Lecture 15

- Newton's Law of Gravitation
- Gravitational Potential
- Potential and force outside spherical shell
- Potential and force inside spherical shell
- Measuring the Gravitational Constant
- Mass of the Earth

Newton's Law of

Gravitation

- In 1665 Newton proposed that the force between point masses m and M separated by r is

$$
F=-G \frac{m M}{r^{2}}
$$

- The force is attractive, that on m being towards M and vice versa.
- This force acts between all masses in the universe.
- The gravitational constant has value $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$
$=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

Gravitational Potential

- From relationship between force and potential can calculate gravitational potential.

$$
\begin{aligned}
U & =-\int F d r \\
& =-\int-\frac{G m M}{r^{2}} d r \\
& =-\frac{G m M}{r}
\end{aligned}
$$

- Now study the gravitational potential due to a spherical shell.

Gravitational potential cont.
Sum potential due to interaction of test mass with all mass elements in shell

$$
\begin{aligned}
U & =-\int_{M} \frac{G m}{S} d m^{\prime}=-G m \int_{A} \frac{1}{S} \frac{d m^{\prime}}{d A} d A \\
& =-G m \sigma \int_{A}^{1} \frac{1}{S} d A
\end{aligned}
$$

Recall calc. of moment of inertia of sphere, element of volume in spherical polar coords.
$d V=r^{2} \sin \theta d \phi d \theta d r$
So element of area is
$d A=r^{2} \sin \theta d \phi d \theta$
Integral becomes
$U=-G m \sigma \int_{0}^{2 \pi \pi} \int_{0}^{R^{2}} \frac{\sin \theta d \phi d \theta}{s}$

Gravitational potential cont.

Integrate over ϕ, change variables to s and ds

$$
\mathrm{U}=-2 \pi \mathrm{Gm} \mathrm{\sigma} \int_{\mathrm{s}_{0}}^{\mathrm{s}_{\mathrm{F}}} \frac{\mathrm{R}^{2} \sin \theta}{\mathrm{~s}} \frac{\mathrm{sds}}{\mathrm{Rd} \sin \theta}
$$

$$
\text { where } s_{0}=+\sqrt{h^{2}-2 R h+R^{2}}=h-R
$$

$$
\text { and } s_{\pi}=+\sqrt{h^{2}+2 R h+R^{2}}=h+R
$$

Hence left with
$U=-\frac{2 \pi R G m \sigma}{h} \int_{h-R}^{h+R} d s$
$=-\frac{2 \pi R G m \sigma}{\mathrm{~h}}\{(\mathrm{~h}+\mathrm{R})-(\mathrm{h}-\mathrm{R})\}$
$=-\frac{4 \pi R^{2} G m \sigma}{h}=-\frac{4 \pi R^{2} G m}{h} \frac{M}{4 \pi R^{2}}$
$=-\frac{G m M}{h}$

Gravitational potential cont.

- Same as expression if mass concentrated at centre of shell.
- Sphere consists of many concentric shells, hence also for sphere gravitational potential as though mass conc. at centre for objects outside sphere.
- Force derived from potential $F=-\frac{d}{d h} U=-G \frac{M m}{h^{2}}$
so above results apply also to gravitational force. (More difficult to calc. for vector force.)
- What about objects inside shell?

Gravitational potential cont.

Analysis proceeds exactly as before with one exception. Limits of integral overs are now
$s_{0}=+\sqrt{h^{2}-2 R h+R^{2}}=R-h$
and $s_{\pi}=+\sqrt{h^{2}+2 R h+R^{2}}=R+h$

This does not depend on the position of the test mass within the shell.

Gravitational potential cont.

- Potential within shell constant. (This is the principle behind the Faraday cage which provides protection from electrical potential.)
- Force within shell
$F=-\frac{d}{d h} U=0$
- Hence a person going down a mine feels no gravitational force due to shell of earth at heights above his. Force due to rest of earth is as though concentrated at earth's centre.
- Newton worked all this out in 1665 !

