
Lecture 12

◆ Private Study Topics

◆ Oscillations

◆ Simple Harmonic Motion

– General Solution

– Energy Considerations

◆ Equilibrium

– Balance of forces

– Balance of torques

– Centre of gravity

– Indeterminate Structures

◆ Elasticity

– Stress and strain

– Tension

– Compression

– Shearing (shear modulus)

– Hydraulic compression (bulk 
modulus)

◆ See eg. H, R & W, Chapt. 13.
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Oscillations

◆ Repetitive motion, eg. vibrating 
strings, pendula, vibrating 
molecules conveying sound waves 
etc.

◆ Oscillations occur when a system 
in stable equilibrium is slightly 
disturbed.

◆ Condition for stable equilibrium is 
minimum of potential U(x), say at 
position x0.

◆ Force F is then
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Oscillations cont.

◆ Study potential for small disturbances,
ie. near x=x0. Use Taylor’s expansion:

◆ Now second term in expansion is 
zero, and third term much bigger than 
fourth as (x-x0) is small, so
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Oscillations cont.

◆ The resulting force is

◆ The first term is zero so we are left 
with

◆ We see that any potential, for small 
displacements from stable 
equilibrium, leads to a restoring force 
proportional to the displacement, eg. 
complex intermolecular potential 
gives Hooke’s Law for springs
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Simple Harmonic Motion

◆ Given previous result, let us examine 
motion in which force proportional to 
displacement from equilibrium in 
more detail. Such motion termed 
Simple Harmonic Motion.

◆ Define origin at position of 
equilibrium, then SHM force is
F kx= −

x0

F=-kx

mass m



Simple harmonic motion cont.

◆ Using Newton’s Second Law

◆ Now must solve homogeneous 2nd

order differential equation

◆ “Mechanics”, by Smith & Smith 
describes how to do this, we merely 
note here that the general solution 
may be written
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Simple harmonic motion cont.

◆ We see force law typical of 
oscillations resulting from small 
displacements from stable 
equilibrium leads to sinusoidal 
oscillations.

◆ The period of the oscillations may be 
found by remembering that sine 
functions repeat every 2π. Hence one 
cycle occurs in a time T such that

k
m

t T
k
m

t

k
m

T

T
m
k

( )+ + = + +

=

=

δ δ π

π

π

2

2

2



Simple harmonic motion cont.

◆ Frequency is

◆ Units Hz or s-1.

◆ Angular frequency

◆ Units rad-1.

◆ Using above may write differential 
equation for simple harmonic 
motion

◆ With solution
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Simple harmonic motion cont.

◆ Look at equation for position of 
particle undergoing SHM
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Simple harmonic motion cont.

◆ Differentiating expression for 
position w.r.t. time gives velocity

◆ Differentiating again gives 
acceleration

◆ Recall expression for position

◆ This proves that our expression for 
x(t) is indeed a solution of the SHM 
differential equation.
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Simple harmonic motion cont.
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Energy Considerations

◆ We defined SHM as motion with 
restoring force proportional to 
displacement, ie.

◆ Either using results from section on 
oscillations, or by integration we can 
obtain corresponding potential
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Energy considerations cont.

◆ We know also that the kinetic energy 
is

◆ We see that the total energy (setting 
U0=0) is
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Energy considerations cont.

◆ Now using 

◆ Total mechanical energy is constant, 
energy continuously shifting between 
kinetic and potential forms. In 
practice mechanical energy will 
always be dissipated, leads to 
damped SHM.
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Energy considerations cont.
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