Lecture 18

- Fluids at rest
- Density
- Pressure
- Hydrostatic pressure
- Pascal's principle
- Archimedes principle

Fluids at Rest

- A fluid cannot support a shearing stress (cannot sustain force tangential to its surface), so fluids:
- take on shape of container;
- flow.
- Density at point in fluid. Consider vol. $\Delta \mathrm{V}$ about point, mass $\Delta \mathrm{m}$, density is $\rho=\frac{\Delta \mathrm{m}}{\Delta \mathrm{V}}$ (units kgm^{-3})

Typical densities	$\mathrm{kg} / \mathrm{m}^{3}$
Interstellar space	10^{-20}
Best lab vacuum	10^{-17}
Air (20 C, 1 atm)	1.21
Water (20 C, 1 atm)	998
Iron	7.9×10^{3}
Black hole (solar mass)	10^{19}

- Pressure at point
$\mathrm{p}=\frac{\Delta \mathrm{F}}{\Delta \mathrm{A}}$ (units Nm^{-2} or Pa)

Typical pressures	Pa
Centre of sun	2×10^{16}
Highest lab pressure	1.5×10^{10}
Stilletto heels	1×10^{6}
Atm at sea level	1.0×10^{5}
Best lab. vacuum	10^{-12}

Hydrostatic Pressure

- Pressure due to fluid at rest.

- Fluid at rest, so for test sample:

$$
\begin{aligned}
p_{2} A & =p_{1} A+m g \\
& =p_{1} A+\rho g A\left(y_{1}-y_{2}\right) \\
\Rightarrow p_{2} & =p_{1}+\rho g\left(y_{1}-y_{2}\right)
\end{aligned}
$$

Gauge Pressure

- Hence, if pressure at surface is p_{0}, pressure at depth h in fluid is:
$\mathrm{p}=\mathrm{p}_{0}+\mathrm{\rho gh}$
- In a manometer, this is used to measure pressure:

- Pressure in vessel $p=p_{0}+\rho g h$ where p_{0} is atmospheric pressure.
- The difference between absolute pressure p and atmospheric pressure is called gauge pressure. In above e.g. gauge pressure $\mathrm{p}_{\mathrm{g}}=\rho \mathrm{gh}$

Pascal's Principle

- Any change in pressure of fluid in container is communicated to every portion of fluid and to walls of container.
- Example, hydraulic lever.

Pascal's principle cont.

- Force F_{1} applied on piston one causes pressure change: $\Delta p=F_{1} / A_{1}$
- From Pascal's principle, same pressure change occurs at piston two, hence: $\Delta p=F_{2} / A_{2}$
- Hence force can be magnified:
$\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}} \Rightarrow F_{2}=\frac{A_{2}}{A_{1}} F_{1}$
- Same volume, V, of liquid displaced at both pistons:

$$
V=A_{1} d_{1}=A_{2} d_{2} \Rightarrow d_{2}=\frac{A_{1}}{A_{2}} d_{1}
$$

- Work done by piston two same as work done on piston one:

$$
\mathrm{W}=\mathrm{F}_{2} \mathrm{~d}_{2}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}} \mathrm{~F}_{1} \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}} \mathrm{~d}_{1}=\mathrm{F}_{1} \mathrm{~d}_{1}
$$

Archimedes' Principle

- Buoyancy force exerted on object immersed in fluid is equal to weight of fluid displaced.
- Proof for rectangular prism:

Archimedes' principle cont.

- Buoyancy force B given by:

$$
\begin{aligned}
B & =p_{2} A-p_{1} A \\
& =\left(p_{1}+\rho g h\right) A-p_{1} A \\
& =\rho g h A
\end{aligned}
$$

which is the weight of the fluid displaced.

- Objects float if buoyancy force equal to weight of object.
- Example, how much of iceberg is underwater?
Volume of iceberg V_{i}, density of ice $\rho_{i}=917 \mathrm{~kg} / \mathrm{m}^{3}$, of sea water $\rho_{w}=1024 \mathrm{~kg} / \mathrm{m}^{3}$.

Archimedes' principle cont.

- Weight of iceberg $W_{i}=V_{i} \rho_{i} g$
- Archimedes' principle says weight of displaced water is same, so volume of displaced water can be found from:

$$
\begin{aligned}
& W_{i}= V_{w} \rho_{w} g \\
&=V_{i} \rho_{i} g \\
& \Rightarrow V_{w}=\frac{\rho_{i}}{\rho_{w}} V_{i}
\end{aligned}
$$

- Proportion of iceberg under water (by volume) is then

$$
\frac{V_{w}}{V_{i}}=\frac{\rho_{i}}{\rho_{w}}=\frac{917}{1024}=0.896
$$

