All-aluminum mirrors from the INFN-Padova group

Michele Doro on behalf INFN-Padova

Overview

- The Reflector
- MAGIC I mirrors
- MAGIC II mirrors
- Prospects for CTA

The Reflector Parabola

- The MAGIC reflector has a parabolic profile f=17m
 - To maintain temporal information
 - f/d ~1 (>1 decreases aberrations)
 - Larger ever built (by now!)
- Tesselated surface of mirrors tiles
 - 236 m2
 - 964 mirrors 0.5 x 0.5 m2
 - Panels of 4 and 3 mirrors grouped
 - Inter-alignment of mirrors into panels
 - Each panel is controlled by AMC
- Chess-boarding was necessary

MAGIC I mirrors

- Full aluminum sandwich
 - Upper Al plate
 - PCB heater
 - Honeycomb 30mm
 - Al-box
- Characteristics
 - Spot PSF 10mm @ 17m
 - 3 kg per mirror + 20 panel = ~32 kg per m²
- Main problem: insulation
 - Foam is entering and condensating
 - Main holes on skin perimeter

Mirrors - production

- Requirements
 - Good optical quality
 - Light-weight
 - Resistance to adverse atmospheric conditions
 - Spherical shape and focal according to final position in the reflector
- All-aluminium mirrors sandwich structure
 - AI Skin [AIMgSi0.5, width= 3mm]
 - Al Hexcell [60mm width, microholes]
 - Al box
- Assembling technique
 - Structural aeronautic glue 3M[™] AF163-2K
 - Use of pre-shaped al-mould
 - Curing in autoclave
 - 4 bar pressure
 - 120° temperature
- Diamond milling of the surface
 - Fly-cutter technique
 - Roughness of 3-5nm
- Quartz layer (Si-O-C) evaporation of 100nm

8-12 Oct 2007

M.Doro - Technical Solutions for the MAGIC Telescope - ICATPP 2007

MAGIC II mirrors

- Area increased to 1m²
 - Easier production
 - No need for inter-alignment into panels
 - Less weight (32 -> 18kg)
 - Less expensive?
- Design:

- Basically an extension of MIupgraded mirrors
- Increased width (60mm) resulted in an increased rigidity and better performance
- Hole in the centre for laser housing

Mirrors - properties

- The different radius is obtained with different setup of the flycutter diamond-milling machine
- Tests & Measurements:
 - Radius of curvature
 - Point Spread Function
 - Reflectivity vs wavelength
 - Water tightness
 - Mechanical stresses
 - Focal vs temperature

8-12 Oct 2007

MII mirror properties

- Extremely good PSF=5mm @ 17m
 - 1/5 of the pixel
 - Best mirrors ever built
- Good insulation
 - Reflectivity:
 - Average focussed reflectivity ~85% depending on position
 - Measuring diffuse light is difficult
 - Need of measuring total reflectivity

Prospects for CTA

MAGIC

- Improve design
 - Better water tightness
 - Easier mounting system
 - Reduce costs
 - No major designing needed
- Possibilities
 - Aspherical mirrors
 - Large mirrors easy to go
- Advantages
 - High optical quality
 - Extremely high environmental ruggedness (basically not reflectivity degradation in 5 years)
- Drawbacks
 - Costs (3keuro/m^2)
 - Slow production (1-2/day)

- Activities so far
 - Contact with companies
 - (Lack of money so far to start prototyping)

Thanks for the attention and sorry for not being there!

M.Doro - Technical Solutions for the MAGIC Telescope - ICATPP 2007