

- Parallel Axis Theorem
- Torque
- Newton's Second Law for Rotation
- Work, Power and Rotational Kinetic Energy
- More on Rotational Variables as Vectors
- More Torque

Parallel Axis Theorem

- Moment of inertia of body about axis through c . of m . is I_{cm}. Calc. moment of inertia about parallel axis.

Parallel axis theorem cont.

- View from above, place origin at c. of m., z axis along initial axis of rotation.

$$
\begin{aligned}
I_{P} & =\int_{M} r^{2} d m \\
& =\int_{M}(x-a)^{2}+(y-b)^{2} d m
\end{aligned}
$$

Parallel axis theorem cont.

$$
\begin{aligned}
I_{P}= & \int_{M} x^{2}+y^{2} d m-2 a \int_{M} x d m- \\
& 2 b \int_{M} y d m+\int_{M} a^{2}+b^{2} d m
\end{aligned}
$$

Now $2^{\text {nd }}$ and $3^{\text {rd }}$ integrals zero from definition of c. of m. and choice of position of origin. First integral just definition of I_{cm}. We also see:
$\int_{M} a^{2}+b^{2} d m=\int_{M} h^{2} d m=M h^{2}$
Hence parallel axis theorem:
$\mathrm{I}_{\mathrm{P}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
Consequence, minimum moment of inertia for axes through c. of m.

Parallel Axis Theorem, an Example

- Consider again rectangular prism $\begin{aligned} \mathrm{I}_{\mathrm{e}} & =\rho \int_{-\frac{c}{2}-\frac{b}{2}}^{\frac{c}{2}} \int_{0}^{\frac{b}{2}} \int_{0}^{a} x^{2}+y^{2} d x d y d z \\ & =c \rho \int_{-\frac{b}{2}}^{\frac{b}{2}} \int_{0}^{a} x^{2}+y^{2} d x d y\end{aligned}$
$=c \rho \int_{0}^{a} x^{2} y+\left.\frac{y^{3}}{12}\right|_{-\frac{b}{2}} ^{\frac{b}{2}} d x$
$=\left.b c \rho\left(\frac{x^{3}}{3}+\frac{b^{2} x}{12}\right)\right|_{0} ^{a}=\frac{a b c \rho}{12}\left(4 a^{2}+b^{2}\right)$
$=\frac{M}{12}\left(4 a^{2}+b^{2}\right)$

Parallel Axis Theorem, an Example cont.

- Moment of inertia about c. of m .

$$
\mathrm{I}_{\mathrm{cm}}=\frac{\mathrm{M}}{12}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)
$$

- Using parallel axis theorem

$$
\begin{aligned}
I_{e} & =I_{c m}+M\left(\frac{a}{2}\right)^{2} \\
& =\frac{M}{12}\left(a^{2}+b^{2}\right)+\frac{M}{4} a^{2} \\
& =\frac{M}{12}\left(4 a^{2}+b^{2}\right)
\end{aligned}
$$

- Exercise, repeat check for axis along corner of prism and for other shapes.

Torque

- A force applied to a body may tend to rotate the body about an axis.
Quantify using concept of torque (from latin "to twist")
- Force in plane normal to axis

Note $\bar{\tau}=\mathbf{r} \times \mathbf{F}$

Newton's Second Law

- Consider rotation of a (simple) rigid body

- Relate tangential acceleration to torque

$$
\begin{aligned}
\mathrm{F}_{\mathrm{t}} & =\mathrm{ma}_{\mathrm{t}} \\
\tau & =\mathrm{F}_{\mathrm{t}} \mathrm{r} \\
& =\mathrm{ma}_{\mathrm{t}} \mathrm{r}
\end{aligned}
$$

Newton's second law cont.

- Consider rotational acceleration
$\alpha=\frac{d \omega}{d t}=\frac{1}{r} \frac{d v_{t}}{d t}=\frac{a_{t}}{r}$
$a_{t}=\alpha r$
- Substitute for a_{t}
$\tau=m(\alpha r) r=m r^{2} \alpha$
- Recall definition of moment of inertia
$I=m r^{2}$
- Hence Newton's Second Law for rotation
$\tau=l \alpha$
- If many forces applied
$\sum \tau=l \alpha$

Work and Rotation

- Consider same rigid body rotating through $\mathrm{d} \theta$ under influence of force F

- Calculate work done

$$
\mathrm{dW}=\mathbf{F} \cdot \mathrm{d} \mathbf{s}=\mathrm{F}_{\mathrm{t}} \mathrm{r} \mathrm{~d} \theta=\tau \mathrm{d} \theta
$$

- For finite angular displacement

$$
W=\int_{\theta_{i}}^{\theta_{i}} \tau d \theta \quad \text { cf. } W=\int_{x_{i}}^{x^{+}} F d x
$$

Power and Work K.E.

