

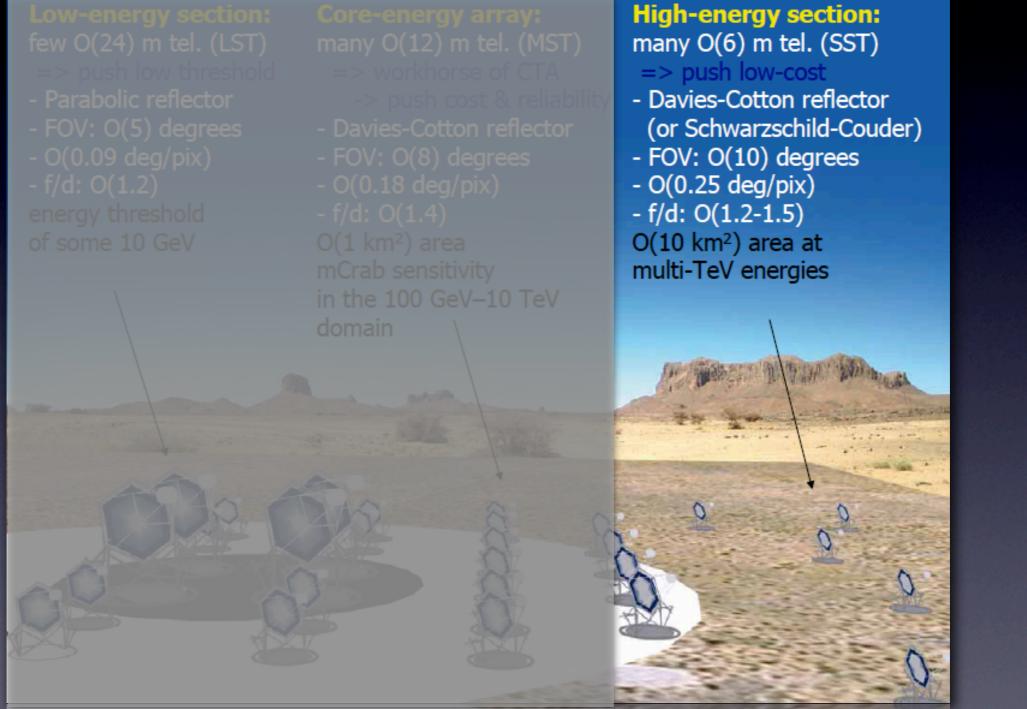
SST physics (and system) requirements

Stefano Vercellone INAF/IASF-Pa on behalf of INAF-CTAST

Do we need them?

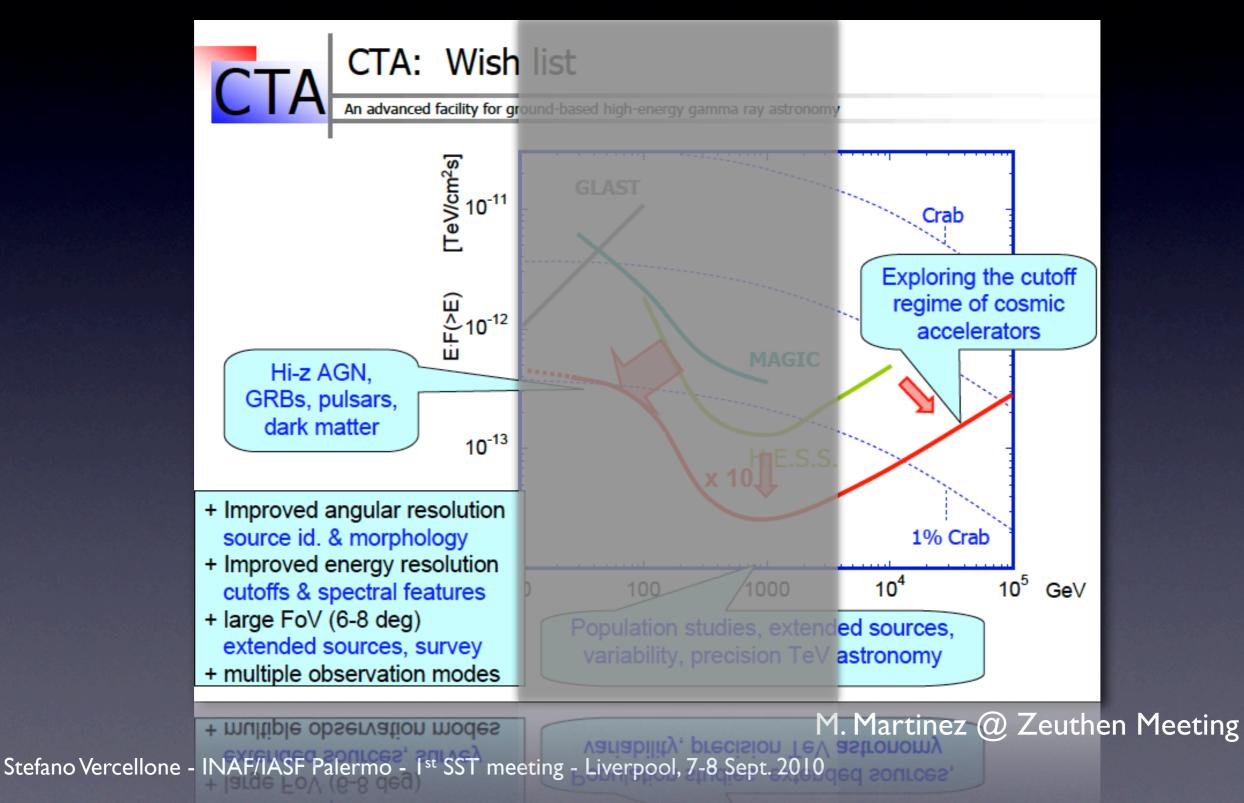
- YES !They allow us to establish a common framework among different groups.
- Are they frozen yet? Maybe not.
- This Ist SST meeting could be the right place to start working on them.

