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■ Introduction to LCFI and the ILC
♦ Physics at the ILC
♦ LCFI physics studies
♦ Sensor design and testing
♦ Mechanical studies

■ Proposed LCFI programme
♦ Simulation and physics studies
♦ Sensor development
♦ Readout and drive electronics
♦ External electronics
♦ Integration and testing
♦ Mechanical studies
♦ Test-beam and electromagnetic 

interference studies



The International Linear Collider

■ Standard Model of particle physics is 
clearly incomplete.

■ From 2007, LHC experiments will 
study pp collisions √s = 14 TeV
giving large mass reach for discovery 
of new physics.

■ Precision measurement (of masses, 
branching ratios etc.) complicated by 
hadronic environment.

■ International consensus: e+e- LC 
operating at up to √s ~ 1 TeV needed 
in parallel with the LHC, i.e. start-up 
in next decade.

■ Detailed case presented by LHC/LC 
Study Group: hep-ph/0410364.

■ International Technology Review 
Panel recommended in August 2004 
that superconducting technology be 
used for accelerating cavities.

■ Global effort now underway to 
design SC ILC, director Barry Barish.

■ Timeline defined by ILC Steering 
Group foresees formation of 
experimental collaborations in 2008 
and writing of Technical Design 
Reports in 2009.

■ Agreement that vertex detector 
technology be chosen following 
“ladder” tests in 2010.



Flavour and quark charge identification at the ILC

■ Many of interesting measurements 
involve identification of heavy 
quarks.

■ E.g. determination of branching 
ratios of Higgs boson.

■ Are BRs compatible with the SM?

■ Physics studies can also benefit from 
separation of

■ E.g.                      

■ Reduce combinatorial background.
■ Allows determination of Higgs self-

coupling.

b from b and c from c.
e e HHZ:+ − →



Quark charge identification

■ Increases sensitivity to new physics.
■ E.g. effects of large extra dimensions 

on 
■ Study ALR = (σL – σR)/σtot as a 

function of cos θ. 
■ For muons, effects of ED not visible:

■ Changes much more pronounced for 
c (and b) quarks:

■ Requires efficient charge 
determination to large cos θ.

e e ff .+ − →



Quark charge identification

■ Provides new tools for physics 
studies. 

■ E.g. measure top polarisation in 
decay

■ Top decays before hadronisation.
■ Anti-strange jet has 1 – cos θ

distribution w.r.t. top polarisation 
direction.

■ Distinguish between t and    by 
tagging b and c jets.

■ Determine quark charge for (at least) 
one of these jets.

■ Example of physics made accessible 
using this technique:

■ Determine tanβ and tri-linear 
couplings At and Ab through 
measurements of top polarisation in 
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Vertex detector performance goals

■ Average impact parameter, d0, of B 
decay products ~ 300 μm, of 
charmed particles less than 100 μm.

■ d0 resolution given by convolution of 
point precision, multiple scattering, 
lever arm, and mechanical stability.

■ Multiple scattering significant despite 
large √s at ILC as charged track 
momenta extend down to ~ 1 GeV.

■ Resolve all tracks in dense jets.
■ Cover largest possible solid angle: 

forward/backward events are of 
particular significance for studies 
with polarised beams.

■ Stand-alone reconstruction desirable.

■ In terms of impact parameter, require  
resolution in rφ and rz:

■ Implies typically:
♦ Pixels ~ 20 x 20 μm2.
♦ First measurement at r ~ 15 mm.
♦ Five layers out to radius of about 

60 mm, i.e. total ~ 109 pixels
♦ Material ~ 0.1% X0 per layer.
♦ Detector covers |cos θ| < 0.96.
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Constraints due to machine and detector

■ Minimum beam pipe radius 14 mm.
■ Pair background at this radius in ~ 4T 

field causes 0.03 (0.05) hits per BC 
and mm2 at √s = 500 (800) GeV.

■ Bunch train structure:

■ For pixels of size 20 x 20 μm2, 
implies readout or storage of signals  
~ 20 times during bunch train to 
obtain occupancy less than 
~ 0.3 (0.9) %. 

■ Must withstand:
♦ Radiation dose due to pair 

background of ~ 20 krad p.a.
♦ Annual dose of neutrons from 

beam and beamstrahlung dumps 
~ 1 x 109 1 MeV equiv. n/cm2.

■ Must cope with operation in 4T field.
■ Beam-related RF pickup and noise 

from other detectors may be an issue.

337 (189) ns

2820 (4500)

0.2 s

0.95 ms



Constraints due to machine and detector

■ ILC may be more hostile 
environment than storage ring.

■ Nanometre beam spots and single 
pass operation mean invasive 
diagnostic tools essential, e.g. BPMs, 
with possible imperfections in 
shielding of cables, optical ports... 

■ Vertex detector is more vulnerable to 
pickup than other detectors due to:
♦ Proximity to beampipe –

Faraday cage ideals tend to be 
compromised.

♦ Signals typically only ~ 1000 e−, 
must be amplified electronically 
and read out.

