
Lecture 4

◆ Potential Energy

– Gravitational potential energy

◆ Energy Conservation

– Motion under gravity

◆ Using Conservation of Energy

– Back to spring problem

◆ Conservative and Non-
conservative Forces

◆ Energy Conservation Summary

Potential Energy

◆ P.E depends on configuration of 
system. Change in P.E. equal to 
negative of work done to change 
configuration.

◆ Gravitational potential energy.

Work done by gravity
as weight raised:
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Potential energy cont.

◆ Work done by gravity depends 
on end-points, not path taken, it 
is a conservative force.
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∆ as before.

Energy Conservation

◆ Look at change of sum of kinetic 
and potential energy:

◆ Example, motion under gravity. 
At y=0 define U0=0 then:
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Energy conservation cont.
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The height at time t is

Hence the total energy at 
time t is
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Using conservation of 
energy

◆ Back to spring problem

Spring compressed distance d, 
released at t=0, describe motion.
Define U0=0 at x=0, then:
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Using conservation of energy 
cont.

◆ Can now determine 
instantaneous power

◆ Can also obtain time to reach 
position x

P Fv kx
k
m

d x= = − −2 2

v
dx
dt

dt
dx
v

t
dx

k
m

d x

=

=

=
−

∫ ∫

∫
2 2

v
k
m

d x= −2 2

Using conservation of energy 
cont.
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Get t0 from condition t=0 when x=d
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Energy Conservation and 
Friction

◆ Consider block slipping down 
inclined plane.
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Energy conservation and 
friction cont.

Initial energy
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Motion down slope described by:
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Energy conservation and 
friction cont.

Speed as block hits stop
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Energy conservation and 
friction cont.
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◆ Where did the missing energy go? 
Calc. work done by fk

◆ Work done by fk appears as internal 
energy, kinetic energy of atoms and 
molecules. Results in change of 
mechanical (kinetic plus potential) 
energy of system.



Conservative and Non-
Conservative Forces

◆ Work done by gravity independent of 
path, gravity is a conservative force. It 
can be associated with potential

◆ Same applies to elastic force (try it!)

Vector sum of
elements making
up path gives s,
argue as before.

s

Conservative and non-
conservative forces cont.

◆ Work done by frictional forces does
depend on path taken. Friction not 
conservative, cannot associate with 
potential. Consider sliding book from 
P to Q on table, via paths A and B

◆ Work done along paths A and B is 
WA ~(length of path A) and 
WB ~(length of path B).

◆ WA< WB, result depends on path.
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Energy Conservation-
Summary

◆ Mechanical energy of system 
conserved if only conservative forces 

◆ As W=-∆U we have

◆ If non-conservative forces involved, 
energy dissipated via these must be 
taken into account. Provided system 
isolated

◆ Using Wf=-∆Eint we have

◆ If external forces do work Wext on the 
system then
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