Lecture 12

0 Private Study Topics

0 Oscillations

0 Simple Harmonic Motion
— General Solution
— Energy Considerations

Private Study Topics

0 Equilibrium
— Balance of forces
— Balance of torques
— Centre of gravity
— Indeterminate Structures

0 Elasticity
— Stress and strain
— Tension (Young's

— Compressionj Mmodulus)
— Shearing (shear modulus)

— Hydraulic compression (bulk
modulus)

0 See eg. H, R & W, Chapt. 13.




Oscillations

0 Repetitive motion, eg. vibrating
strings, pendula, vibrating
molecules conveying sound waves
etc.

0 Oscillations occur when a system
in stable equilibrium is slightly
disturbed.

0 Condition for stable equilibrium is
minimum of potential U(x), say at
position X,.

0 Force Fis then

oU(x)

X |y,
=0

F=-

Oscillations cont.

0 Study potential for small disturbances,
ie. near x=x,. Use Taylor’'s expansion:

U(X) = U(xy) + (X —xo)"’;’ix)

(X - Xo)? 9°U(X)
2! ox?

(X = X,)% 9°U(X)
3! ox3

0 Now second term in expansion is
zero, and third term much bigger than
fourth as (x-x,) is small, so

(X=%,)* 9°U(X)

2 ox”

U(x) =U(x,) +

Xo




Oscillations cont.

0 The resulting force is
0
F(x) = ——U(Xq) -
()= = Ux,)

0 (X=X,)* 0°U(x)
ox 2 ox>

Xo

0 The first term is zero so we are left

with )
e o 10 U(X)

F0 =X =xo) g

0 We see that any potential, for small
displacements from stable
equilibrium, leads to a restoring force
proportional to the displacement, eg.
complex intermolecular potential

gives Hooke’s Law for springs

Simple Harmonic Motion

0 Given previous result, let us examine
motion in which force proportional to
displacement from equilibrium in
more detail. Such motion termed
Simple Harmonic Motion.

0 Define origin at position of
equilibrium, then SHM force is

F = —kx




Simple harmonic motion cont.

0 Using Newton’s Second Law
_dv_dx_F _ ke
dt dt®* m m
0 Now must solve homogeneous 2
order differential equation
d’x Kk
s +-—x=0
dt® m
0 “Mechanics”, by Smith & Smith
describes how to do this, we merely
note here that the general solution
may be written

X(t)=A cos%/gt + 6@

Simple harmonic motion cont.

0 We see force law typical of
oscillations resulting from small
displacements from stable
equilibrium leads to sinusoidal
oscillations.

0 The period of the oscillations may be
found by remembering that sine
functions repeat every 21 Hence one
cycle occurs in atime T such that

‘/5(t+T)+6: ‘/5t+6+2n
m m
‘/KTZZT[
m
T:2n\F
k




Simple harmonic motion cont. Simple harmonic motion cont.

0 Frequency is 0 Look at equation for position of
_1_1 k particle undergoing SHM
T 2m\m
1 Units Hz or s-1. amplitude phase const.
0 Angular frequency \ >/
k X(t) = Acosiut +
w=2mf =, |—
m |
0 Units rad-1. ang. freq. phase

0 Using above may write differential

equation for simple harmonic T
XA

+—>

motion
2
IX  Wx =0 ) /\

N

(R
1 With solution \ \__6\/ K] K/t

X(t) = Acos(wt + d)

w




Simple harmonic motion cont.

0 Differentiating expression for
position w.r.t. time gives velocity

v(t) = %x(t) = —Awsin(wt + d)

0 Differentiating again gives
acceleration

a(t) = %v(t) = -Aw’ cos(wt + )

0 Recall expression for position
2
a(t) = %x(t) = —w’x(t)
0 This proves that our expression for
X(t) is indeed a solution of the SHM

differential equation.

Simple harmonic motion cont.
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Energy Considerations

0 We defined SHM as motion with
restoring force proportional to
displacement, ie.

F = -kx

0 Either using results from section on
oscillations, or by integration we can
obtain corresponding potential

dU(x)
dx
O U(x) = —IF(x)dx +U,

2

:Ikxdx :%+UO

F(x) =-

2
A2k cos?(wt +8) + U,

Energy considerations cont.

0 We know also that the kinetic energy
IS
2 2 2
K =MV AT e (ot + )
2 2
0 We see that the total energy (setting

U,=0) is
2 2
E:K+U:Amw

sin®(wt + d)

2

+ A2k cos®(wt + )




Energy considerations cont.

. Kk
0 Now using «f =—

m
AZK

E="—(sin’(wt+d)+

cos’(wt + d))
A%k
2

0 Total mechanical energy is constant,
energy continuously shifting between
kinetic and potential forms. In
practice mechanical energy will
always be dissipated, leads to
damped SHM.

Energy considerations cont.

Energy as function of time

— U(t)
,,,,,,, K({t) ———- U(®)+K(t)
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Energy as a function of position
El  U()+K(X)