	Contents							
1	CTA, a New Science Infrastructure							
2	The Science Case for CTA							
	2.1 Science Motivation in a Nutshell							
	2.1.1 Why Observing in Gamma-Rays?							
	2.1.2 A First Glimpse of the Astrophysical Sources of Gamma-Rays							
	2.1.3 Cherenkov Telescopes							
	2.2 The CTA Science Drivers							
	2.3 Details of the CTA Science Case							
	2.3.1 Cosmic Ray Origin and Acceleration							
	2.3.2 Pulsar Wind Nebulae							
	2.3.3 The Galactic Centre Region							
	,, _,, _							
	2.3.5 Stellar Clusters, Star Formation, and Starburst Galaxies 2.3.6 Pulsar Physics							
	2.3.7 Active Galaxies, Cosmic Radiation Fields and Cosmology							
	2.3.8 Gamma-Ray Bursts							
	2.3.9 Galaxy Clusters							
	2.3.10 Dark Matter and Fundamental Physics							
	2.3.11 Imaging Stars and Stellar Surfaces							
	2.3.12 Measurements of Charged Cosmic Rays							
	2.4 The CTA Legacy							
3	Advancing VHE Gamma-Ray Astronomy with CTA							
4	Performance of Cherenkov Telescope Arrays							
5	The Cherenkov Telescope Array							
	5.1 Array Layout							
	5.2 Telescope Layout							
	5.2.1 Field of View							
	5.2.2 Pixel Size							
	5.2.2 Pixel Size 5.2.3 Signal Recording							
	5.2.2 Pixel Size 5.2.3 Signal Recording 5.2.4 Trigger							
	5.2.2 Pixel Size 5.2.3 Signal Recording							
6	5.2.2 Pixel Size							
6	5.2.2 Pixel Size							
6	5.2.2 Pixel Size							
6	5.2.2 Pixel Size							
6	5.2.2 Pixel Size 5.2.3 Signal Recording 5.2.4 Trigger 5.3 CTA Performance Summary 5.3 CTA Realizing CTA 6.1 CTA and the European Strategy in Astrophysics and Astroparticle Physics 6.2 CTA in the World-Wide Context 6.3 Operation of CTA as an Open Observatory 6.3.1 Observatory Logistics							
6	5.2.2 Pixel Size							


Top-level Requirements

- Define the Scientific Requirements for SST
- Cost vs. Performance trade-off for the single telescope and for entire array (e.g., SM vs DM, see J. Hinton & T. Bretz talks)
- Define the System Requirements (SR) for all the subpackages (SR-STR, SR-MIR, SR-CAM)
- Production of both Scientific and System Requirements
 Documents
- Current Term of Reference: Design Concepts for the Cherenkov Telescope Array [ArXiv:1008.3703]

