
Lecture 10

◆ Precession of Gyroscope

◆ Wheels

◆ Rolling

◆ More Moments of Inertia

Precession of Gyroscope

◆ Gyroscope not spinning, falls if 
released from horizontal.

◆ Newton’s 2nd Law

◆ L after time dt (Euler’s method).

◆ Gyroscope starts to rotate about x 
axis (falls)
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Precession of gyroscope cont.

◆ If gyroscope spinning rapidly

◆ L after time dt now

◆ If gyroscope were to fall, L would 
acquire z component due to spin of 
gyroscope. No z component, so it 
doesn’t fall!
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Precession of gyroscope cont.

◆ Where does x component of L come 
from? Must be from spin.

◆ |L| due to spin (Ω<<ω) so dφ such that 
spin along x is -mga dt ie.

◆ Using

is the precession rate.  
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Wheels

◆ Work out force necessary to drag 
sled.

◆ To overcome kinetic friction require 

◆ What advantage does using primitive 
wheel (no bearings) bring?
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Wheels cont.

◆ Calc. force necessary to move cart,
rad. of wheel R, of axle r.

◆ Force needed to move cart is force 
that produces torque needed to turn 
wheel. 

◆ Must overcome torque due to friction

◆ That is need torque
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Wheels cont.

◆ Have simplified as we have ignored 
“rolling” friction. 

◆ Typically coeff. of rolling friction is 
factor 10 smaller than coeff. of kinetic 
friction.

◆ If introduce bearings, necessary force 
decreases further, must then 
overcome only rolling friction.
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Rolling

◆ Consider motion of wheel.

◆ No slipping so
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Rolling cont.

◆ Consider as rotation + translation

◆ Calculate total K.E. in this picture

◆ Now think as pure rotation
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Rolling cont.

◆ Calculate K.E. in this picture

◆ Use parallel axis theorem

◆ K.E. same regardless of picture used.

21
R P2K K I′ ′= = ω

2
P cm

2 2 21 1
R cm2 2

221 1
cm cm2 2

R T

I I MR

K I MR

I Mv

K K

= +
′ = ω + ω

= ω +
= +



More Moments of Inertia

◆ Solid cylinder or disc about axis
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Moments of inertia cont.

◆ Hollow cylinder about axis
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Moments of inertia cont.

◆ Sphere radius R about centre

( )I r dr rd r d

r dr d

R

R

=

=

∫∫∫

∫∫

ρ θ θ θ φ

πρ θ θ

ππ

π

sin sin

sin

2

000

2

4 3

00

2

rdθ

rsinθdφ

dr

r
φ θ

ρ
π π

= =
M
R

M
R4

3
3 3

3
4

Moments of inertia cont.
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Do integral over θ first. Using
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