Report from Large Detector workshop in Paris.

- Goals of workshop:
 - Set up detector concept study team, choose leadership.
 - Review detector technologies, R&D needs...
- Detector concept teams should:
 - Optimise performance against physics benchmarks.
 - Set requirements on sub-system R&D.
 - Interface with machine.
 - Produce integrated design.
 - Bring in new groups.

- Prepare for LCWS, Snowmass, detector outline including costing, CDR...
- Prepare ground for competitive proposals.
- Important to involve all three regions.
- "Large Detector" is essentially synthesis of TESLA TDR detector and American TPC based detector with 4T magnetic field.
- Other alternatives are:
 - "Small Detector" with silicon tracker (SiD) and 5T field.
 - "Huge Detector" with large TPC and 2..3T field.

Report from Paris

- Progress towards goals:
 - Names will be sought for "Large Detector concept" leadership, two from each of Europe, America, Asia, by R-D Heuer, D Miller, Brau, M Oreglia, H Yamamoto, S Komamiya.
 - Reviews of detector technologies and state of R&D presented.
 - Discussions on requirements in detectors and possible physics benchmark reactions held.
- MDI workshop report (Steve W and Dave C were there!)

- Detector technologies:
- Vertex detector:
 - CCD, DEPFET, MAPS, FPCCD, FAPS, ISIS options under study.
 - Groups aiming to demonstrate function of full-scale ladders – timescale not yet clear.
 - Issues are readout speed, radiation hardness, minimising material budget, resistance to RF pickup...
 - Compare by designing realistic
 VXD based on each technology and performing full simulation of performance.

Report from Paris

TPC:

- How to readout? GEM, Micromegas...
- How to keep end walls $<<0.3X_0$?
- Aim for 100 μ m res. (x, y).
- Res. in $z \sim 3mm$ for 1m drift.
- Optimisation of TPC length?
- Forward tracker etc.
 - Intermediate tracker 5 layers.
 - Forward tracker 4 layers.
 - Outer tracker 3 layers.
 - Optimise with calo. to identify conversions.

Calorimeter:

- Si/W for EM, shashlik or hybrid for hadronic section, but silicon costs decreasing. Complete calo. Si readout implies cost ~ \$50M?
- Hermeticity crucial.
- Optimise (with TPC) for jet energy resolution.
- Finer granularity in first layers?
- Had calo. analogue or digital?
- Coil in Had calo?
- Scintillator and gas based digital calo.s behave differently.
- Different simulation programs give different results.

Report from Paris

- Reference quantities:
 - δp/p.
 - σ_{IP} .
 - $\delta E_{jet}/E_{jet}$.
 - e ID, μ ID, h ID.
 - low θ veto.
 - $\bullet \quad E_{miss}.$
 - jet charge.
- Reference reactions ("VXD" only):
 - Higgs branching ratios
 - ee \rightarrow HHZ.
 - A_{FB} in ee $\rightarrow b\overline{b}$.

Some comments:

- People want to see influence on physics measurement of increase of beam pipe radius.
- Must continue to demonstrate importance of minimising material budget.
- Need to start thinking seriously about Lorentz angle effects in CPCCD.