

Private Study Topics

- Equilibrium
- Balance of forces
- Balance of torques
- Centre of gravity
- Indeterminate Structures
- Elasticity
- Stress and strain
- Tension \} (Young's
- Compression $\}$ modulus)
- Shearing (shear modulus)
- Hydraulic compression (bulk modulus)
- See eg. H, R \& W, Chapt. 13.

Oscillations

- Repetitive motion, eg. vibrating strings, pendula, vibrating molecules conveying sound waves etc.
- Oscillations occur when a system in stable equilibrium is slightly disturbed.
- Condition for stable equilibrium is minimum of potential $U(x)$, say at position x_{0}.
- Force F is then

$$
\begin{aligned}
F & =-\left.\frac{\partial U(x)}{\partial x}\right|_{x_{0}} \\
& =0
\end{aligned}
$$

Oscillations cont.

- Study potential for small disturbances, ie. near $x=x_{0}$. Use Taylor's expansion:

$$
\begin{aligned}
U(x)= & U\left(x_{0}\right)+\left.\left(x-x_{0}\right) \frac{\partial U(x)}{\partial x}\right|_{x_{0}}+ \\
& \left.\frac{\left(x-x_{0}\right)^{2}}{2!} \frac{\partial^{2} U(x)}{\partial x^{2}}\right|_{x_{0}}+ \\
& \left.\frac{\left(x-x_{0}\right)^{3}}{3!} \frac{\partial^{3} U(x)}{\partial x^{3}}\right|_{x_{0}}+\cdots
\end{aligned}
$$

- Now second term in expansion is zero, and third term much bigger than fourth as $\left(x-x_{0}\right)$ is small, so

$$
U(x) \approx U\left(x_{0}\right)+\left.\frac{\left(x-x_{0}\right)^{2}}{2} \frac{\partial^{2} U(x)}{\partial x^{2}}\right|_{x_{0}}
$$

Oscillations cont.

- The resulting force is

$$
\begin{aligned}
F(x) \approx & -\frac{\partial}{\partial x} U\left(x_{0}\right)- \\
& \left.\frac{\partial}{\partial x} \frac{\left(x-x_{0}\right)^{2}}{2} \frac{\partial^{2} U(x)}{\partial x^{2}}\right|_{x_{0}}
\end{aligned}
$$

- The first term is zero so we are left with

$$
F(x) \approx-\left.\left(x-x_{0}\right) \frac{\partial^{2} U(x)}{\partial x^{2}}\right|_{x_{0}}
$$

- We see that any potential, for small displacements from stable equilibrium, leads to a restoring force proportional to the displacement, eg. complex intermolecular potential gives Hooke's Law for springs

Simple Harmonic Motion

- Given previous result, let us examine motion in which force proportional to displacement from equilibrium in more detail. Such motion termed Simple Harmonic Motion.
- Define origin at position of equilibrium, then SHM force is $F=-k x$

Simple harmonic motion cont.

- Using Newton's Second Law $a=\frac{d v}{d t}=\frac{d^{2} x}{d t^{2}}=\frac{F}{m}=-\frac{k x}{m}$
- Now must solve homogeneous $2^{\text {nd }}$ order differential equation
$\frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0$
- "Mechanics", by Smith \& Smith describes how to do this, we merely note here that the general solution may be written

$$
x(t)=A \cos \left(\sqrt{\frac{k}{m}} t+\delta\right)
$$

Simple harmonic motion cont.

- We see force law typical of oscillations resulting from small displacements from stable equilibrium leads to sinusoidal oscillations.
- The period of the oscillations may be found by remembering that sine functions repeat every 2π. Hence one cycle occurs in a time T such that

$$
\begin{aligned}
\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}}(\mathrm{t}+\mathrm{T})+\delta & =\sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \mathrm{t}+\delta+2 \pi \\
\sqrt{\frac{\mathrm{k}}{\mathrm{~m}} \mathrm{~T}} & =2 \pi \\
\mathrm{~T} & =2 \pi \sqrt{\frac{\mathrm{~m}}{\mathrm{k}}}
\end{aligned}
$$

Simple harmonic motion cont.

- Frequency is
$f=\frac{1}{\mathrm{~T}}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
- Units Hz or s${ }^{-1}$.
- Angular frequency
$\omega=2 \pi f=\sqrt{\frac{k}{m}}$
- Units rad ${ }^{-1}$.
- Using above may write differential equation for simple harmonic motion
$\frac{d^{2} x}{d t^{2}}+\omega^{2} x=0$
- With solution
$\mathrm{x}(\mathrm{t})=\mathrm{A} \cos (\omega \mathrm{t}+\delta)$

Simple harmonic motion cont.

- Look at equation for position of particle undergoing SHM

Simple harmonic motion cont.

- Differentiating expression for position w.r.t. time gives velocity $v(\mathrm{t})=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}(\mathrm{t})=-\mathrm{A} \omega \sin (\omega \mathrm{t}+\delta)$
- Differentiating again gives acceleration $a(t)=\frac{d}{d t} v(t)=-A \omega^{2} \cos (\omega t+\delta)$
- Recall expression for position
$a(t)=\frac{d^{2}}{d t^{2}} x(t)=-\omega^{2} x(t)$
- This proves that our expression for $x(t)$ is indeed a solution of the SHM differential equation.

Simple harmonic motion cont.

Energy Considerations

- We defined SHM as motion with restoring force proportional to displacement, ie.
$F=-k x$
- Either using results from section on oscillations, or by integration we can obtain corresponding potential

$$
\begin{aligned}
F(x) & =-\frac{d U(x)}{d x} \\
\Rightarrow U(x) & =-\int F(x) d x+U_{0} \\
& =\int k x d x=\frac{k x^{2}}{2}+U_{0} \\
& =\frac{A^{2} k}{2} \cos ^{2}(\omega t+\delta)+U_{0}
\end{aligned}
$$

Energy considerations cont.

- We know also that the kinetic energy is

$$
K=\frac{m v^{2}}{2}=\frac{A^{2} m \omega^{2}}{2} \sin ^{2}(\omega t+\delta)
$$

- We see that the total energy (setting $U_{0}=0$) is

$$
\begin{aligned}
E=K+U= & \frac{A^{2} m \omega^{2}}{2} \sin ^{2}(\omega t+\delta) \\
& +\frac{A^{2} k}{2} \cos ^{2}(\omega t+\delta)
\end{aligned}
$$

- Total mechanical energy is constant, energy continuously shifting between kinetic and potential forms. In practice mechanical energy will always be dissipated, leads to damped SHM.

