool

- Thermography
- Undervacuum
- Read out
- Noise compared with laser etc
- ~24W in module
 - Cooling with biphase CO2
- Thermal connection hard to make

- Started production
 Staff ~14 FTE
- Achieve 2+ modules/week
- Slower than expected...

Lessons

- Building the modules need not be expensive BUT:
 - R&D is fixed cost not fractional!
 - Need to build many modules before production
 - Don't underestimate the cost...!
- Thermo-mechanical (cooling) and low mass + 0 CTE hard to achieve
 - New materials/processes hard and expensive to develop
 - Diamond?
- High tolerances (and above) make life complicated
 - Ideally separate cooling, mechanical and electrical function
- Huge time investment in getting tooling right for production
 - Bonding critical
 - Spare identical bonding machines crucial. 3 minimum for a production site.
- Safety
- Quality/Process Control and databasing crucial
- Advantage to having single (few) production site
 - But corollary is this can give "collaborative" problems
 - support, interactions, shared understanding etc
- Design for ease of production
- Develop detailed specifications as early as possible
- Long R&D/production cycle can lead to human "burnout" (VELO started 1996)

- VELO a complex strip detector with high resolution
- Close cooperation with silicon manufacturer (Micron) was/is critical for success
- Extensive use of composites
- Completion in ~6 months