Studies of Potential in CCDs – Introduction

 Start from Maxwell's equation which relates electric field to charge density:

$$\nabla \cdot \vec{\mathrm{E}} = \frac{\rho}{\epsilon \varepsilon_0}.$$

- The field is given by the potential: $\vec{E} = -\nabla V.$
- Together, these give Poisson's equation which we must solve to determine the potential in a (fully depleted) CCD:

$$\nabla^2 \mathbf{V} = -\frac{\rho}{\epsilon \epsilon_0}.$$

- Using the Taylor expansion: $V(x_{i} + h) \approx V_{i} + \frac{\partial V_{i}}{\partial x} + \frac{h^{2}}{2} \frac{\partial^{2} V_{i}}{\partial x^{2}},$ $V(x_{i} - h) \approx V_{i} - \frac{\partial V_{i}}{\partial x} + \frac{h^{2}}{2} \frac{\partial^{2} V_{i}}{\partial x^{2}}.$
- Adding these gives: $V_{i+1} + V_{i-i} \approx 2V_i + h^2 \frac{\partial^2 V_0}{\partial x^2}.$
- Hence $\frac{\partial^2 V_i}{\partial x^2} = \frac{1}{h^2} (V_{i-1} + V_{i+1} - 2V_i)$
- Extending to 2D $\nabla^{2} V_{i,j} = \frac{1}{h_{x}^{2}} \left(V_{i-1,j} + V_{i+1,j} - 2V_{i,j} \right) + \frac{1}{h_{y}^{2}} \left(V_{i,j-1} + V_{i,j+1} - 2V_{i,j} \right).$

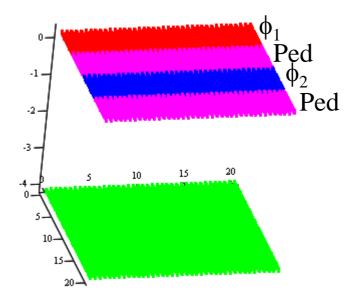
Introduction

Substitute in Poisson's equation:

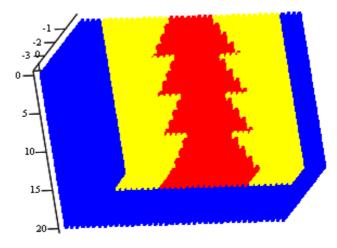
$$\frac{1}{{h_x}^2} \left(V_{i-1,j} + V_{i+1,j} - 2V_{i,j} \right) \\ + \frac{1}{{h_y}^2} \left(V_{i,j-1} + V_{i,j+1} - 2V_{i,j} \right) = \frac{-\rho_{i,j}}{\varepsilon_{i,j} \varepsilon_0}$$

Rewrite:

$$V_{i,j}' = \frac{h_x^2 h_y^2}{2(h_x^2 + h_y^2)} \times \left(\frac{V_{i-1,j} + V_{i+1,j}}{h_x^2} + \frac{V_{i,j-1} + V_{i,j+1}}{h_y^2} + \frac{\rho_{i,j}}{\varepsilon_{i,j}}\right)$$

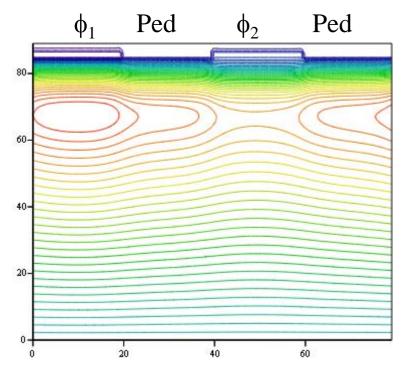

- Choosing reasonable initial guess at potential speeds up solution.
- Need only calculate potential in one pixel if use periodic boundary conditions, e.g.