■ SLD vertex detector observed 
massive pickup and optical 
transmission was disrupted by every 
bunch: tens of μs needed for 
recovery.

■ SLD CCD readout strategy: 
♦ During bunch train, signal charge 

is stored safely in buried channel.
♦ When pickup has died down, 

charge transferred to output node 
and sensed as voltage on gate of 
output transistor.

■ SLD still needed filter which 
suppressed noise by factor ~ 100.



Conceptual vertex detector design

■ Here using CCDs:

■ VXD surrounded by ~ 2 mm thick Be 
support cylinder.

■ Allows Be beam pipe to be of 
thickness of ~ 0.25 mm.

■ Pixel size 20 x 20 μm2, implies about 
109 pixels in total. 

■ Standalone tracking using outer 4 
layers.

■ Hits in first layer improve 
extrapolation of tracks to IP.

■ Readout and drive connections routed 
along BP.

■ Important that access to vertex 
detector possible.



Conceptual detector design

■ Amount of material in active region 
minimized by locating electronics 
only at ends of ladders.

■ Resulting material budget, assuming 
unsupported silicon sensors of 
thickness ~ 50 μm:

Material of:
beam pipe
five CCD layers
cryostat
support shell
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Vertex detector performance – impact parameter

■ Performance of vertex detector 
investigated and optimised using 
Monte Carlo simulations.

■ E.g. study effect on impact parameter 
resolution of variations in beam pipe 
radius, material budget and number 
of layers in vertex detector.

■ Observe moderate effects due to 
increase in material budget, severe 
degradation due to increase in beam 
pipe radius.

■ Impact parameter resolution



Flavour identification performance

■ Simulate flavour ID in
events, here at Z0 pole.

■ Feed information on impact 
parameters and vertices 
identified using Zvtop algorithm 
into neural net. 

■ Modest improvement in beauty 
tagging efficiency/purity over 
that achieved at SLD.

■ Improvement by factor 2 to 3 in 
charm tagging efficiency at high 
purity. 

■ Charm tag with low uds
background interesting e.g. for 
Higgs BR measurements.

■ Efficiency and purity of tagging of 
beauty and charm jets:
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Quark charge identification performance

■ Must assign all charged tracks to 
correct vertex.

■ Multiple scattering critical, lowest 
track momenta ~ 1 GeV.

■ Sum charges associated with b 
vertex:

■ Quark charge identification for 
neutral B requires “dipole” algorithm.



Future physics performance studies

■ Monte Carlo used so far is simplistic, 
must simulate all relevant effects 
from “MIPS to physics”. 

■ Need realistic simulation of processes 
leading to detection of tracks in the 
vertex detector, “MIPS to tracks”.

■ E.g. must include: 
♦ Realistic dE/dx distribution in 

silicon and subsequent motion of 
charge in sensor.

♦ Simulation of cluster finding and 
sparsification algorithms used in 
readout electronics.

♦ Effects of backgrounds.
■ Feedback to sensor/electronics 

design.

■ dE/dx spectrum for 1 GeV pion in 
1 μm of silicon:



Future physics performance studies – tracks to vertex

■ Study factors affecting flavour 
identification and quark charge 
determination, “tracks to vertex”, 
including:
♦ Optimise flavour ID and extend 

quark charge determination to B0.
♦ Examine effects of sensor failure.
♦ Detector alignment procedures 

and effects of misalignments.
♦ Polar angle dependence of 

flavour and charge identification.
■ Provide feedback for mechanical 

design.
■ May lead to design changes, e.g. 

additional layer,  increased barrel 
length.

■ With complete simulation, study 
physics processes for which vertex 
detector is crucial, for example:
♦ Higgs branching fractions, 

requires flavour ID.
♦ Higgs self-coupling, requires 

flavour and charge ID.
♦ Charm and bottom asymmetries, 

requires flavour and charge ID.
♦ Need to be prepared to react to 

discoveries at LHC. 



Sensors for the vertex detector – CCDs

■ Standard CCDs cannot achieve 
necessary readout speed

■ LCFI developed Column Parallel 
CCD with e2v technologies.



Sensors – CPCCD

■ First of these, CPC1, manufactured 
by e2v.

■ Two phase, 400 (V) × 750 (H) pixels 
of size 20 × 20 μm2.

■ Metal strapping of clock gates.
■ Two different gate shapes.
■ Two different implant levels.

■ Wire/bump bond connections to 
readout chip and external electronics.
♦ Direct connections and 2-stage 

source followers:

♦ Direct connections and single 
stage source followers (20 μm 
pitch):



Sensors – CPC1 and CPR1

■ Standalone CPC1 tests:
■ Noise ~ 100 e− (60 e− after filter).
■ Minimum clock potential ~1.9 V.

■ Max clock frequency above 25 MHz 
(design 1 MHz).

■ Limitation caused by asymm. clock 
signals due to single metal design.

