Requirements and Optimisation for the CTA SST sub-system

Jim Hinton 毘University of
Jim Hinton weicester

Liverpool SST Meeting Sept. 2010

Low-energy section

energy threshold
of $20-30 \mathrm{GeV} \quad$ Medium Energies:
mCrab sensitivity

~23m telescopes
4-6 $6^{\circ} \mathrm{FoV}$
$0.08-0.12^{\circ}$ pixels
Parabolic/Hybrid f/D~1.2

12 m telescopes
 SST

7-8 ${ }^{\circ} \mathrm{FoV}$
$0.16-0.18^{\circ}$ pixels $4-7 \mathrm{~m}$ telescopes
Hybrid $f / D=1.35$

4 The Gamma-ray Horizon

5 The Gamma-ray Horizon

6 Photon Statistics

7 Photon Statistics

8 Limitations

9 Limitations

10 Limitations

11 Angular resolution

- ~1' resolution achievable with next generation IACT arrays
- Fundamental limit is ~ 10 " above a few TeV

12 Resolution

Hydra A 啕University of

M 82

Cen A

SN 1006

${ }_{13}$ Requirements

- Area
- O(10 km²) at 100 TeV
- Energy Range
- ~1 TeV to >> 100 TeV
- Implies minimum dish diameter ~3 m (for $<150 \mathrm{~m}$ spacing)
- Inefficient for the SST to compete with the MST in the core energy range - aim for SST dominance of sensitivity between 5 and 10 TeV (trigger 1-3 TeV)
- Maximum energy?
> Aim to run out of stats. for ~ 1 Crab source before saturation
- Angular resolution / Background rejection
- As good as possible, BG free at lowest achievable energy (i.e. best sensitivity)

14 Special Considerations

Long, wide, offset, large time-spread images
Examples: Images in six $10^{\circ} \mathrm{FoV}\left(0.25^{\circ}\right.$ pixel) cameras ($30 \mathrm{~m}^{2}$ tels.) $\sim 500 \mathrm{~m}$ from the core of 14 TeV shower + VERITAS movie

15 Special Considerations

Long, wide, offset, large time-spread images
Examples: Images in six $10^{\circ} \mathrm{FoV}\left(0.25^{\circ}\right.$ pixel) cameras ($30 \mathrm{~m}^{2}$ tels.) $\sim 500 \mathrm{~m}$ from the core of 14 TeV shower + VERITAS movie

16 Array Options

- Huge phase-space available - start with some attractive solutions:

1) Share MST photosensor/mechanics and (possibly) readout electronics

- Scale down primary mirror $12 \mathrm{~m} \rightarrow 7 \mathrm{~m}$ to get from $0.18^{\circ} \rightarrow 0.25^{\circ}$ with reasonable f/D

2) Take plate-scale of cheaper photosensors ($5-7 \mathrm{~mm}$) and adapt optics to get primary as large as possible (e.g. f/D $\rightarrow 0.5$)

- Two-mirror solution or light-cones+SiPMs: $\sim 4 \mathrm{~m} \varnothing$

NB: Decision point for 1 versus 2 reflectors - Oct 2011

17 Telescope Cost

Assumes: SO Cam Pixel Cost $=1 / 3 \times$ DC, SO Tel $/$ Mir $=3 \times$ DC

18 Telescope Cost

19 Optimisation

For fixed area \& array cost

${ }^{20}$ Optimisation Attempt

21 Optimisation Attempt

Full MC - Configuration E

- 23m (x4) $4.6^{\circ} \mathrm{FoV}$, 0.09° pixels
- 12m (x23) $8^{\circ} \mathrm{FoV}$ 0.18° pixels
- 7m (x32) $10^{\circ} \mathrm{FoV}$ 0.25° pixels

Nominal cost 80Me

23 Production 1 Config Sens.

24 Point-source Sensitivity

25 Conclusions

- Unavoidable features of the SST
- Many telescopes
$\gg 6^{\circ} \mathrm{FoV}$
- Long event/integration times
- Optimisation
> Requires performance and cost information for individual components
, Detailed design work needed
- Can be done iteratively using Toy+Real MC once we have costed designs for different options
- Organisation...