Relation

- Consider power

$$
P=\frac{d}{d t} W=\tau \frac{d \theta}{d t}=\tau \omega
$$

- Now relate work to K.E. of rotation

$$
\begin{aligned}
W & =\int_{\theta_{i}}^{\theta_{i}} \tau d \theta=\int_{\theta_{i}}^{\theta_{i}} \left\lvert\, \alpha d \theta=\int_{\theta_{i}}^{\theta_{i}} I \frac{d \omega}{d t} d \theta\right. \\
& =\int_{\omega_{1}}^{\omega_{1}} 1 \frac{d \theta}{d t} d \omega=\int_{\omega_{i}}^{\omega_{i}} 1 \omega d \omega \\
& =\frac{1}{2}\left|\omega_{\mathrm{f}}^{2}-\frac{1}{2}\right| \omega_{i}^{2} \\
& =K_{f}-K_{i} \\
& =\Delta K
\end{aligned}
$$

More on Rotational Variables as Vectors

- Derive vector angular velocity

$$
\begin{aligned}
|\mathbf{v}| & =\lim _{\Delta t \rightarrow 0} \frac{|\Delta \mathbf{r}|}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{r \sin \theta \Delta \phi}{\Delta t} \\
& =r \sin \theta \frac{d \phi}{d t}=r \omega \sin \theta=|\mathbf{r} \times \mathbf{v}|
\end{aligned}
$$

As \mathbf{v} tangential to circle it is normal to plane containing \mathbf{r} and $\mathbf{\omega}$, hence $\mathbf{v}=\boldsymbol{\omega} \times \mathbf{r} \quad$ (using right hand rule)

More Torque

- For force in plane normal to axis can write torque as $\boldsymbol{\varepsilon}=\mathbf{r} \times \mathbf{F}$
- Generalise for all forces.
-What is torque about given axis? Example, torque about z axis.

- Write $F=\left(f_{x}, f_{y}, f_{z}\right)$ and $\mathbf{r}=\left(r_{x}, r_{y}, r_{z}\right)$ then $F_{t}=\left(f_{x}, f_{y}, 0\right)$ and $\mathbf{r}_{T}=\left(r_{x}, r_{y}, 0\right)$.

More torque cont.

- From previous discussion we know torque about z is

$$
\tau_{z}=\left|\mathbf{r}_{T} \times \mathbf{F}_{\mathrm{t}}\right|
$$

- In terms of vector components this is

$$
\tau_{z}=\left|\left(r_{x}, r_{y}, 0\right) \times\left(f_{x}, f_{y}, 0\right)\right|
$$

$$
\begin{aligned}
& =\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{x} & r_{y} & 0 \\
f_{x} & f_{y} & 0
\end{array}\right\| \\
& =r_{x} f_{y}-r_{y} f_{x}
\end{aligned}
$$

More torque cont.

- Consider torque as vector and take component of vector along z axis to get torque about z

$$
\begin{aligned}
\vec{\tau} & =\mathbf{r} \times \mathbf{F} \\
& =\left|\begin{array}{lll}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{x} & r_{y} & r_{z} \\
f_{x} & f_{y} & f_{z}
\end{array}\right| \\
& =\left(r_{y} f_{z}-r_{z} f_{y}, r_{z} f_{x}-r_{x} f_{z}, r_{x} f_{y}-r_{y} f_{x}\right) \\
\tau_{z} & =\vec{\tau} \cdot \hat{\mathbf{k}}=\left(\begin{array}{l}
r_{y} f_{z}-r_{z} f_{y} \\
r_{z} f_{x}-r_{x} f_{z} \\
r_{x} f_{y}-r_{y} f_{x}
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
& =r_{x} f_{y}-r_{y} f_{x}
\end{aligned}
$$

- The correct result.