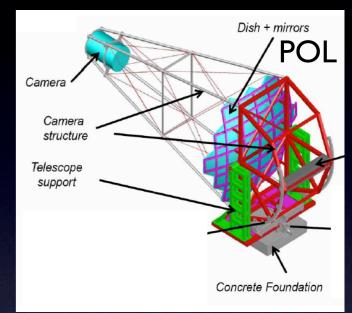
CTA-SST: the array



M. Martinez @ Zeuthen Meeting

CTA-SST: the science

5



The Current Status

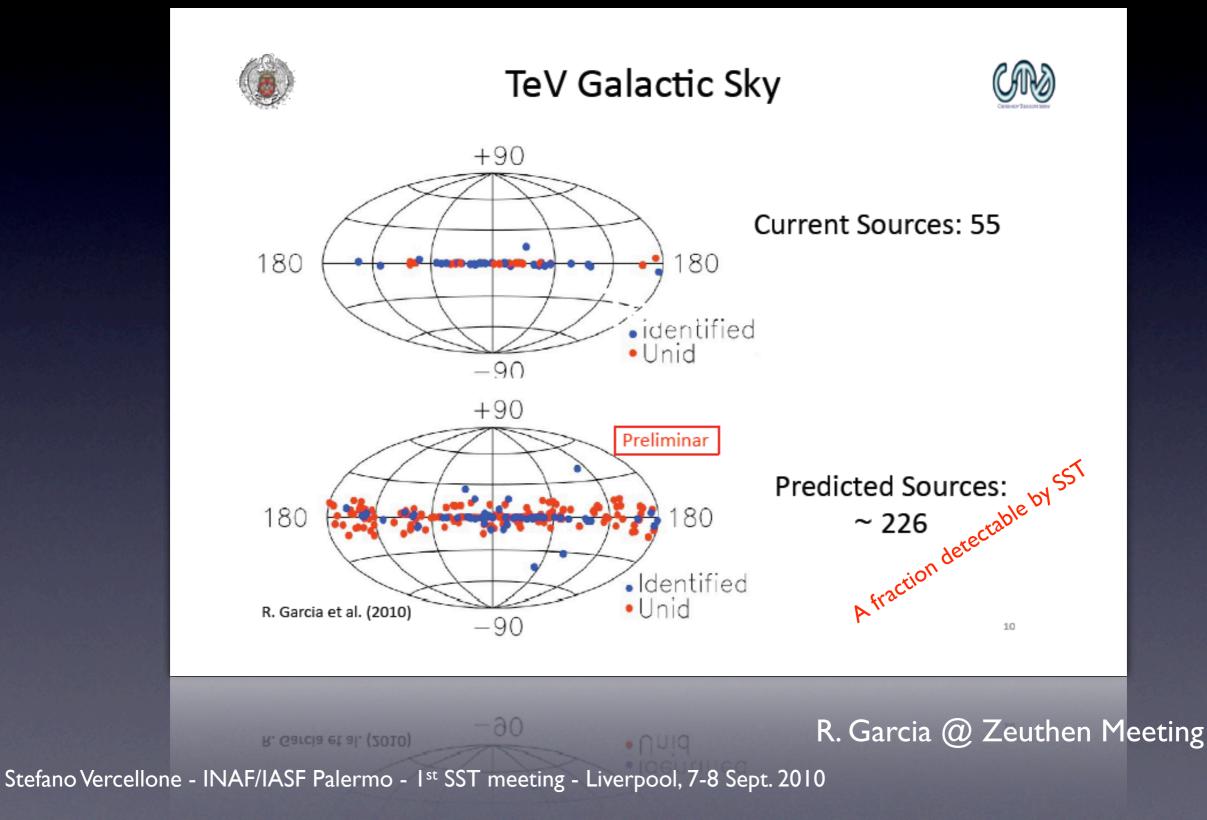
- \checkmark 4 or 7 m \varnothing telescopes
- single-mirror (SM)
- dual-mirror (DM)
- 8° 10° FoV Diameter
- 0.2° 0.3° pixel
- Camera cost is critical

Concrete Foundation

Stefano Vercellone - INAF/IASF Palermo - 1st SST meeting - Liverpool, 7-8 Sept. 2010

