

1

Thomas Bretz (EPFL), SST Meeting, Liverpool, Sep. 2010

Small size telescopes

Maximize collection area and maintain...

Small size telescopes

Maximize collection area and maintain...

Keep the design simple: Davies-Cotton or similar

number of telescopes

good

low complexity

Stable, robust, precise, efficient and easy to handle photon detectors: G-APDs

easy maintenance

low costs

robustness

Telescope design / Array layout

- Problem: HUGE phase space
 - Pixel field-of-view
 - Mirror diameter
 - Focal length
 - Number of telescope
 - Distance between telescopes
 - a ...

Telescope properties

Photon detector properties

Constraints from light concentrators

Geometrical relation

Optics

Reflector quality

11

Relations – an overview

Relations – reduction

Relations - reduced

Telescope design - result

Array layout

Telescope design - simulations

Do a Monte Carlo simulation for these telescopes

Efficiency

Efficiency parametrization

Array simulation

Fixed Ground Area

Telescopes of one type placed in an area of 4km² (expectation: eff. area close to 4km²)

How to choose?

- 5mm G-APD, FoV 0.17°
- Multiplicity >= 3
- Zd = 30°
- H = 2200m a.s.l.
- La Palma atmosphere

30

Fixed Ground Area

(expectation: eff. area close to 4km²) How to choose? Effective collection area [km²] Costs 5.5 Performance 300 Ditch distance [m] 5 250 4.5 200 4 150 3.5 pitch distance too large \rightarrow showers don't trigger 100 3 \rightarrow performance decreases 2.5 50 optimum in between 2 2.5 3.5 4.5 2 lg(E/GeV) pitch distance too short \rightarrow more tel. trigger than necessary 5mm G-APD, FoV 0.17°

 \rightarrow costs too high

Multiplicity >= 3

Telescopes of one type placed in an area of 4km²

- Zd = 30°
- H = 2200m a.s.l.
- La Palma atmosphere

Fixed Ground Area

Telescopes of one type placed in an area of $4km^2$ (Pitch distance \rightarrow num. of telescopes)

Fixed Ground Area

Telescopes of one type placed in an area of 4km^2 (Pitch distance \rightarrow num. of telescopes)

Fixed Ground Area

Array layout – a result

Number of telescope needed to reach an effective collection area of ~4km² for

- a given telescope type (pixel FoV)
- at a given energy

Array layout – equal eff. area

Array layout – equal eff. area

Array layout – a result

Number of telescope needed to reach an effective collection area of ~4km² for

- a given telescope type (pixel FoV)
- at a given energy

Array layout – a result

Number of telescope needed to reach an effective collection area of ~4km² for

- a given telescope type (pixel FoV)
- at a given energy

Array layout – an example

Number of telescope needed to reach an effective collection area of ~4km² for

- a given telescope type (pixel FoV)
- at a given energy

Example: Instead of finding least costs we define a fixed number of telescopes (40)!

Conclusions

- The huge phase space to design our telescope could be reduced to a single variable! (assuming that the photon detector is well defined)
- Monte Carlo studies for this phase space were performed for
 - G-APDs (3mm, 5mm) with solid cones
 - ♦ Zd = 30°
 - La Palma atmosphere
- It is possible to find the most cost efficient solution (telescope type and array layout) for a given collection area at a given energy (or to maximize the collection area at a given energy and given expenses)

The studies have shown that G-APD with a Davies-Cotton reflector are an option!

