PHYS121

Mechanics and Fluids

Dr. T. Greenshaw,
Room 332, Oliver Lodge Lab.
Tel. 01517943383
Email green@hep.ph.liv.ac.uk
First Semester 2001/2002
Lectures:

Mon	$12: 00$	Chad M
Wed	$10: 00$	Chad M

Problems Class timetabled for:
Fri 12:00
Chad L
Reschedule to:
Tues 13:00
Chad M

Contents

Mechanics

- Force and Motion, Friction, Circular Motion
- Work and Kinetic Energy
- Conservation of Energy
- Systems of Particles, Rocket Equation
- Momentum, Collisions
- Rotation, Angular quantities as Vectors, Moment of Inertia, Torque
- Rolling, Angular Momentum, Precession
- Static Equilibrium
- Oscillations
- Gravity, Planetary Motion
- Non-Inertial Systems

Bibliography

- "Fundamentals of Physics", extended sixth edition, by Halliday, Resnick and Walker.
- "University Physics", Young and Freedman.
- "Physics for Scientists and Engineers", Serway.
- "Physics", Breithaupt.
- "Classical Mechanics",
H. Goldstein.
- Web site for course:
- http://hep.ph.liv.ac.uk/~green/mechanics

Lecture 1
Introductory remarks
- Units
- SI prefixes
- Force and Motion, suggested
reading
- Newton's Laws
- Vectors

Introductory Remarks				

Units cont.		
Conversion factors: $1 \mathrm{inch}=2.54 \mathrm{~cm}$ so $1 \mathrm{ft}=0.3048 \mathrm{~m}$ $1 \mathrm{lb}=0.4536 \mathrm{~kg}$ SI Prefixes		
Prefix	Symbol	Factor
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	p	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}

Force and Motion

- Read H, R \& W Chapt.s $1-5$, in particular:
- Straight line motion
- Vectors
- Relative motion
- Newton's Laws
- Have a go at the problems!

Newton's Laws

- First Law:
- No net force acting on a body
"Body at rest remains at rest.
»Body in motion continues motion with constant velocity.
- Second Law
- A net force acting on a body causes it to change it's momentum according to:
$\sum F=\frac{d}{d t} p$
- Third Law
- If body A exerts a force $F_{A B}$ on body B, then body B exerts a force $F_{B A}$ on body A such that $F_{A B}=-F_{B A}$.

Vectors cont.

- Magnitude

$$
\begin{aligned}
\mathbf{a}= & \stackrel{\mathbf{a}}{\mathbf{a}} \\
& =\sqrt{\mathrm{a}_{\mathrm{x}}^{2}+\mathrm{a}_{\mathrm{y}}^{2}+\mathrm{a}_{\mathrm{z}}^{2}}
\end{aligned}
$$

- Vector addition

$\mathbf{c}=\mathbf{a}+\mathbf{b}$

$$
\left(c_{x}, c_{y}, c_{z}\right)=\left(a_{x}+b_{x}, a_{y}+b_{y}, a_{z}+b_{z}\right)
$$

Vectors cont.

- Multiplication by scalar

$\mathbf{b}=\mathrm{ka}$
$\left(b_{x}, b_{y}, b_{z}\right)=\left(k a_{x}, k a_{y}, k a_{z}\right)$

Vectors cont.

- Scalar or dot product

$\mathbf{a} \cdot \mathbf{b}=a b \cos \theta$

$$
=\left(a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\right)
$$

e.g. Work done by force F moving displacement d:

$$
W=\mathbf{F} \cdot \mathbf{d}
$$

Vectors cont.

- Vector or cross product

e.g. Torque of force \mathbf{F} at displacementr: $\mathbf{E}=\mathbf{r} \times \mathbf{F}$