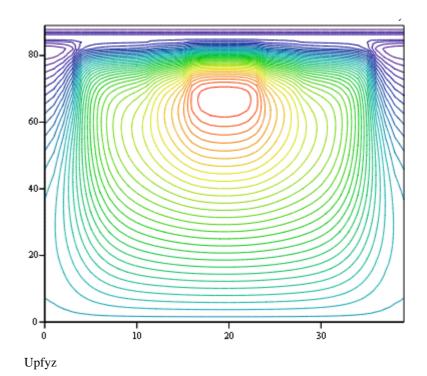
$$V_{0,j}' = \frac{h_x^2 h_y^2}{2(h_x^2 + h_y^2)} \times \left(\frac{V_{N_x,j} + V_{1,j}}{h_x^2} + \frac{V_{0,j-1} + V_{0,j+1}}{h_y^2} + \frac{\rho_{i,j}}{\epsilon_{i,j}\epsilon_0}\right)$$


- Use this to solve iteratively for V.
- "Tortoise convergence" i.e. sure, but slow!

Potential in Christmas Tree CCD

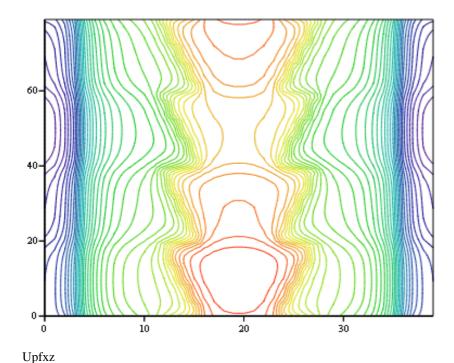
Gate structure:

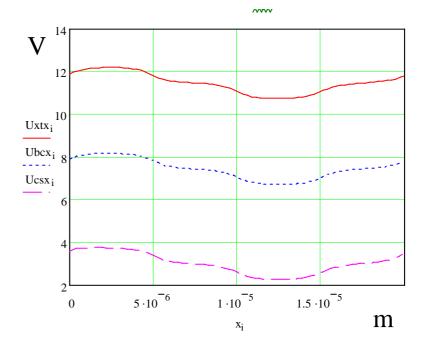

Dopant concentrations.


- Red, $3.0 \times 10^{22} \text{ m}^{-3}$.
- Yellow, 1.5 x 10²² m⁻³.
- Blue, 1 x 10¹⁹ m⁻³.

CTCCD potential

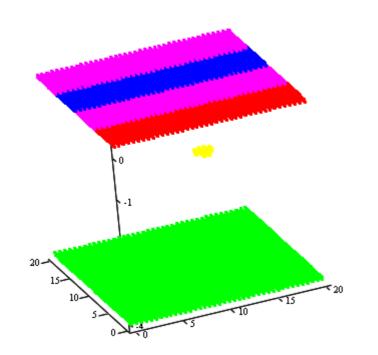
- Calculate potential with $V_1 = 2.0 V$, $V_2 = 0.0 V$, $V_{Ped} = (V_1 + V_2)/2$.
- Vertical section normal to gates through Christmas tree structure.


• Vertical section along gate 1.

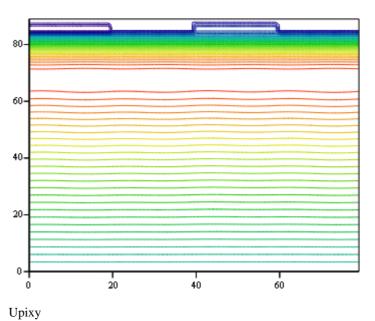

(Units on axes of this and previous plot are number of grid points!)

CTCCD potential

Horizontal section at depth of buried channel.



Potential along Christmas tree, along buried channel next to Christmas tree and along channel stop (from top to bottom).


