Lecture 18

- Fluids at rest
 - Density
 - Pressure
 - Hydrostatic pressure
 - Pascal's principle
 - Archimedes principle

Fluids at Rest

- A fluid cannot support a shearing stress (cannot sustain force tangential to its surface), so fluids:
 - take on shape of container;– flow.
- Density at point in fluid. Consider vol. ΔV about point, mass Δm , density is $\rho = \frac{\Delta m}{\Delta V}$ (units kgm⁻³)

Typical densities	kg/m ³
Interstellar space	10 ⁻²⁰
Best lab vacuum	10 ⁻¹⁷
Air (20 C, 1 atm)	1.21
Water (20 C, 1 atm)	998
Iron	7.9 x 10 ³
Black hole (solar mass)	10 ¹⁹

Gauge Pressure

- Hence, if pressure at surface is p₀, pressure at depth h in fluid is: p = p₀ + ρgh
- In a manometer, this is used to measure pressure:

- Pressure in vessel p = p₀ + ρgh where p₀ is atmospheric pressure.
- The difference between absolute pressure p and atmospheric pressure is called gauge pressure. In above e.g. gauge pressure p_g = pgh

Pascal's Principle

 Any change in pressure of fluid in container is communicated to every portion of fluid and to walls of container.

Pascal's principle cont.

- Force F₁ applied on piston one causes pressure change: Δp = F₁/A₁
- From Pascal's principle, same pressure change occurs at piston two, hence: Δp = F₂/A₂
- Hence force can be magnified: $\frac{F_1}{A_1} = \frac{F_2}{A_2} \Longrightarrow F_2 = \frac{A_2}{A_1}F_1$
- Same volume, V, of liquid displaced at both pistons:

$$V = A_1 d_1 = A_2 d_2 \Longrightarrow d_2 = \frac{A_1}{A_2} d_1$$

 Work done by piston two same as work done on piston one:

$$W = F_2 d_2 = \frac{A_2}{A_1} F_1 \frac{A_1}{A_2} d_1 = F_1 d_1$$

Archimedes' Principle

- Buoyancy force exerted on object immersed in fluid is equal to weight of fluid displaced.
- Proof for rectangular prism:

Archimedes' principle cont.

Buoyancy force B given by:

$$\mathsf{B} = \mathsf{p}_2 \mathsf{A} - \mathsf{p}_1 \mathsf{A}$$

$$= (p_1 + \rho gh)A - p_1A$$

 $= \rho ghA$

which is the weight of the fluid displaced.

- Objects float if buoyancy force equal to weight of object.
- Example, how much of iceberg is underwater?
 Volume of iceberg V_i, density of ice ρ_i=917 kg/m³, of sea water ρ_w=1024 kg/m³.

Archimedes' principle cont.

- Weight of iceberg $W_i = V_i \rho_i g$
- Archimedes' principle says weight of displaced water is same, so volume of displaced water can be found from: W_i = V_wρ_wg = V_iρ_ig

$$\Rightarrow V_{w} = \frac{\rho_{i}}{\rho_{w}} V_{i}$$

• Proportion of iceberg under water (by volume) is then $\frac{V_w}{V_i} = \frac{\rho_i}{\rho_w} = \frac{917}{1024} = 0.896$