The Energy Problem: Energy Research at Liverpool

- Introduction.
- How much energy do we and will we need in the UK?
- How can we generate energy without the CO_2 ?
 - "Renewable" resources.
 - Non-renewable energy.
- Summary.
- Liverpool Energy Day.

How much energy do we need?

And how do we generate it?

- Total current UK electrical power consumption about 40 GW.
- UK population about 60×10^6 .
- Power use is about 670 W per person...
- ...or about 58 MJ per person per day.
- Relate to "everyday" units:
 - 1 kWh = 3.6 MJ, costs about 10p.
 - 1 kWh/d = 40 W.
 - Power per person of
 670 W = 17 kWh/d.

Current energy supply:

Why do we need to do something new?

Projection of electricity capacity using current resources:

- Large shortfall!
- There is still lots of coal, so why not burn more of it?
- Imja glacier, 1950s...

...and 2007; retreating 74 m per year.

Why do we need to do something new?

How much energy will we need?

How can we get it without the CO_2 ?

- In the UK, we now use roughly:
 - 1.6 kW per person on transport.
 - 1.6 kW per person on heating.
 - 0.7 kW per person "electricity" –
 i.e. computers, fridges, TVs...
- Assume in future use electricity for most transport, more efficient than current systems, so require 0.8 kW/p...
- ...and that we insulate buildings better, use heat pumps etc. so heating requirements 0.8 kW/p.
- Total electricity demand then about 140 GW.
- (C.f. current figure of 40 GW.)

- Renewable^{*} energy resources:
 - Solar.
 - Biomass.
 - Wind.
 - Waves.
 - Tides.
 - Hydroelectric.
- Non-renewable energy:
 - Fusion.
 - "Clean" coal.
 - Fission.
- * Naturally replenished in a relatively short period of time.

Solar power and biomass

- Solar constant 1.4 kW/m².
- At ground level ~ 1 kW/m^2 .
- Correct for latitude, peak ~ 600
 W/m²...to average ~ 200 W/m²...
- ...and for UK weather ~ 100 W/m^2 .

- Supplying 140 GW with solar cells of efficiency ~10% requires area of 14×10^9 m².
- This is 6% of land area of UK...
- ...and more than 100 times the photovoltaic generating capacity of the entire world.
- Feasible for ~ 10% of UK needs?
- Interesting globally: small proportion of world's deserts could supply world's energy needs.
- Efficiency of conversion of solar energy to biomass about 1%...
- ...and then still have to convert to electricity.

Wind

- Average UK wind speed ~ 6 ms⁻².
- ¹/₂ mv², efficiency, max. packing, give wind power density of about 2 W/m².
- Need 30% of UK (70 × 10⁹ m²,
 i.e. Scotland) to provide 140 GW.
- Off shore, wind speed higher, power density ~ 3 W/m².
- Need turbines on ~ $45 \times 10^9 \,\mathrm{m}^2$.
- Shallow (10...25 m depth) offshore sites available about 20 000 km²...
- ...but many competing uses and technical problems.
- Provide perhaps 10% of UK's future electricity?

Waves

Tides

- Energy in waves hitting UK ~ 40 GW.
- Difficult to use efficiently, many competing interests.
- Perhaps provide about 5% of UK's future electrical energy?

- Lots of energy in principle (~250 GW).
- How can it be used efficiently?
- Competing interests?
- Perhaps 5% of UK's future electricity?

Hydroelectric

Renewable balance

- UK power density ~ 0.1 W/m², so cannot make large contribution.
- Largest hydro-electric power station is Three Gorges Damn on Yangtse, projected output 20 GW.
- Displaced ~ 1.2×10^6 people, caused, and will cause, ecological problems.

Energy source	Prop. of electricity
Solar	10%
Wind	10%
Wave	5%
Tidal	5%
Other	5%
Total	35%

- We are still missing the lion's share...
- ...and the UK is particularly well off for wind, wave and tidal power!
- What about "clean" coal, nuclear fission and nuclear fusion?

"Clean" coal

- Burn coal, capture ~ 90% of CO², permanently store in e.g. depleted oil reservoirs.
- Efficiency of power production decreases from ~ 40% to ~ 30%.

- UK coal reserves ~ 250 years at current rate of consumption.
- Globally very important (China building one new power station every week).
- Use technology for cement factories...

Nuclear fission and fusion

- Fission currently provides ~ 20% of UK electrical energy.
- But many (perceived) problems:
- Safety:
 - Chernobyl.
 - Three Mile Island.
- Waste:
 - Actinides with half lives of many thousands of years.
- Proliferation.
- Uranium reserves uncertain. (Extract from oceans? Use fast breeder reactors?).
- New approaches needed: ADSR and thorium?

- Fusion under investigation by ITER.
- Construction until 2017, first deuterium-tritium plasma 2026?

Summary

- Producing enough electricity without causing climate change is a challenge.
- Renewables can provide $\sim \frac{1}{3}$ of UK needs (globally, solar much more).
- Essential that all feasible technologies are investigated (solar, wind, wave, tide, fission, fusion, clean coal) – some may not work!

Liverpool Energy Day

- What are we doing already?
- What do we want to do in the future?
- How can we get funding for energy research?
- Should we provide a taught postgraduate programme on energy and the environment?
- How do we develop and maintain contacts and collaborations:
 - Within the University?
 - With other researchers and institutes?
- Other issues?

