FOCAL PLANE INSTRUMENTATION AND ELECTRONICS FOR THE SST OVERVIEW

RICHARD WHITE SST MEETING, LIVERPOOL, 7 - 8 SEP. 2010

Overview

Readout Electronics

Photosensors

SST - CAM

- Introduce the FPI and ELEC work packages.
- Discuss the work to date.
- Requirements & relevance for the SST.
- What is and isn't being addressed by FPI
 - and ELEC at the moment.

Overview

Readout Electronics

Photosensors

SST - CAM

- What is SST-CAM
- Prep. Phase
- Timeline
- Work to be done.

Focal Plane Instrumentation

Electronics Overview

Electronics Overview

SST Requirements Image Spatial Properties

- Lateral Distribution:
 - 3 TeV ~100 pe @ 200 m for a 10m² mirror
 - No shoulder at high energy
- Image Size:
 - Length / Width increase as Log E
- Image Displacement:
 - I° per 100 m (ish)
- Need 8-10° camera

200 m is a good spacing for angular resolution and provides enough light with 10 $\ensuremath{m^2}$

At the highest energies, images will be visible at large distances

SST Requirements Image Spatial Properties

- Lateral Distribution:
 - 3 TeV ~100 pe @ 200 m for a 10m² mirror
 - No shoulder at high energy
- Image Size:
 - Length / Width increase a Log E
- Image Displacement:
 - I° per 100 m (ish)
- Need 8-10° camera

Example:

~500 m from the core

14 TeV shower

SST Requirements Image Timing Properties

- Time gradient along shower increases with impact distance.
- As the length of the image is also increasing, the total image duration grows quickly far from the core.

SST Requirements Image Timing Properties

German and Konrad

• At 1km from the core, images last hundreds of ns.

SST Designs Camera Overview

Conventional DC: • 7 m (12 m) • 0.25°, 50 mm () pixels • 1.5 m (3 m) camera • 8° (10°) FoV • Cam. Challenges: • Cost	 DC + SiPM: 3.5 m 0.16°, 3 mm + solid cone Cam. Challenges: Cost SiPM availability 	 SO: 3.5 m 0.2°, 6 mm pixels 40 cm, camera 8° FoV Cam. Challenges: Curved focal plane Large angles Cost 	
	<image/>		

RICHARD WHITE

Focal Plane Instrumentation

- Zurich, MPI Munich, Marseille
- EG: Munich:
 - D_{in} = 54 mm
 - $\theta_{acc} = 25^{\circ}$
 - D_{out} = 23 mm
 - L = 82 mm (ideal) , 70 (reduced)
 - Concentration Factor: 5.6 (ideal), 2.5 (reduced)
- For the SST:
 - Could be as for MST and LST in the conventional solution.
 - For SO or DC+SiPM the angles are large, but Zurich are investigating solid cones for SiPMs at large acceptance angles (75°)

Focal Plane Instrumentation Photosensors

• Focus so far on conventional PMTs:

- Low afterpulsing (10⁻⁴ above 4 pe)
- High PDE
- Hamamatsu
- ELT
- Recent work at MPI Munich:
 - QE measurements
 - Afterpulse rate of R9420 reduced by x5-6... still 2-2.5 x too high.
 - Time Response

Company	Туре	QEpeak(λ)	<qe>_{Cher}</qe>
Hamamatsu	8619	28,7 ± 2,2 (390 nm)	19,4±0,3
Hamamatsu	9420	34,6 ± 3,1 (370 nm)	22,9 ± 0,4
Hamamatsu	7724	38,9 ± 3,3 (370 nm)	25,7 ± 0,4
Electron Tubes	9117B	34,0 ± 3,2 (360 nm)	19,9 ± 0,3
Electron Tubes	9142B	30,2 ± 2,7 (370 nm)	16,5 ± 0,3

