Problems class 3

A plane of mass 10 tonnes at 2000 m over Heathrow is flying in circles of radius 500 m , waiting for permission to land. It's effective cross-sectional area is $20 \mathrm{~m}^{2}$ and drag coefficient 0.3 . What is the power required to keep the plane flying at a speed of $300 \mathrm{~km} / \mathrm{h}$ if the air density is $1.3 \mathrm{Kg} / \mathrm{m}^{3}$? If the plane runs out of kerosene, what is the minimum angle at which it must descend in order to keep above it's stalling speed of $100 \mathrm{~km} / \mathrm{h}$? Note that at this speed, it's angle of attack changes, so the crosssectional area becomes $40 \mathrm{~m}^{2}$!

Problems class 3

A waterfall is 30 m high. The temperature of the gently flowing river water measured before the waterfall is 10 C , what is the temperature of the water flowing slowly away from the bottom of the waterfall? If the water is used to turn a turbine how will this result change? (qualitatively)

Specific heat capacity of water is $4190 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.

Problems class 3

Robin Hood and Little John could reputedly shoot an arrow a distance of 1 mile. What force must they have been able to exert to draw their bows in performing this feat? Assume that the mass of their arrows was 300 g and the distance they drew their bows 80 cm . What is:

The optimum angle to shoot the arrow?
The speed with which it would have to be launched to travel 1 mile (assume no air resistance!).

The work that would have to be done to accelerate the arrow to this speed.

The force necessary to draw a bow capable of doing this amount of work. Assume that a bow exerts a constant force as the bowstring is drawn back.

