

Friction

- Fundamental cause electro-magnetic force between atoms and molecules, cf. van-der-Waals forces.
- Surfaces microscopically rough, "cold welds" form at points of close contact.
- Friction is result of welds forming, breaking, forming, breaking, can produce audible squeaks (e.g. brakes) and wear (e.g. piston rings, tyres).
- Consider here friction between unlubricated solid surfaces.

Friction, a worked example.
A block rests on a plane. The angle this makes to the horizontal is increased to θ_{c} at which point the block starts to slide. What is θ_{c} and what is the subsequent acceleration of the block if the plane remains at this angle?
($\mu_{\mathrm{s}}=0.25, \mu_{\mathrm{k}}=0.20, \mathrm{~g}=9.8 \mathrm{~ms}^{-2}$)
For you to think about:
What happens as μ_{k} tends to μ_{s} ?

$$
\begin{aligned}
\mu_{s} & =\frac{\sin \theta_{c}}{\cos \theta_{c}} \\
& =\tan \theta_{c} \\
\theta_{c} & =\arctan \mu_{s}=14^{\circ}
\end{aligned}
$$

Friction, a worked example.

The Drag Force

- Relative motion between fluid and body leads to drag force D, which opposes motion.
- For motion of "blunt" objects in air such that air flow turbulent:
$D=\frac{1}{2} C \rho A v_{r}^{2}$
ρ - density of air,
A - effective cross-section,
v_{r} - relative speed,
C - drag coeff. (about 0.4 for car).

Drag cont.

- Terminal speed.

Objects falling in air eventually reach a terminal speed v_{t} at which the forces of drag and weight are equal and opposite, eg. a raindrop of radius 1.5 mm reaches v_{t} of $7 \mathrm{~m} \mathrm{~s}^{-1}$ after falling about 10 m .

$$
\begin{aligned}
\frac{1}{2} C \rho A v_{t}^{2} & =m g \\
v_{t} & =\sqrt{\frac{2 m g}{C \rho A}}
\end{aligned}
$$

Drag cont.

- Stokes' Law

A sphere falling through a liquid of viscosity η such that the flow is laminar experiences a drag force:
$D=6 \pi \mathrm{r}_{\mathrm{q}} \mathrm{v}_{\mathrm{r}}$

- Units of viscosity:
$\mathrm{N} \mathrm{s} \mathrm{m} \mathrm{m}^{-2}$, Pas, $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-1}$.

Drag, a worked example.

- What is the terminal speed of a steel ball, radius 2 mm , falling in glycerine? ($\rho_{\mathrm{st}}=3000 \mathrm{~kg} \mathrm{~m}^{-3}$, $\left.\rho_{\mathrm{gl}}=1300 \mathrm{~kg} \mathrm{~m}^{-3}, \eta_{\mathrm{g} \mid}=0.83 \mathrm{~Pa} \mathrm{~s}\right)$

$\mathrm{W}=\frac{4}{3} \pi \mathrm{r}^{3} \rho_{\mathrm{st}} 9$
W At terminal speed:

$$
\mathrm{W}=\mathrm{D}+\mathrm{B}
$$

$$
\frac{4}{3} \pi r^{3} \rho_{s t} g=\frac{4}{3} \pi r^{3} \rho_{g \mid} g+6 \pi r \eta_{g 1} v_{t}
$$

$$
v_{\mathrm{t}}=\frac{2 r^{2} \mathrm{~g}\left(\rho_{\mathrm{st}}-\rho_{\mathrm{gl}}\right)}{9 \eta_{\mathrm{gl}}}=0.07 \mathrm{~ms}^{-1}
$$

Circular Motion cont.

- Now acceleration

$$
\begin{aligned}
\mathbf{a} & =\frac{d}{d t} \mathbf{v}=\frac{d^{2}}{d t^{2}} \mathbf{r} \\
& =\left(-r \omega^{2} \cos \omega t,-r \omega^{2} \sin \omega t\right) \\
& =-\omega^{2} \mathbf{r} \\
a & =r \omega^{2} \\
& =\frac{v^{2}}{r}
\end{aligned}
$$

- We see a antiparallel to \mathbf{r} $\mathbf{v} \cdot \mathbf{r}=\left(-\mathrm{r}^{2}+\mathrm{r}^{2}\right) \omega \sin \omega \mathrm{t} \cos \omega \mathrm{t}=0$
$\Rightarrow \mathbf{v} \perp \mathbf{r}$
-What is rxa?

