Lecture 2

- Friction
 - Static friction
 - Kinetic friction
 - Drag
 - Terminal Speed
- Circular Motion

Friction

- Fundamental cause electro-magnetic force between atoms and molecules, cf. van-der-Waals forces.
- Surfaces microscopically rough, "cold welds" form at points of close contact.
- Friction is result of welds forming, breaking, forming, breaking, can produce audible squeaks (e.g. brakes) and wear (e.g. piston rings, tyres).
- Consider here friction between unlubricated solid surfaces.

Friction cont.

- Static friction
 f_s < f_{s,max} = μ_sN
 μ_s coeff. of static friction.
- Kinetic friction

$$\label{eq:fk} \begin{split} f_k &= \mu_k N \\ \mu_k \text{ coeff. of kinetic friction.} \end{split}$$

Friction, a worked example.

A block rests on a plane. The angle this makes to the horizontal is increased to θ_c at which point the block starts to slide. What is θ_c and what is the subsequent acceleration of the block if the plane remains at this angle? (μ_s = 0.25, μ_k = 0.20, g=9.8 ms⁻²)

For you to think about: What happens as μ_k tends to $\mu_s?$

The Drag Force

- Relative motion between fluid and body leads to drag force D, which opposes motion.
- For motion of "blunt" objects in air such that air flow turbulent:

$$D = \frac{1}{2}C\rho A v_r^2$$

- ρ density of air,
- A effective cross-section,
- v_r relative speed,
- C drag coeff. (about 0.4 for car).

Drag cont.

Terminal speed.

Objects falling in air eventually reach a terminal speed v_t at which the forces of drag and weight are equal and opposite, eg. a raindrop of radius 1.5 mm reaches v_t of 7 m s⁻¹ after falling about 10 m.

$$\frac{1}{2}C\rho A v_t^2 = mg$$

$$v_t = \sqrt{\frac{2mg}{C\rho A}}$$

Drag cont.

Stokes' Law

A sphere falling through a liquid of viscosity η such that the flow is laminar experiences a drag force: D = $6\pi r\eta v_r$

Units of viscosity:
 N s m⁻², Pa s, kg m⁻¹ s⁻¹.

Drag, a worked example.

 What is the terminal speed of a steel ball, radius 2 mm, falling in glycerine? (ρ_{st}=3000 kg m⁻³, ρ_{gl}=1300 kg m⁻³,η_{gl}=0.83 Pa s)

D+B
D+B =
$$6\pi r\eta_{gl}v_t + \frac{4}{3}\pi r^3\rho_{gl}g$$

W = $\frac{4}{3}\pi r^3\rho_{st}g$
W = D+B
 $\frac{4}{3}\pi r^3\rho_{st}g = \frac{4}{3}\pi r^3\rho_{gl}g + 6\pi r\eta_{gl}v_t$
 $v_t = \frac{2r^2g(\rho_{st} - \rho_{gl})}{9\eta_{gl}} = 0.07ms^{-1}$

Circular Motion

 Determine velocity of particle undergoing uniform circular motion.

Circular Motion cont. Now acceleration $\mathbf{a} = \frac{d}{dt}\mathbf{v} = \frac{d^2}{dt^2}\mathbf{r}$ $=(-r\omega^2\cos\omega t,-r\omega^2\sin\omega t)$ $=-\omega^2 \mathbf{r}$ $a = r\omega^2$ v^2 = --r • We see **a** antiparallel to **r** $\mathbf{v} \cdot \mathbf{r} = (-\mathbf{r}^2 + \mathbf{r}^2)\omega \sin \omega t \cos \omega t = 0$ \Rightarrow v \perp r • What is **r**x**a**?

Circular motion cont.

 From second law get centripetal force