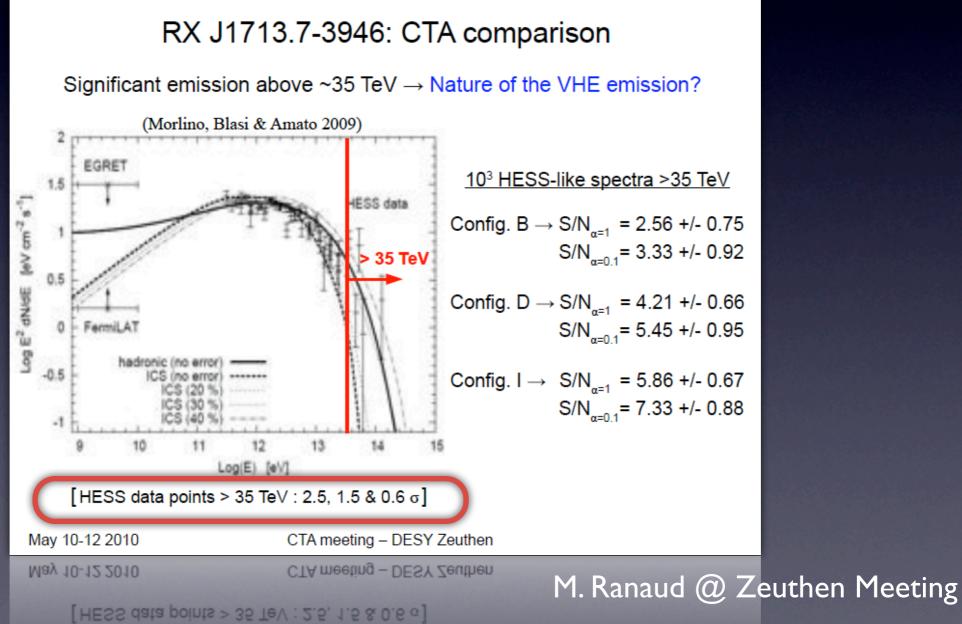
M. Panter @ Zeuthen Meeting 6

SST physics drives the SST system requirements

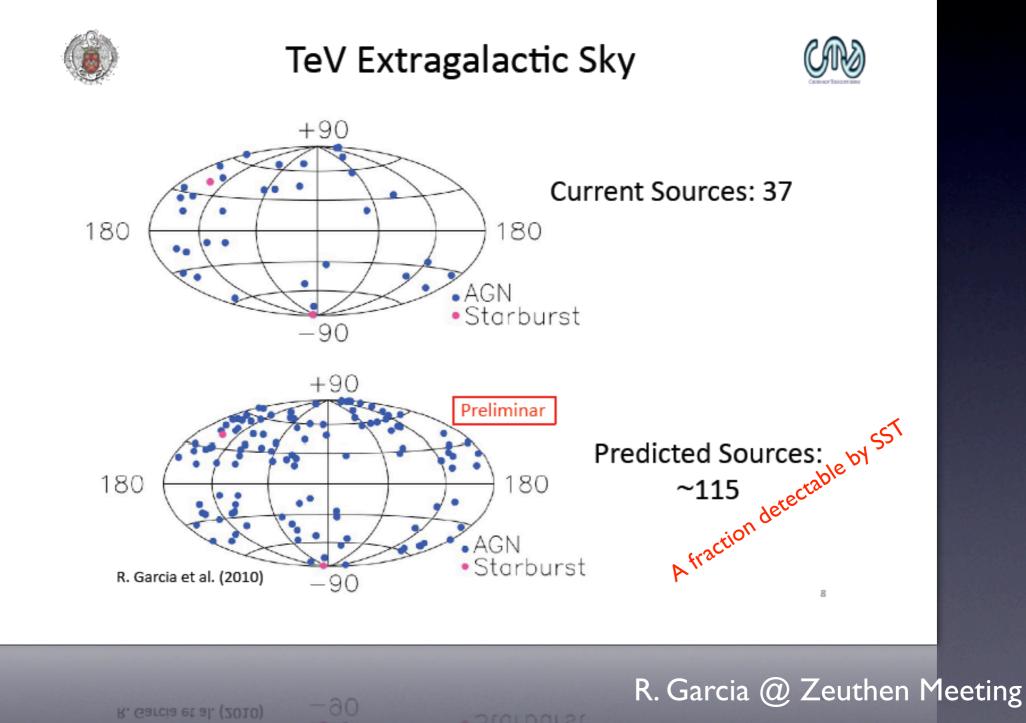

Astrophysics with SST

- For the first time, the energy regime above a few TeV will be investigated at a flux level of a few percent of a Crab.
- This will be crucial for both Galactic (e.g., PWN, SNR) and extragalactic (e.g., blazars, radio-galaxies) sources.
- Moreover, the chance to operate the SST array as a combination of sub-arrays will allow a survey of the sky at extreme energies.