CTCCD potential

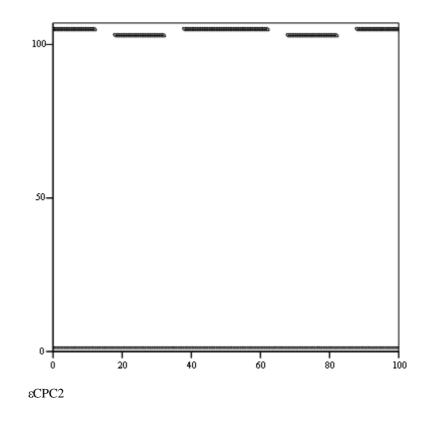
Classically, the electrons are trapped where $q_e V > k_B T$, i.e. $V > k_B T/q_e$:

(Here looking upwards through pixel at gates!)

- Scan of behaviour of potential close to point at which electrons shift from one gate to next may help to reveal any CTI problems.
- A start: vertical section through gates for $V_1 = 1.0 \text{ V}$, $V_2 = 1.0 \text{ V}$:

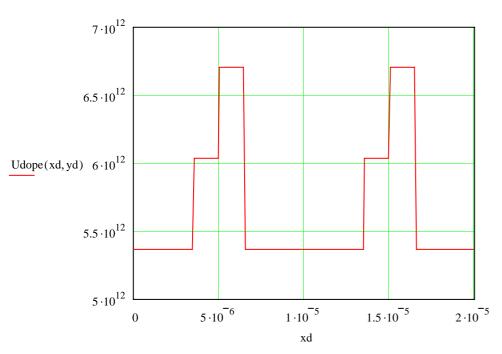
Capacitance calculations Pedestal CCDs

- Extension of above should allow determinations of effective gate capacitance.
- Must determine charge that drive needs to supply in order to change gate voltage.

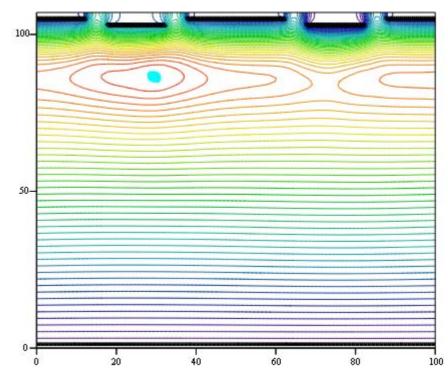

$$\oint_{\text{gate}} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{gate}}}{\epsilon \epsilon_0}$$

 ...for two different gate voltages, then calculate capacitance:

$$\mathbf{C} = \frac{\Delta \mathbf{Q}}{\Delta \mathbf{V}}.$$


• Have made several mistakes in trying to do this: no sensible numbers yet...

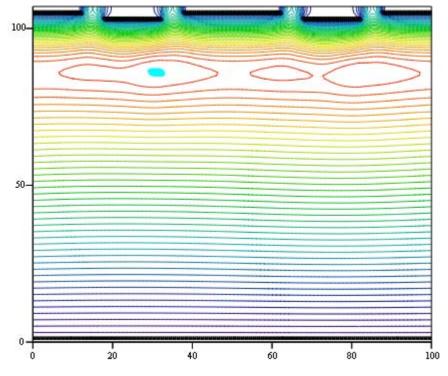
 Similar calculations done in 2D for "pedestal" CCD:


PCCD potential

 Dopant concentration under gates "stepped":

...but values chosen (10% variation of concentration from step to step) unrealistic.

- Nonetheless, this structure certainly looks promising.
- $V_1 = 2.0 \text{ V}, V_2 = 0.0 \text{ V}$:



PCCD potential

Summary

•
$$V_1 = 1.2 \text{ V}, V_2 = 0.8 \text{ V}.$$

Una, ECPC2, InE

This case illustrates possible CTI problems due to inter-gate gaps.

- Tools to study potential in CCDs being developed and (slowly) understood.
- Extension to capacitance calculations in progress.
- Investigation of novel CCD structures started.
- These look promising and are candidates for test structures that could be manufactures by e2v.
- Study these (and other ideas) further to try and maximise likelihood that test structures function well.