
limited primarily by elastic scattering from the potential disorder.
Given that the oxygen dopants responsible for this potential
disorder do not reside in the CuO2 plane, scattering is relatively
weak. This can result in a longer mean free path and the measured
100 AÊ length scale is therefore quite reasonable. As scattering into all
angles is involved in ARPES measurements, whereas transport is
dominated by large-angle scattering of the nodal quasiparticles, our
results may also reconcile the discrepancy between the mean free
path measured by transport15 as compared to that measured by
ARPES. Taking 14 AÊ as the length scale over which the disorder
potential varies signi®cantly, we deduce that the dominant elastic
scattering process is limited by the wavevector q � 1=14 ÊA21. The
scattering angle, v, given by sin�v=2� � q=2kF, where kF is the Fermi
wavevector, is indeed quite small at about 58, which provides a
possible explanation as to why the transport mean free path can be
much longer than that measured by ARPES.

Discussion of our observations can also be extended to more
fundamental issues, such as the coherence of the superconducting
state. The coexistence of a high superconducting transition tem-
perature with such a microscopic inhomogeneity implies that the
superconducting coherence length is shorter than the mean free
path. Our measured gap correlation length, y < 14 ÊA, sets the length
scale for the superconducting pair size in optimally doped
Bi2Sr2CaCu2O8+x. By evaluating the BCS expression y0 � ~vF=p¢,
taking ~vF � 1:6 eV ÊA from band dispersion near the nodes14,16 and
the averaged gap at optimal doping as ¢ � 0:04 eV, we obtain
y0 < 13 ÊA, which is in good agreement with the correlation decay
length y obtained from our experiment. Yet y appears to be shorter
than the experimental in-plane superconducting coherence length
yab < 22±27 ÊA (refs 17±19). In contrast to conventional BCS super-
conductors, it is conceivable that the amplitude and phase coher-
ence in high-Tc superconductors have different length scales,
because the ratio R � 2¢=kBTc, is no longer a constant. Recent
ARPES measurements11 suggest that R ~ 1=x. Thus we may expect
the superconducting phase coherence length to be determined by
~vF=kBTc, which scales as 1/x on the underdoped side. An extension
of our correlation length and vortex core-size measurements to
underdoped samples with various doping concentrations will per-
haps distinguish the two length scales because they may have
different doping (x) dependences.

The observation of microscopic spatial variations in both the
carrier density and the superconducting gap, and the strong
correlation between these variations, reveals the local inhomo-
geneous charge environment in these materials, and its intimate
relationship with superconductivity. Further exploration of this
frontier may lead to a greater understanding of how high-Tc

superconductivity arises from doping a Mott insulator. M
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Consider a block placed on a table and pushed sideways until it
begins to slide. Amontons and Coulomb found that the force
required to initiate sliding is proportional to the weight of the
block (the constant of proportionality being the static coef®cient
of friction), but independent of the area of contact1. This is
commonly explained by asserting that, owing to the presence of
asperities on the two surfaces, the actual area in physical contact is
much smaller than it seems, and grows in proportion to the
applied compressive force1. Here we present an alternative picture
of the static friction coef®cient, which starts with an atomic
description of surfaces in contact and then employs a multiscale
analysis technique to describe how sliding occurs for large objects.
We demonstrate the existence of self-healing cracks2±4 that have
been postulated to solve geophysical paradoxes about heat gener-
ated by earthquakes5±11,25±27, and we show that, when such cracks
are present at the atomic scale, they result in solids that slip in
accord with Coulomb's law of friction. We expect that this
mechanism for friction will be found to operate at many length
scales, and that our approach for connecting atomic and con-
tinuum descriptions will enable more realistic ®rst-principles
calculations of friction coef®cients.

The most intriguing fact about friction is that it is proportional to
the force pushing two objects together, but independent of the area
of contact. Without contesting the prevalence of materials where the
conventional picture involving asperities applies, we wish to point
out an alternative way of explaining the same basic fact. Suppose
two solids are in close contact over some distance. Suppose further
that a wave of separation, a self-healing crack, can run along the
interface, like a bump on a rug, leading one solid to slip over the
other (Fig. 1). And suppose ®nally that the condition for such self-
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healing cracks to arise depends only upon the ratio of horizontal to
compressive stress. Then sliding begins in accord with Coulomb's
law, and is naturally independent of the area of contact.