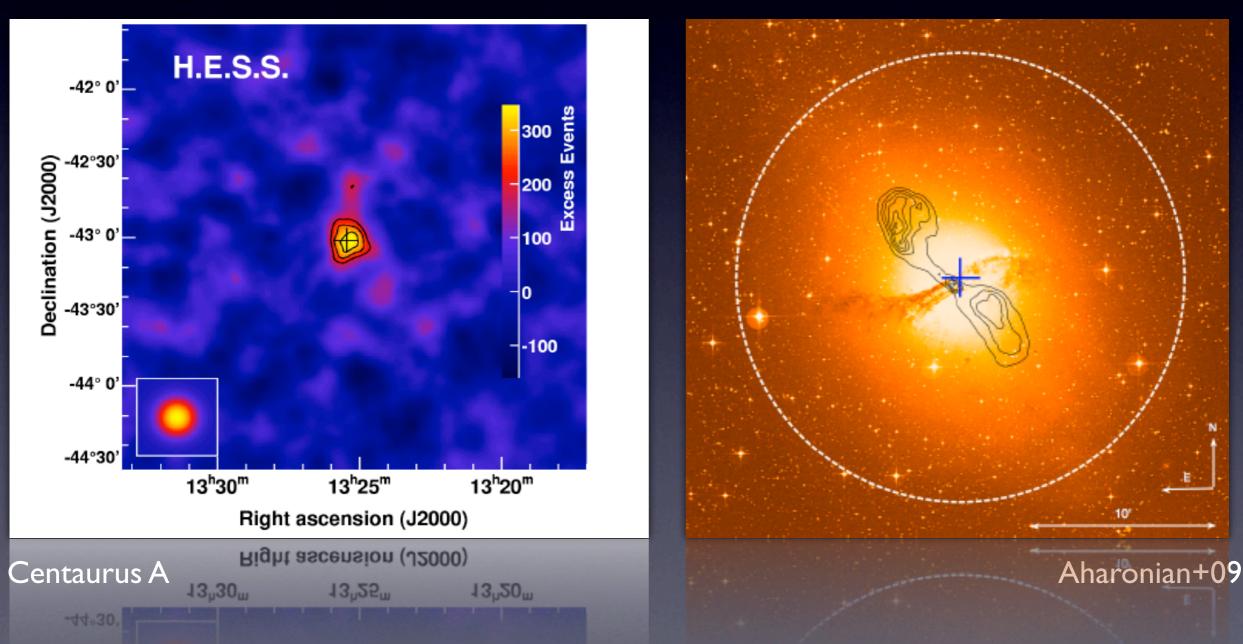
Galactic sources



Galactic sources


Good energy resolution will allow detailed spectral studies of similar SNRs.

Extragalactic sources



Extragalactic sources

Good angular resolution will allow to study the VHE emission in different regions of Cen A

Galactic Requirements

- Good sensitivity will allow:
 - Detection of SNRs whose spectrum extend up to hundreds of TeV (N^{SNR}[exp] ~ 10) → evidence of CR acceleration at VHE
- Good energy resolution will allow:
 - Solution Field Detailed measure of the VHE absorption in the Interstellar Radiation Field (20 - 300 µm) → possible detection of an absorption feature @ 50 TeV as a spectral cut-off
- Good angular resolution will allow:
 - Detailed study of spectra in different region of PWN -> see upcoming slides...

