Lecture 11

- Centre of Percussion
- Precession of the Equinox
- Stability of Spinning Objects
- Rolling Coin
- Gyrocompass

Centre of Percussion

Centre of percussion cont.

- F_d and F_pare large impact forces, F_c is smaller centripetal force. Minimise damage to hinge by making F_p as small as possible.
- Consider change of ang. mom. of door about hinges (along z axis)

$$L_{f} - L_{i} = 0 - (-I\omega)$$
$$= \int \tau dt = \int F_{d} a dt$$
$$I\omega = a \int F_{d} dt \qquad (1)$$

 Consider change of linear momentum of door's c. of m.

$$\begin{split} p_{f} - p_{i} &= 0 - (-Mb\omega) \\ &= \int F_{d} + F_{p} \, dt \\ Mb\omega &= \int F_{d} \, dt + \int F_{p} \, dt \end{split} \tag{2}$$

Centre of percussion cont.

Now substitute expression for F_d from (1) in (2) to get Mbω = 1ω/a + ∫F_p dt ∫F_p dt = (Mb - 1/a)ω
Minimise by choosing a = 1/Mb
Using I = 1/3 Mw² where w=2b is width of door we see a = 4Mb²/3Mb = 4b/3 or 2w/3
This point is centre of percussion. Another e.g. "sweet spot" on squash or tennis racket. (Ball on sweet spot, least reaction on player's hands.)

Precession of the equinoxes cont.

- Similar effect due to moon, torque about two times larger.
- Average torque perpendicular to spin ang. mom. and in plane of ecliptic, c.f. "Precession of Gyroscope".

Stability of Spinning Objects

 Look at stability of moving object subject to small disturbing force

 Apply force F for time ∆t. Torque about x is Fa so angular impulse is Fa∆t.

$$\Delta L_{x} = I_{x} \Delta \omega = Fa \Delta t$$
$$\Delta \omega = (\omega_{x} - \omega_{0}) = \frac{Fa \Delta t}{I_{x}}$$
$$\omega_{x} = \frac{Fa \Delta t}{I_{x}}$$

Causes body to "tumble".

Stability of spinning objects cont.

 Stabilise object by spinning about direction of motion, frequency ω_s,angular momentum L_s.

 Torque along x axis now causes precession about y axis with frequency

$$\Omega = \frac{Fa}{L_s}$$

Stability of spinning objects cont.

- When force removed precession stops, angular displacement is $\phi = \Omega \Delta t = \frac{Fa\Delta t}{L_s}$
- Spinning object does not tumble, slightly changes orientation while force applied then stops precessing.
- Note, spin has no effect on c. of m. which in both cases acquires velocity

$$\Delta v_y = \frac{F\Delta t}{M}$$

Rolling Coin • Why does coin roll in "circle"? Ň R θ **+**m**g** We have: N = mg $F = \frac{Mv^2}{R}$ Torque about c. of m. $\tau = Nr \sin \phi - Fr \cos \phi$ $= \operatorname{mgr}\sin\phi - \frac{\operatorname{Mv}^2}{\operatorname{R}}\operatorname{r}\cos\phi$ (1)

Rolling coin cont.

- Horizontal component of ang. mom. $L_h = L \cos \phi$
- Precesses due to torque, tends to prevent coin falling over (cf. bicycle problem)

$$\tau = \frac{dL_{h}}{dt} = L_{h} \frac{d\theta}{dt} = L_{h} \Omega$$
 (2)

 What is condition for rolling in circle? Need precession freq. same as freq. of rotation around circle!

$$\Omega = \frac{\mathsf{v}}{\mathsf{R}}$$

• Relate ang. mom. to speed of coin $L = I\omega = \frac{Mr^2}{2} \frac{v}{r} = \frac{Mrv}{2}$

Gyrocompass

 Consider gyroscope spinning about x axis in suspension free to rotate about y axis. Apply torque about z axis.

- Torque causes ang. mom. along z axis to increase. Happens by causing precession so component of L along z axis.
- No ang. mom. along y axis.

Gyrocompass cont.

- Precession stops when L along z axis.
- Gyrocompass is gyroscope constrained so axis can only move in horizontal plane.
- Rotation of earth causes horizontal plane to shift w.r.t. inertial plane.
- Gyroscope axis "would like" to remain stationary, but rotation of earth exerts torque through bearings causing precession.
- Torque causes gyroscope axis to line up with axis of rotation of earth.