Lecture 19

- Fluids in motion
 - Ideal fluids
 - Streamlines
 - Equation of continuity
 - Bernoulli's equation
 - Venturi Meter

Ideal Fluids

- The motion of real fluids is very complicated.
- Using some simplifying assumptions to define an ideal fluid allows a reasonable description of much of the behaviour of fluids.
- An ideal fluid is <u>incompressible</u> and its flow is:
 - <u>laminar</u>
 - non-viscous
 - irrotational.

Streamlines

- A streamline is the path traced out by a tiny element of the fluid (a fluid "particle").
- The velocity of the fluid particle is tangential to the streamline.
- Streamlines never cross.
- A set of streamlines can define a tube of flow, the borders of which the fluid does not cross.

Equation of continuity cont.

 Example, decrease in area of stream of water coming from tap.

- Continuity equation $A_1v_1 = A_2v_2$
- Water is falling under influence of gravity so
 v₂² = v₁² + 2gh

Equation of continuity cont. Measurement of rate of flow R = Av, plus known x-sect of tap (A₁) allows calc. of x-sect throughout fall. $A_2^2 = \frac{A_1^2 v_1^2}{v_2^2}$ $=\frac{(A_{1}v_{1})^{2}}{v_{1}^{2}+2gh}$ $=\frac{(A_{1}v_{1})^{2}}{(A_{1}v_{1}/A_{1})^{2}+2gh}$ $A_2 = \frac{R_1}{\left(\frac{R_1}{\Lambda}\right)^2 + 2gh}$

Bernoulli's Equation

- Consider fluid flow through pipe, or tube of flow delimited by streamlines.
- Take two snapshots separated by Δt .

Bernoulli's equation cont.

- In time Δt, volume ΔV (mass Δm) flows through pipe (dark blue in diagram).
- KE of this vol. of fluid as it enters pipe $K_i = \frac{1}{2} \Delta m v_i^2 = \frac{1}{2} \rho \Delta V v_i^2$
- KE as it leaves pipe $K_o = \frac{1}{2} \rho \Delta V v_o^2$
- Change in KE $\Delta K = \frac{1}{2} \rho \Delta V \left(v_o^2 - v_i^2 \right)$
- Work done by fluid against gravity $W_g = -\Delta mg(y_o y_i)$
- Work done on fluid to push it into pipe $W_i = F_i \Delta x_i = p_i A_i \Delta x_i = p_i \Delta V$
- Work done by fluid in leaving pipe $W_o = -p_o \Delta V$
- Total work done
 W = W_g + W_i + W_o

$$= -\rho g \Delta V (y_o - y_i) + \Delta V (p_i - p_o)$$

Bernoulli's equation cont.

• Equate KE and work $\Delta K = W$ $\frac{1}{2}\rho\Delta V (v_o^2 - v_i^2) = -\rho g\Delta V (y_o - y_i) + \Delta V (p_i - p_o)$ $\Rightarrow \frac{1}{2}\rho (v_o^2 - v_i^2) = -\rho g (y_o - y_i) + (p_i - p_o)$ • Rearranging gives the standard form of Bernoulli's equation $p_i + \frac{1}{2}\rho v_i^2 + \rho g y_i = p_o + \frac{1}{2}\rho v_o^2 + \rho g y_o$ • Alternatively $p + \frac{1}{2}\rho v^2 + \rho g y = \text{const.}$

Venturi Meter

 Used to measure speed, or rate, of fluid flow in a pipe. density ρ V, Vç area A area A_c h density ρ_c • Pressure difference $\Delta p = h \rho_c g$ Continuity equation $Av = A_c v_c$ \Rightarrow v_c = $\frac{A}{A_c}$ v

Venturi meter cont. Bernoulli's equation for level flow $p + \frac{1}{2}\rho v^2 = p - \Delta p + \frac{1}{2}\rho v_c^2$ $\Rightarrow v^{2} = \frac{2}{\rho} \left(\frac{1}{2} \rho v_{c}^{2} - \Delta p \right)$ $=\frac{A^2}{A_c^2}v^2-\frac{2\rho_cgh}{\rho}$ $\Rightarrow v^2 \left(\frac{A^2}{A_c^2} - 1 \right) = 2 \frac{\rho_c}{\rho} gh$ $\Rightarrow v^{2} = 2 \frac{A_{c}^{2}}{A^{2} - A_{c}^{2}} \frac{\rho_{c}}{\rho} gh$ and v = $\sqrt{2 \frac{A_c^2}{A^2 - A_c^2} \frac{\rho_c}{\rho}}$ gh