Extragalactic Requirements

- Good sensitivity will allow:
- Wide field of view will allow:
 - detection of weak nearby objects at E > a few TeV -> moderately deep survey at VHE
- Good angular resolution will allow:
 - investigation of possible VHE emission in different regions in Radio Galaxies (Cen A)

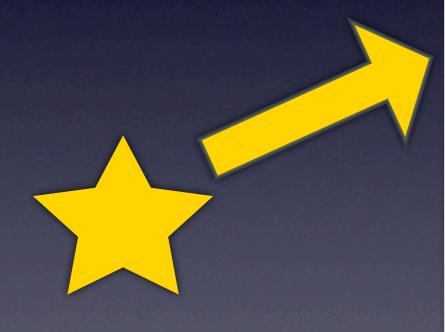
Fundamental Physics

- "In-situ" study of cosmic ray acceleration
 - Detailed studies of SNR at energies of about 100 TeV, in combination with a good angular resolution (< I arcmin) and a wide FoV.
- Detection of Direct Čherenkov light:
 - Measurements of the spectra of CR electrons and nuclei. Needs excellent angular resolution, wide FoV and accurate timing.
- Quantum Gravity effects:
 - Excellent sensitivity above I TeV is required to investigate QG effects beyond the current limits of the Fermi-LAT observatory

Several system requirements were already addressed (see ArXiv:1008.3703)

Many of them will be discussed during this meeting.

Example: SST-STR


- Mounting Type: Alt-Az,
 - Circular rail (H.E.S.S, MAGIC)
 - ^I Central positioner (VERITAS) → good for SST because of its low weight.
- Tracking precision: 6 arcmin
- Pointing precision: 10 arcsec
- Max operational wind: 50 km/h
- Max. survivable wind: 180 km/h

Example: SST-MIR

- Mirror facet: 700 mm semi-diagonal
- Optical PSF: < 1 mrad (80% containment radius)</p>
- Alignment of mirror facets: < 0.1 mrad</p>
- Time dispersion: < 3 ns</p>

M. Mariotti @ Zeuthen Meeting

Table of specs (temp!)

		SST	-SC	SST-DC	MST	LST			
		Prime Second							
M01	Shape	?	?	hex.	hex.	hex.			
M02	Size	?	?	1.2m FTF?	1.2m FTF	1.5m FTF?			
	Area	?	?	1.27 m ² ?	1.27 m^2	$1.9 \ m^2$?			
M03	Surface shape	Asph.	Asph.	Sph.	Sph.	Sph.(+asph.)			
M04	Focal length	?	?	?	$\sim 28-35~{ m m}$				
M05	Weight	30 kg or 23 kg m ⁻²							
M06	Thickness	< 8 cm							
M07	Rear surface	Flat?							
M08	Stiffness	Enough to maintain optical specs at focal plane							
M09	Temp. survival	$-15, +60^{\circ}$ C survival, $-10, +30^{\circ}$ C operational							
O01	Ang. resolution	d80 < 1/3 pixel size							
O02	Local surface refl.	> 80% between $300 - 600$ nm							
O03	Total reflectance	> 80% between 300 – 600 nm							
004	Surf. roughness	Shall we put a parameter?							
T0 1	Mounting Points	? ? 3 points at about 2/3 of the radial distance							
T02	Mirror Alignment	Fix/IAS	Fix	IAS/AMC	IAS/AMC	AMC			
T03	AMC motors weigth								
T04	Distance tel-rear mir								

M = mechanical, O = optical, T = telescope

0

Example: SST-MIR

A DATE OF THE ASTRONO		Difficulties in making mirrors						
SAGs [mm]	CTA-SST D-C 7 m	CTA-SST S-C 4 m	CTA-SST S-C 7 m	CTA-SST 3MT 4 m	CTA-SST 3MT 7 m			
Primary	12	25	14	40	46			
Secondary		230	130	92	106			
Toution				80	92 184			
Tertiary		160		80	92			

"We want to go to the Moon We want to go to the Moon in this decade and do the other things not because they are easy but because they are hard."

Mild curvature, doable with cold glass slumping TBC

Mild curvature with aspherical profile, doable with cold glass slumping TBC

Strong and/or peculiar curvature, doable with a mixed cold+hot glass slumping TBC

Very strong and peculiar curvature, NOT doable with glass slumping

Stefano Vercellone - INAF/IASF Palermo - 1st SST meeting - Liverpool, 7-8 Sept. 2010

Strong and/or peculiar curvature, doable with a mixed cold+hot glass slumping TBC

19

Example: SST-CAM

- Sensitivity range: 300 650 nm
- Sensor area: 0.25° (SM ~ 35 mm) or 0.2° (DM ~ 6 mm)
- Sensor non-uniformity: < 10 %</p>
- Sensor filling factor: \geq 90 %
- Dynamic range: up to 5000 p.e., linearity < a few %</p>
- Temporal response: desirable to determine the pulse arrival times with subnanosecond precision for sufficiently large light pulses.
- Lifetime: > 10 yrs (assuming 2000 hrs/yr of exposure)
- Spurious rate: after-pulse probability < 10⁻⁴
- Cross-talk: < a few %</p>

Example: SST-CAM

Bonanno & Catalano, in prep.

