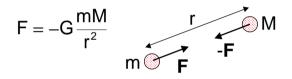
Lecture 15

- Newton's Law of Gravitation
- Gravitational Potential
 - Potential and force outside spherical shell
 - Potential and force inside spherical shell
- Measuring the Gravitational Constant
- Mass of the Earth

Newton's Law of Gravitation

 In 1665 Newton proposed that the force between point masses m and M separated by r is



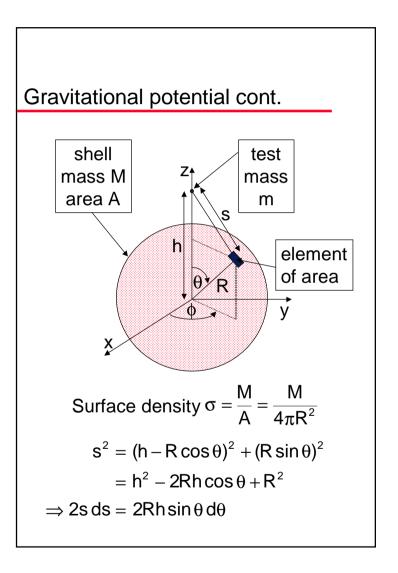
- The force is attractive, that on m being towards M and vice versa.
- This force acts between all masses in the universe.
- The gravitational constant has value $G = 6 \cdot 67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$ $= 6 \cdot 67 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$

Gravitational Potential

 From relationship between force and potential can calculate gravitational potential.

$$U = -\int F dr$$
$$= -\int -\frac{GmM}{r^2} dr$$
$$= -\frac{GmM}{r}$$

 Now study the gravitational potential due to a spherical shell.



Gravitational potential cont.

Sum potential due to interaction of test mass with all mass elements in shell $U = -\int \frac{Gm}{dm'} dm' = -Gm \int \frac{1}{dm'} dA$

$$U = -\int_{M} \frac{Gm}{s} dm' = -Gm \int_{A} \frac{1}{s} \frac{Gm}{dA} dm'$$
$$= -Gm\sigma \int_{A} \frac{1}{s} dA$$

Recall calc. of moment of inertia of sphere, element of volume in spherical polar coords. $dV = r^2 \sin \theta \, d\phi \, d\theta \, dr$ So element of area is $dA = r^2 \sin \theta \, d\phi \, d\theta$ Integral becomes $U = -Gm\sigma \int_{0}^{2\pi} \int_{0}^{\pi} \frac{R^2 \sin \theta \, d\phi \, d\theta}{s}$

Gravitational potential cont.

Integrate over ϕ , change variables to s and ds $U = -2\pi Gm\sigma \int_{s}^{s_{\pi}} \frac{R^{2} \sin\theta}{s} \frac{s \, ds}{R d \sin\theta}$ where $s_0 = +\sqrt{h^2 - 2Rh + R^2} = h - R$ and $s_{\pi} = +\sqrt{h^2 + 2Rh + R^2} = h + R$ Hence left with $U = -\frac{2\pi RGm\sigma}{h}\int_{h}^{h+R} ds$ $=-\frac{2\pi RGm\sigma}{h}\left\{ (h\hat{}+R)-(h-R)\right\}$ $\frac{4\pi R^2 Gm\sigma}{h} = -\frac{4\pi R^2 Gm}{h} \frac{M}{4\pi R}$ $4\pi R^2$ GmM h

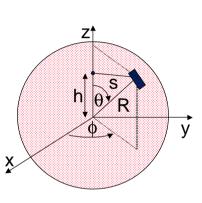
Gravitational potential cont.

- Same as expression if mass concentrated at centre of shell.
- Sphere consists of many concentric shells, hence also for sphere gravitational potential as though mass conc. at centre for objects outside sphere.
- Force derived from potential $F = -\frac{d}{dh}U = -G\frac{Mm}{h^2}$

so above results apply also to gravitational force. (More difficult to calc. for vector force.)

What about objects inside shell?

Gravitational potential cont.



Analysis proceeds exactly as before with one exception. Limits of integral over s are now

$$s_0 = +\sqrt{h^2 - 2Rh + R^2} = R - h$$

and $s_{\pi} = +\sqrt{h^2 + 2Rh + R^2} = R + h$

Gravitational potential cont.

So now we obtain

$$U = -\frac{2\pi RGm\sigma}{h} \int_{R-h}^{R+h} ds$$

$$= -\frac{2\pi RGm\sigma}{h} \{(R+h) - (R-h)\}$$

$$= -4\pi RGm\sigma = -4\pi RGm \frac{M}{4\pi R^{2}}$$

$$= -\frac{GmM}{R}$$

This does not depend on the position of the test mass within the shell.

Gravitational potential cont.

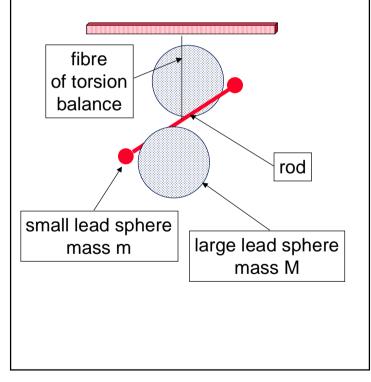
- Potential within shell constant. (This is the principle behind the Faraday cage which provides protection from electrical potential.)
- Force within shell

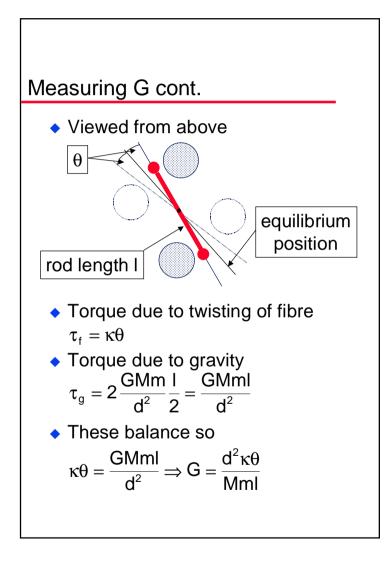
$$F = -\frac{d}{dh}U = 0$$

- Hence a person going down a mine feels no gravitational force due to shell of earth at heights above his.
 Force due to rest of earth is as though concentrated at earth's centre.
- Newton worked all this out in 1665!

Measuring the Gravitational Constant

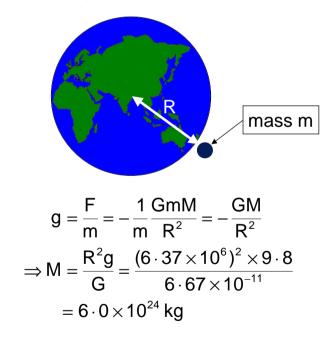
 Measure force between sphere's. First done by Cavendish, 1798.





Mass of Earth

 Knowing G and g can work out mass of earth. Assuming is uniform nonrotating sphere of mass M



Mass of earth cont.

Density is

$$\rho = \frac{M}{V} = \frac{M}{\frac{4}{3}\pi R^3}$$

$$= \frac{3 \times 6 \cdot 0 \times 10^{24}}{4\pi \times (6 \cdot 37 \times 10^6)^3}$$

$$= 5 \cdot 5 \times 10^3 \text{ kgm}^{-3}$$

 At surface we measure ρ ≈ 3 × 10³ kgm⁻³
 so centre of earth must be much more dense.

