Lecture 10
- Precession of Gyroscope
- Wheels
- Rolling
- More Moments of Inertia

Precession of Gyroscope

- Gyroscope not spinning, falls if released from horizontal.

- Newton's $2^{\text {nd }}$ Law
$\vec{\tau}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{L} \Rightarrow \bar{\tau} \mathrm{dt}=\mathrm{dL}$
- L after time dt (Euler's method).

$$
\begin{aligned}
\mathbf{L}_{1} & =\mathbf{L}_{0}+\mathbf{d} \mathbf{L}_{0}=\mathbf{L}_{0}+\vec{\tau}_{0} \mathbf{d t} \\
& =(0,0,0)+(-\mathrm{mga}, 0,0) \mathrm{dt} \\
& =(-\mathrm{mg} \text { gadt, } 0,0)
\end{aligned}
$$

- Gyroscope starts to rotate about x axis (falls)

- L after time dt now
$L_{1}=(0, l \omega, 0)+(-m g a, 0,0) d t$
$=(-$ mgadt $, \mid \omega, 0)$
- If gyroscope were to fall, L would acquire z component due to spin of gyroscope. No z component, so it doesn't fall!

Precession of gyroscope cont.

- Where does x component of L come from? Must be from spin.

- |L| due to spin $(\Omega \ll \omega)$ so d ϕ such that spin along x is -mgadt ie.
$l \omega \sin d \phi=m g a d t$

$$
\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{\mathrm{mga}}{\mathrm{I} \omega}
$$

- Using $\mathrm{I}=\frac{1}{2} \mathrm{mR}^{2}, \Omega=\frac{\mathrm{d} \phi}{\mathrm{dt}}=\frac{2 \mathrm{ga}}{\mathrm{R}^{2} \omega}$
is the precession rate.

- To overcome kinetic friction require $\mathrm{F}_{\mathrm{s}}>\mathrm{f}_{\mathrm{k}}=\mu_{\mathrm{k}} \mathrm{N}$
- What advantage does using primitive wheel (no bearings) bring?

Wheels cont.

- Calc. force necessary to move cart, rad. of wheel R, of axle r.

- Force needed to move cart is force that produces torque needed to turn wheel.
- Must overcome torque due to friction $\tau_{\mathrm{f}}=\mathrm{f}_{\mathrm{k}} \mathrm{r}=\mu_{\mathrm{k}} \mathrm{Nr}$
- That is need torque

$$
\begin{aligned}
\tau=F_{w} R>\tau_{f} \text { so } F_{w} & >\frac{\mu_{k} N r}{R} \\
F_{w} & =\frac{r}{R} F_{s}
\end{aligned}
$$

Wheels cont.

- Have simplified as we have ignored "rolling" friction.
$\mathrm{f}_{\mathrm{r}}=\mu_{\mathrm{r}} \mathrm{N}$
- Typically coeff. of rolling friction is factor 10 smaller than coeff. of kinetic friction.
- If introduce bearings, necessary force decreases further, must then overcome only rolling friction.

Rolling

- Consider motion of wheel.

- No slipping so

$$
s=R \theta
$$

$$
\Rightarrow \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{R} \theta=\mathrm{R} \frac{\mathrm{~d} \theta}{\mathrm{dt}}
$$

$$
\mathrm{v}_{\mathrm{cm}}=\mathrm{R} \omega
$$

$$
\omega=\frac{V_{c m}}{R}
$$

Rolling cont.

- Consider as rotation + translation

- Calculate total K.E. in this picture $\mathrm{K}=\mathrm{K}_{\mathrm{R}}+\mathrm{K}_{\mathrm{T}}=\frac{1}{2} \mathrm{I}_{\mathrm{cm}} \omega^{2}+\frac{1}{2} \mathrm{Mv}_{\mathrm{cm}}{ }^{2}$
- Now think as pure rotation

$\omega=\frac{2 \mathrm{v}_{\mathrm{cm}}}{2 \mathrm{R}}=\frac{\mathrm{v}_{\mathrm{cm}}}{\mathrm{R}}$
Angular velocity same in both pictures!

Rolling cont.

- Calculate K.E. in this picture $\mathrm{K}^{\prime}=\mathrm{K}_{\mathrm{R}}^{\prime}=\frac{1}{2} \mathrm{I}_{\mathrm{p}} \omega^{2}$
- Use parallel axis theorem $I_{P}=I_{c m}+M R^{2}$
$K_{R}^{\prime}=\frac{1}{2} I_{\mathrm{cm}} \omega^{2}+\frac{1}{2} M R^{2} \omega^{2}$
$=\frac{1}{2} \mathrm{I}_{\mathrm{cm}} \omega^{2}+\frac{1}{2} \mathrm{Mv}_{\mathrm{cm}}{ }^{2}$
$=K_{R}+K_{T}$
- K.E. same regardless of picture used.

More Moments of Inertia

- Solid cylinder or disc about axis

$$
\begin{aligned}
I & =\rho \int_{V} r^{2} d V \\
& =\rho \int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{R} r^{2} d r r d \phi d z \\
& =2 \pi a \rho \int_{0}^{R} r^{3} d r=2 \pi a \rho \frac{R^{4}}{4}=\frac{M R^{2}}{2}
\end{aligned}
$$

Moments of inertia cont.

- Hollow cylinder about axis

$$
\begin{aligned}
I & =\rho \int_{0}^{a} \int_{0}^{2 \pi} \int_{r}^{R} r^{2} d r r d \phi d z \\
& =2 \pi \rho a \int_{r}^{R} r^{3} d r=\frac{\pi \rho a}{2}\left(R^{4}-r^{4}\right) \\
& =\frac{M\left(R^{2}+r^{2}\right)\left(R^{2}-r^{2}\right)}{2\left(R^{2}-r^{2}\right)}=\frac{M\left(R^{2}+r^{2}\right)}{2}
\end{aligned}
$$

