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« At100 % eff|C|ency within the UK ~ 1.400 km?
« At 100% in Sahara ~ 467 km?



CSP collector areas
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Problems:

« Efficient energy transport potentially over large distances
« Economy based on energy cycle of renewable carriers




Potential sources of renewable energy

Biomass (0-1) Geothermal (0-1) Solar (10-250)
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Solar energy by fare the most abundant energy source

Source: German Space Agency DLR




European Energy Network

DESERTEC-EUMENA




Methods of energy conversion

Concentrating solar power (known as CSP):

Power generation of CSP: about 100 MW/km?2



Solid state solar cells

Direct conversion of sunlight into electric power via semiconductor thin films
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Image: Photovoltaic power station with a capacity of 40MW in eastern Germany



Photovoltaics: the principle (pn junction)
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The pn-junction provides an inbuilt potential of about 0.6 — 0.7V, the
excitation of electrons into the conduction band provides the current
Efficiency of semiconductor (Si, CdTe, GaAs) cells: ~ 20%



Industrial applications

Dye-sensitized TiO, cells

Polycrystalline semiconductor cells

Nature 414, 338 (2001)



Problems of solar cells

* Semiconductor solar cells:
* Energy balance of production
e Cost of production material
* Frequency dependence of light adsorption

* Dye sensitized cells
* Lifetime of dye compounds

 Efficiency of cells
* Frequency dependence of light adsorption

Bottom line: photovoltaics will not be the
exclusive solution to our energy problems



Photosynthesis

Oldest and most ubiquitous method of energy conversion:

Efficiency higher than 50%




Photosynthesis: the principle

Photosystem |

NADP + H:
ADP3 4
F'ii +H
NADPH <=
ATP*
p."':ll:l
chlorophyll
/
Light-harvesting FoFq
complex complex

Light Electron and H” flow  Cytochrome bf
g Pazn inthe Q oyele H* complex
chlorophyll  Photosystem Il Lo -

Di'““ll"“'”ﬂ Plastocyanin
complex [zoluble alectran carrier)

Main ingredients: electron separation and transport
oxidation/reduction of organic compounds from wikipedia
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Accelerator Sources of Terahertz Radiation
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Power of laboratory instruments

Photons / pulse / 0.1% bw

At1THz ~ 100 p watts

Short electron bunches
When bunch length < wavelength

Daresbury ERLP/ALICE
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Energy Recovery Linear Accelerator / ALICE
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NW Science Fund: Liverpool

The most intense broad band source of THz in Europe and only the 3rd in the world.
5 years under construction now commissioning



SWM2

Lower level hutch for THz
energy experiments

Shield Wall Labyrinth
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Beamline funded and
built by physics dept.



Artificial Photosynthesis

Key elements:

e A photo receptor, often a metal complex
. Function: adsorb photons and release excited electrons

e Atransducer, often organic ligands

. Function: transport electrons from the photo receptor to the catalytic
reactor

 Acatalytic reactor, also often a metal complex

So why hasn’t this been done already?

Short answer: it turns out to be rather difficult.
But the good news is: we know that it works.
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Recent advances

TEM image of the clusters Oxygen formation

Scheme: nanostructured materials
(here, nanotubes) are used to convert
CO, in solution into methanol

First steps: photo-oxidation of water in
Cobalt oxide nanoclusters

F. Jiao and H. Frei, Angewandte Chemie Intl. Ed. 48, 1841 (2009)



Solar spectrum and material properties
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Needed: a semiconductor with a bandgap of less than
1.8 eV and fast carrier transport for charge separation:
metal oxides and/or metal organic compounds



Metal oxide nanotubes: preliminary results
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Figure 1. Optimized geometrical structure of (Al,SiO7Hy)24 (left) EfeV)
and (AI:GCO7‘H4)36 (nght') bf‘sed nanotubes. Thej smgle-.wall Figure 4. Total density of states (DOS) for defect-free Al-Si and
structural motif (bottom) is displayed together with the zig-zag Al-Ge, their 2D analogues, and in the presence of one OH,,. both on
periodic unit of size ¢, dyi—a1} along the nanotube axis and the outer (OUT) and the inner (IN) surface of the tubes. Calculated

Fermi energies are displayed as a dotted line with the same colour
labelling as for the DOS. 2D and band gap defect states (filled) have
been increased by a factor of 10 for clarity.

circumference. Electronic version: O, red; H, grey: Al. green: Si,
yellow: Ge. cyan.

JPCM 21, 195301 (2009)



Charge polarization and membrane

Electrostatic potential and

Charge separation: green valence band

Charge density: radial dipole field

red conduction band



Metallic adsorption and reaction centres

Al-Si: Pt-Ru (90 deg)
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Bandgap for Ru -> Pt less than 2 eV

Fundamentally new material for photosynthesis applications