We can demonstrate in a simple but realistic setting that these
suppositions are correct. We begin by describing a calculation that
employs standard techniques from continuum mechanics12±14.
Imagine a semi-in®nite elastic solid atop a rigid substrate, impose
vertical and horizontal stresses jyy and jxx far from the boundary,
and suppose that there is a self-healing crack of length l, travelling at
speed v, and causing slip of amount Du (Fig. 1). For all values of
these ®ve parameters we can calculate stress and displacement ®elds
everywhere in the elastic solid, including cases where jyy is
compressive13,14. However, there is a problemÐall of these solutions
have an unphysical feature. Suf®ciently near each crack tip, the crack
faces oscillate and pass through each other in®nitely often. Perhaps
none of the solutions can actually occur in a physical system. On the
other hand, if the intersections occur on a scale much smaller than
an interatomic spacing, is there really a problem? The possibility of
solids sliding over one another as we describe hinges upon the
existence of self-healing cracks. Finding explicit solutions in con-
tinuous media has not been hard, but it has been dif®cult to
establish a consensus on whether or not the solutions are physically
acceptable15,16. The physical problem has been recast in a number of
mathematical contexts. For example, one can investigate two
surfaces that remain absolutely ¯at and in contact at all times,
with a friction law allowing them to move relative to one
another14,15. However, so long as the problem is stated in the
continuum, the essential dif®culty persists.

A way to resolve the conceptual problems is to leave continuum

mechanics and pose the question about self-healing cracks at the
atomic level. Cracks can be followed in atomic detail as they move
through solids with arbitrarily large numbers of atoms17. We have
extended the atomic-scale analytical techniques to include the case
of interface fracture.

The context for our work is the following set of equations. Atomic
equilibrium positions, rmn, lie on a triangular grid N atoms high
with unit interatomic spacing:

rmn �
m 2 n=2���

3
p

=2n

� �
;

2 ` , m , `

0 # n # N
�1�

Displacements from equilibrium, umn(t), satisfy the steady-state
equation, umn�t� � u0n�t 2 m=v�, and the top layer is rigidly dis-
placed, umN�t� � �

Dx
Dy
�. The steady-state equations of motion are:

Èumn � buÇ mn � ^
m9;n9 where kdrk�1

�um9n9 2 umn�×dr dr

2 umn×r11r11 v�1=2 2 n�v�m=v 2 t�

2 umn×r01r01 v�1=2 2 n�v�m=v 2 t � s�

�2�

Here b is a small dissipation parameter, v is the Heaviside function,
and dr � rm9n9 2 rmn. The syncopation, s, designates the time
difference between left and right bond ruptures for atoms along
the interface. Finally, we require bonds to reach a critical strain, uc,
before rupture, and the newly created surface to remain separated
thereafter. Apart from uc, which sets an overall scale, in the limits
N ! `, b ! 0 each microscopic fracture state is described by two
parametersÐits velocity v, and syncopation s. Methods for solving
this problem generalize those described in ref. 18. The main new
technical hurdle is that the equations reduce to a 2 3 2 Wiener±
Hopf system. The system is approximated with Wilson's algorithm19

applied to an equivalent factorization problem on the unit circle20

and solved.
The advantage of the atomic-scale analytical methods is that they

can treat arbitrarily large numbers of atoms, and therefore lead to a
connection with continuum analysis. However, they have an
important limitation. The formal techniques only operate if
bonds, once broken, never heal; they only treat semi-in®nite
cracks, and describe the forward tip of a self-healing crack, or its
closing end, but not both at once.

The ®nal stage of our analysis is to combine information from the
continuum and the atomic solutions. The latter make it possible to
determine when a crack tip is physically realizable and when it is
not; the former make it possible to describe the self-healing process.
The connection between continuous and atomic descriptions is
created in the following way. Continuum calculations21,22 show that
stress ®elds suf®ciently close to the tip of an interface crack at the
origin have an oscillating singularity where jyy takes the form:

jyy�x; 0� � Re� ÄKx21=2�ie
�=

������
2p

p
�3�

The real constant e increases with the speed v of the crack, and the
constant ÄK has both real and imaginary parts. Note that the sign
of the stress oscillates as the crack tip is approached; the possibility
of converting compressive stresses far away to tensile stresses near
the tip helps explain in principle why self-healing cracks are
possible.