	Pixel Size	#Pixel per Unit	Unit Dimensions	Unit Weight	Dead Space	Efficiency (@ 400 nm)	Intrinsic Gain	Dark current	Anode Non- uniformity	Optics design	ROM cost
Unit	mm		mm	g	%	%	-	nA	%		EURO
Vacuum Device											
Hamamatsu R3479	15	1	19 Ø	15	25	~30	~10 ⁶	10		D-C	350
R7600U-200	18	1	30x30	33	40	~40	~10 ⁶	2		D-C	1250
R7600U-200 M4	9	2x2	30x30	33	40	~40	~10 ⁶	2	~20	S-C 3MT	1250
R8900-100 M16	~6	4x4	30x30	33	22	~34	~10 ⁵	8	~25	S-C 3MT	1500
R7600 M64	~2	8x8	26x26	60	40	~23	~510 ⁵	0.2	~50	S-C 3MT	1500
Flat Panel H8500	~6	8x8	52x52	117	10	~27	~1.510 ⁶	6	~50	S-C 3MT	1700
Flat Panel H9500	~3	16x16	52x52	117	10	~27	~1.510 ⁶	13	~50	S-C 3MT	2200
Solid State Device											
Hamamatsu MPPC S10931	3	1	3.8x4.3	~4	40	~40	~10 ⁶	5000		S-C 3MT	~150
Photonique SSPM_0710G9MM	3	1	4.5x5	~4	50	~10	1.810 ⁵	75000		S-C 3MT	~150

Stefano Vercellone - INAF/IASF Palermo - 1st SST meeting - Liverpool, 7-8 Sept. 2010

3MT

Going further...

Can we improve our current figures in order to achieve a better science with SST?

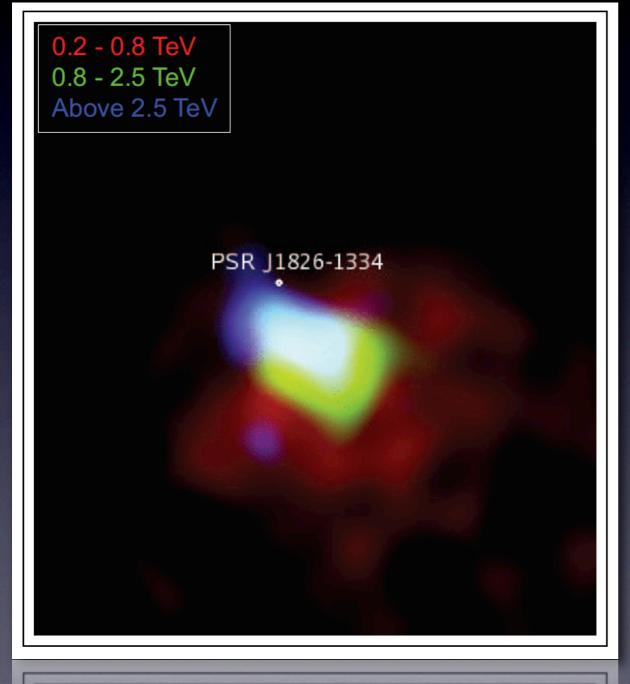
Or better phrased:

Can we achieve a better science with SST at the current cost?

...maybe yes...

M. Panter @ Zeuthen Meeting

Can reach goal sensitivity in budget


- So what's the problem?
 - We can probably do better! (goal sen. conservative at HE)
- Sensitivity is not the whole story angular resolution is (so far) not <u>excellent</u> at high energies – and it could be – direct impact on science
 - e.g. energy dependent morphology in PWN and perhaps SNRs
 - Better angular resolution very likely \rightarrow more science

A possible example

Aharonian+06, Funk+08

H.E.S.S. detection of off-set PWNe

Energy dependent morphology in the PWN candidate HESS J1825-137

Decreasing of gamma-ray extension with increasing energy

Next Steps

- Update and freeze our Scientific Requirements.
- Choose the telescope and array configuration that better matches these requirements at a fixed or equivalent cost.
- Write down our requirements.
- Maybe a dedicated panel could be useful.