

Centre of Percussion

- Example, placing door stop in position which minimises forces on hinges.

- Consider forces at moment of impact

c. of m. of door

Centre of percussion cont.

- F_{d} and F_{p} are large impact forces, F_{c} is smaller centripetal force. Minimise damage to hinge by making F_{p} as small as possible.
- Consider change of ang. mom. of door about hinges (along z axis)

$$
\begin{align*}
\mathrm{L}_{\mathrm{f}}-\mathrm{L}_{\mathrm{i}} & =0-(-\mathrm{l} \omega) \\
& =\int \tau \mathrm{dt}=\int \mathrm{F}_{\mathrm{d}} \mathrm{adt} \\
\mathrm{I} \omega & =\mathrm{a} \int \mathrm{~F}_{\mathrm{d}} \mathrm{dt} \tag{1}
\end{align*}
$$

- Consider change of linear momentum of door's c . of m .

$$
\begin{align*}
\mathrm{p}_{\mathrm{f}}-\mathrm{p}_{\mathrm{i}} & =0-(-\mathrm{Mb} \omega) \\
& =\int \mathrm{F}_{\mathrm{d}}+\mathrm{F}_{\mathrm{p}} \mathrm{dt} \\
\mathrm{Mb} \omega & =\int \mathrm{F}_{\mathrm{d}} \mathrm{dt}+\int \mathrm{F}_{\mathrm{p}} \mathrm{dt} \tag{2}
\end{align*}
$$

Centre of percussion cont.

- Now substitute expression for F_{d} from (1) in (2) to get $\mathrm{Mb} \omega=\frac{1 \omega}{\mathrm{a}}+\int \mathrm{F}_{\mathrm{p}} \mathrm{dt}$ $\int F_{p} d t=\left(M b-\frac{1}{a}\right) \omega$
- Minimise by choosing $\mathrm{a}=\frac{\mathrm{I}}{\mathrm{Mb}}$
- Using $\mathrm{I}=\frac{1}{3} \mathrm{Mw}^{2}$ where $w=2 b$ is width of door we see $\mathrm{a}=\frac{4 \mathrm{Mb}^{2}}{3 \mathrm{Mb}}=\frac{4 \mathrm{~b}}{3}$ or $\frac{2 \mathrm{w}}{3}$
- This point is centre of percussion. Another e.g. "sweet spot" on squash or tennis racket. (Ball on sweet spot, least reaction on player's hands.)

Precession of the Equinox

- Direction of earth's axis changes (slowly) w.r.t fixed stars, why?

winter $F_{a}<F_{b}$ (further from sun) torque out of plane
summer $F_{a}>F_{b}$ (nearer to sun) torque out of plane
- Bulge due to earth's rotation, radius at equator 21 km larger than at poles.
- At spring and autumn equinoxes no torque, averaged over year have torque in one direction.

Precession of the equinoxes cont.

- Similar effect due to moon, torque about two times larger.
- Average torque perpendicular to spin ang. mom. and in plane of ecliptic, c.f. "Precession of Gyroscope".

Period of precession 26000 years. 13000 years from now polar axis will point 470 away from present pole star Polaris.

Stability of Spinning Objects

- Look at stability of moving object subject to small disturbing force

- Apply force F for time Δt. Torque about x is Fa so angular impulse is $\mathrm{Fa} \Delta \mathrm{t}$.

$$
\begin{aligned}
\Delta \mathrm{L}_{\mathrm{x}} & =\mathrm{I}_{\mathrm{x}} \Delta \omega=\mathrm{Fa} \Delta \mathrm{t} \\
\Delta \omega & =\left(\omega_{\mathrm{x}}-\omega_{0}\right)=\frac{\mathrm{Fa} \Delta \mathrm{t}}{\mathrm{I}_{\mathrm{x}}} \\
\omega_{\mathrm{x}} & =\frac{\mathrm{Fa} \Delta \mathrm{t}}{\mathrm{I}_{\mathrm{x}}}
\end{aligned}
$$

- Causes body to "tumble".

Stability of spinning objects cont.

- Stabilise object by spinning about direction of motion, frequency ω_{s}, angular momentum L_{s}.

- Torque along x axis now causes precession about y axis with frequency
$\Omega=\frac{\mathrm{Fa}}{\mathrm{L}_{\mathrm{s}}}$

Stability of spinning objects cont.

- When force removed precession stops, angular displacement is $\phi=\Omega \Delta t=\frac{F a \Delta t}{L_{s}}$
- Spinning object does not tumble, slightly changes orientation while force applied then stops precessing.
- Note, spin has no effect on c. of m. which in both cases acquires velocity $\Delta v_{y}=\frac{F \Delta t}{M}$

Rolling Coin

- Why does coin roll in "circle"?

- We have: $\mathrm{N}=\mathrm{mg}$

$$
\mathrm{F}=\frac{\mathrm{Mv}{ }^{2}}{\mathrm{R}}
$$

- Torque about c. of m .

$$
\begin{align*}
\tau & =\operatorname{Nr} \sin \phi-\operatorname{Fr} \cos \phi \\
& =m g r \sin \phi-\frac{M v^{2}}{R} r \cos \phi \tag{1}
\end{align*}
$$

Rolling coin cont.

- Horizontal component of ang. mom.
$\mathrm{L}_{\mathrm{h}}=\mathrm{L} \cos \phi$
- Precesses due to torque, tends to prevent coin falling over (cf. bicycle problem)

$$
\begin{equation*}
\tau=\frac{d L_{h}}{d t}=L_{h} \frac{d \theta}{d t}=L_{h} \Omega \tag{2}
\end{equation*}
$$

-What is condition for rolling in circle? Need precession freq. same as freq. of rotation around circle!
$\Omega=\frac{\mathrm{V}}{\mathrm{R}}$

- Relate ang. mom. to speed of coin
$L=I \omega=\frac{M r^{2}}{2} \frac{v}{r}=\frac{M r v}{2}$

Rolling coin cont.

- Substitute for L_{h} and Ω in (2)

$$
\tau=\frac{M v^{2} r \cos \phi}{2 R}
$$

- Now substitute for τ using (1) $M g r \sin \phi-\frac{M v^{2} r \cos \phi}{R}=\frac{M v^{2} r \cos \phi}{2 R}$

$$
M g r \sin \phi=\frac{3 M v^{2} r \cos \phi}{2 R}
$$

$$
\tan \phi=\frac{3 v^{2}}{2 g R}
$$

Gyrocompass

- Consider gyroscope spinning about x axis in suspension free to rotate about y axis. Apply torque about z axis.

- Torque causes ang. mom. along z axis to increase. Happens by causing precession so component of L along z axis.
- No ang. mom. along y axis.

Gyrocompass cont.

- Precession stops when L along z axis.
- Gyrocompass is gyroscope constrained so axis can only move in horizontal plane.
- Rotation of earth causes horizontal plane to shift w.r.t. inertial plane.
- Gyroscope axis "would like" to remain stationary, but rotation of earth exerts torque through bearings causing precession.
- Torque causes gyroscope axis to line up with axis of rotation of earth.