Turning to an atomic point of view, we can ®nd exactly the same
universal form for the stress ®eld, but it now emerges far from the
tip of a semi-in®nite crack. That is, by adopting a continuum
perspective and `zooming-in' on a crack tip, we ®nd the same
mathematical forms that are found by adopting an atomic perspec-
tive and `zooming-out'. However, the atomic analysis has additional
information to contribute. Once v and s are speci®ed (see equation
(2)), ÄK is completely determined.

Thus, the atomic analysis chooses from the ®ve-dimensional

Figure 1 Numerical simulation of a self-healing crack travelling through a compressed

strip. The block slips by a distance of three atoms over the lower surface when the

self-healing crack moves from left to right. Atoms initially on a 400 by 1,200

triangular grid interact linearly with nearest neighbours. Interactions with the rigid

substrate are governed by truncated hookean potentials with a bond rupture strain of 5%.

Atoms from the upper block interact with any atom in the substrate that comes within

range; this allows the upper surface to slip with respect to the lower and then heal.

We impose ®xed horizontal and vertical displacements on the top layer, and initiate

dynamics with an arti®cially created crack. Creation of the moving crack proceeds in

stages. At ®rst, the upper layer of the system is in tension, and the tail end of the

crack extends to the end of the system. Slowly the outer boundary is pushed into

compression, at which point the left side of the crack closes up, and becomes self-

healing. At the crack moves forward, we add new atoms to the right boundary, and

remove atoms from the left. The system eventually converges to the steady-state

shown here, with a self-healing crack of length l � 168, speed v � 0:83c s, and

surface slip Du � 3. Distances are in units of interatomic spacing, and cs is the shear

wave speed of the material. Vertical displacements have been rescaled by 3 for visual

clarity.
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space of continuum solutions a subspace that is physically per-
mitted. The precise states that are permitted depend upon details of
the atomic model, but the elimination of mostÐbut not allÐ
continuum states should be general.

We are ®nally in a position to carry out an exhaustive search for
self-healing cracks. The search proceeds in the following way. Fix v, l,
and the total surface slip Du. Next, ®x the syncopation sf for the
forward crack tip (equation (2)) and use the atomic solutions to
calculate the strength of the associated oscillating stress singularity
ÄK . Inserting this value into the macroscopic solution, determine the
stresses at in®nity jxy(`), jyy(`). Next choose a syncopation sb for
the back of the crack. Again stresses at in®nity are uniquely
determinedÐbut there is no reason they should be the same as
the values dictated by the front. There are two parameters sf and sb

that can be varied, leading to a ®nite number of cases where jxy(`),
jyy(`) make both the front and back propagate at the prescribed
speed. We typically ®nd no solution, or one solution, on varying sf

and sb within the allowable range of syncopation values, roughly
jsj , 1=jvj.

The results of this search are illustrated in Fig. 2. In Fig. 2a, we
catalogue cracks moving between 50% and 80% of the shear wave
speed, in velocity increments of 1%. Figure 2b focuses on the self-
healing cracks that move at 80% of the shear wave speed. (We note
that strains within the Earth, given by the ratio of a characteristic
stress jyy to Young's modulus E, are of the order of 10-4.) The lower
boundary in Fig. 2a is roughly linear, and extends down to strains of
the order of 10-5. The complex structure of solutions for strains
below 10-5 results from the existence of a minimum crack-propaga-
tion speed. Such minimum speeds are typical in atomic models of
fracture at zero temperature23.