■ Marry with CMOS CPCCD readout 
ASIC, CPR1 (RAL):

■ IBM 0.25 μm process.
■ 250 parallel channels, 20μm pitch.
■ Designed for 50 MHz.



Sensors – CPC1 and CPR1 

■ Wire bonded CPC1 – CPR1 
assembly.

■ Total noise ~130 electrons.

■ Bump bonding done at VTT:

■ First time e2v CCDs have been bump 
bonded.



Sensors – CPC1 and CPR1

■ CPR1 bump bonded to CPC1, charge 
channels: 

■ Observe ~ 70 mV signal, expected 
80 mV, good agreement.

■ Voltage channel gain decreases 
towards centre of chip.

■ Traced to timing problems in CPR1.  



o/p spars.       clust.  bin.  5-bit ADC   pre-amp
MPX       find    conv.

■ Problems resolved in CPR2 design 
which also includes cluster finding 
logic and sparsified readout.

■ Devices now delivered and awaiting 
testing at RAL. 

■ Bump bonding problems.

Sensors – CPC1 and CPR1



Sensors – CPCCD 

■ Next generation, CPC2, now being 
manufactured.

■ Compatible with CPR1 and CPR2.
■ Two charge transport sections.
■ Choice of epitaxial layers for varying 

depletion depth. 
■ Three chip sizes, includes:
■ Large scale stitched devices, area 

9.2 x 1.5 cm2, close to ILC size, 
operate at few MHz.

■ Smaller devices for tests to 50 MHz.

Stripline
clock bus

Main clock 
wire bonds

Extra pads for 
clock connection

Main clock 
wire bonds

CPR-1 CPR-2

Temperature 
diode

Charge 
injection

Four 1-stage and 2-
stage SF in adjacent 

columns

Four 2-stage SF in 
adjacent columnsStandard Field-enhanced Standard

Clock monitoring 
and extra pads 

every 5 mm

No 
connections 

this side

Image area



Sensors – CPCCD 

■ High-speed clock propagation, 
“busline free” CCD.

■ Whole image area serves as  
distributed bus.

■ Highest speed potential, 50 MHz 
achievable with suitable driver.

■ Expect robust against pickup as 
signals “in silicon” until very short 
paths through bump bonds to CPR.

Φ1 Φ2

Φ1 Φ2

Level 1 metal

Polyimide 

Level 2 metal

Φ2 Φ1

Φ2 Φ1

To multiple 

wire bonds

To multiple 

wire bonds

1 mm 



Sensors – ISIS

■ In-situ storage image sensor.

■ Signal always buried in silicon until 
bunch train passed.

■ Test device being built by e2v.

■ “Revolver” variant of ISIS reduces 
number of charge transfers needed, 
increases radiation hardness and also 
flexibility of readout.

20 μm

20 μm
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Sensors – ISIS 

■ Standard CMOS process doesn’t 
allow construction of overlapping 
polysilicon gates and has thin SiO2
insulation layers.

■ Leads to problems with charge 
transfer in ISIS?

■ Simulate using ISE-TCAD package.

■ Modify dopant profiles to produce 
deeper buried channel:  



Sensors – ISIS 

■ Efficient charge 
transfer possible.

■ Radiation 
hardness probably 
also enhanced by 
thin SiO2 layer, 
less charge 
trapping occurs.
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Sensors – FAPS

■ Monolithic Active Pixel Sensors 
developed within UK, ongoing 
development for science by MI3

collaboration. 

■ Storage capacitors added to pixels to 
allow use at ILC, Flexible Active 
Pixel Sensors.



Sensors – FAPS

■ Present design “proof of principle”.
■ Pixels 20 x 20 μm2, 3 metal layers, 

10 storage cells.

■ Test of FAPS structure with LED:  



Sensors – FAPS 

■ 106Ru β source tests, signal to noise 
ratio between 14 and 17. 

■ FAPS and MAPS in test beam at 
DESY in February 2005.

■ Data analysis ongoing, hits observed 
in MAPS and FAPS structures.



Sensors – FAPS 

■ MAPS demonstrated to be 
radiation hard.

■ Signal decreases with dose, 
and noise increases slightly, 
but at doses well above those 
expected at the ILC.



Mechanical considerations

■ Thin ladder design.
■ Unsupported CCD option foundered 

due to stresses introduced when 
silicon is processed.

■ “Stretching” maintained longitudinal 
stability, but provided insufficient 
lateral support.

■ Re-visit using thin corrugated 
carbon fibre to provide lateral 
support.

■ Supporting CCD on thin Be substrate 
studied:

■ Problems observed at low T
in FEA calculations.

■ Confirmed by measurements:

Beryllium substrate (250 μm)

Adhesive

0.2mm



Mechanical considerations

■ Importance of good matching 
coefficients of thermal expansion of 
silicon and substrate demonstrated in 
laboratory measurements: 

■ Now exploring use of silicon and
reticulated vitreous carbon foam 
sandwich...

■ ...and silicon carbide foam as support.

■ These are extremely rigid and have 
very low mass. 
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