In order to check whether treating the front and the back of the
crack independently at the atomic level led to errors, and to check
more generally the validity of our calculations, we have performed a
number of full molecular-dynamics calculations in regions of

Figure 2 Catalogue of shear jxy(`) and compressive -jyy(`) stresses, applied to in®nitely

large systems, that support steadily moving self-healing cracks. a, Crack moving at

50±80% of the shear wave speed, in velocity increments of 1%. The minimum shear

stress that allows cracks to move for a given compressive stress yields an approximately

linear relationship (Coulomb's law), indicated by the straight line in a. The slope of this line

is the friction coef®cient, 0.2. Stresses are normalized by Young's modulus E and

velocities v are normalized by shear wave speed cs. Integral values of crack length l and

total slip Du lead to a discrete set of states for each velocity v. b, As a but selecting just

the self-healing cracks moving at velocity v � 0:8c s. Points that appear to form a

curve have the same slip Du but different crack lengths l. The region inside the box with

dotted outline is shown in a.
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parameter space where self-healing cracks were predicted to exist.
Because of the long running times and complicated initial condi-
tions needed to produce steady states, we have limited ourselves to
small systems of about 500,000 atoms. We have found three self-
healing cracks consistent with the analytical predictions; a picture of
one of them appears in Fig. 1.

With the catalogue of self-healing cracks in hand, we now return
to the matter of how they lead to friction. For any given
compressive stress (-jyy(`)) there is a minimum shear stress
jxy�`� < 2 0:2jyy�`� that allows the cracks to begin moving (see
Fig. 2a). For any smaller shear stress, the upper block cannot slide;
for any larger shear stress, there is a way for it to slide. This sliding is
well described by a coef®cient of friction to the extent that the lower
boundary of states can be approximated by a straight line. The lower
boundary of states depends only weakly upon the model param-
eters, which include bond stiffness and interface strength.

What we have in fact determined is a lower bound on a coef®cient
of static friction at zero temperature. Static friction will be deter-
mined by when self-healing cracks actually initiate, which is not
necessarily identical with when they ®rst become possible. Once
sliding begins, properties of kinetic friction will be determined by
populations of self-healing cracks. The speed at which the upper
block slides will depend upon the number of self-healing cracks
moving at any time, and is not directly determined by the speeds of
these cracks.

The question of when self-healing cracks actually underlie fric-
tional sliding will have to be settled by experiments. There is some
evidence for such cracks from experiments aimed at settling ques-
tions about earthquakes5±7. Real surfaces are certainly not ¯at
enough over macroscopic lengths for our description of friction
to be complete, and other mechanisms of frictional sliding1,24 will
certainly compete with this one. However, we believe that our
calculation of a friction coef®cient from the atomic scale up
constitutes progress. We hope that these de®nite mathematical
results for an ideal case will be useful for proceeding to more
realistic ones, and will motivate new experiments. M
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High-strain-rate superplasticity describes the ability of a material
to sustain large plastic deformation in tension at high strain rates
of the order of 10-2 to 10-1 s-1 and is of great technological interest
for the shape-forming of engineering materials. High-strain-rate
superplasticity has been observed in aluminium-based1 and mag-
nesium-based2 alloys. But for ceramic materials, superplastic
deformation has been restricted to low strain rates of the order
of 10-5 to 10-4 s-1 for most oxides3,4 and nitrides5 with the presence
of intergranular cavities leading to premature failure. Here we
show that a composite ceramic material consisting of tetragonal
zirconium oxide, magnesium aluminate spinel and a-alumina
phases exhibits superplasticity at strain rates up to 1 s-1. The
composite also exhibits a large tensile elongation, exceeding 1,050
per cent for a strain rate of 0.4 s-1. The tensile ¯ow behaviour and
deformed microstructure of the material indicate that super-
plasticity is due to a combination of limited grain growth in the
constitutive phases and the intervention of dislocation-induced
plasticity in the zirconium oxide phase. We suggest that the
present results hold promise for the application of shape-forming
technologies to ceramic materials.

In superplastic materials, the primary deformation mechanism is
grain-boundary sliding, and it is the rate of this process that
determines the macroscopic strain rate. Because cavitation due to
grain-boundary sliding must be accommodated by diffusion and/or
dislocation processes for successive deformation, a short accommo-
dation lengthÐwhich means a small grain sizeÐis indispensable
for attaining high-strain-rate superplasticity. For the same reason,
stability of the small grain size is also essential. If grain growth
occurs actively during deformation, the accommodation length
increases and retards facile grain-boundary sliding. This causes an
increase in the level of stress necessary for successive deformationÐ
that is, strain-hardening. Strain-hardening enhances the extent of
stress concentration on the sliding grain boundaries or grain
corners, resulting in the formation of intergranular cavities that
leads to premature failure. We have fabricated a multi-phase
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