Focal Plane Instrumentation Photosensors

- SST DC
 - R9420-100, I.5" + LG => 54 mm == 0.29°
 - 150k per camera
- SST SO
 - MAPMT
 - H8500, 64 ch, 52 mm, 6x6mm pixels, G=0.5-1.5x10⁶
 - HI0966, G=I-3.3×I0⁵ (sBa Photocathode available)
 - 23 E/ch (Ba), 27 E/ch (sBa) (Large Quantities)
 - 0.64 E/mm² and 0.75 E/mm² (34k, 40k per camera).
 - Performance checks: SPE, after pulsing, uniformity, dynamic range.
 - But how to turn off pixels with stars in them!
 - SiPM (alias G-APD, MPPC, SPM)
 - Scale is small...3 5 mm.
 - Development is strong
 - Cost may not be there yet: >5 E/mm² (300 k/camera)
 - Can be used in DC + LG option as well as SO

Focal Plane Instrumentation

- Two methods:
 - Central HV, distributed to clusters then controlled to individual pixels.
 - Cockcroft-Walton, local, HV for a cluster.

• Solutions under development:

- DESY (distributed) (30E/ch)
- NECTAr + ISEG (Cockroft-Walton, based on HESS) (32E/ch)
- Hamamatsu (Cockroft-Walton, based on MAGIC)
- AGIS (Hamamatsu) 100E/ch (64 pixels per ch => 1.6 E/ch)

✓ Mental and a state of the state

- Had a target of 20E/ch in the conventional design.
- SO, assuming 64 ch MAPMTs cost is ok.

Focal Plane Instrumentation Preamps

- Dynamic range1 pe 6000 pe hard to obtain at digitisation stage (FE Elec), so pre-amp:
 - Hi Gain, Lo Gain
 - Non-linear
- Can have preamp at PMT with full dynamic range + FE preamp with shaping and Hi/Lo/non-linear gain or just the FE preamp.
- FlashCam Preamp 125 MHz (U. Zurich)
 - One stage, covers range with 2 amps, 1 st lo gain 1 st+2 st hi gain.
 - Prototype with Hi, Lo Gain
 - Cost <10 E/ch
- NECTAr Preamp Scheme 400 MHz (Barcelona)
 - Two stages one behind PMT (if PMT gain 4e4), one at FE
 - PMT preamp:
 - Atlas LAr preamplifier
 - SPE resolvable
 - But input saturates at 5 mA (1500 pe)
 - ASIC based
 - under investigation.
 - Noise level is easier to achieve on an ASIC (interesting for SiPMs)
 - FE preamp:
 - Commercial.... speed may not be achievable.
 - ASIC based... just include in the NECTAr chip.
- Dragon Preamp:
 - Lo x I and Hi x I0 Gain
 - 2.3 GHz Op Amp

Focal Plane Instrumentation Preamps

- Dynamic range | pe 6000 pe hard to obtain at digitisation stage (FE Elec), so pre-amp:
 - Hi Gain, Lo Gain
 - Non-linear
- Can have preamp at PMT with full dynamic range + FE preamp with shaping and Hi/Lo/non-linear gain or just the FE preamp.
- FlashCam Preamp 125 MHz (U. Zurich)
 - One stage, covers range with 2 amps, 1 st lo gain 1 st+2 st hi gain.
 - Prototype with Hi, Lo Gain
 - Cost <10 E/ch
- NECTAr Preamp Scheme 400 MHz (Barcelona)
 - Two stages one behind PMT (if PMT gain 4e4), one at FE
 - PMT preamp:
 - Atlas LAr preamplifier
 - SPE resolvable
 - But input saturates at 5 mA (1500 pe)
 - ASIC based
 - under investigation.
 - Noise level is easier to achieve on an ASIC (interesting for SiPMs)
 - FE preamp:
 - Commercial.... speed may not be achievable.
 - ASIC based... just include in the NECTAr chip.
- Dragon Preamp:
 - Lo x I and Hi x I0 Gain
 - 2.3 GHz Op Amp

Range	High Gain	Low Gain		On-chip	
Phe	200	6K			High Gain
In [mA]	2	~50	Zin	R1 3	
In [V]	0.1	~ 2.5		$R_2 \stackrel{\downarrow}{\gtrless}$	Low Gain
Out [V]	~ 2	~ 2	\downarrow	\downarrow	

Focal Plane Instrumentation Camera Integration

• No thoughts yet for the SST?

Front-End Electronics Analogue Pipeline

RICHARD WHITE

FADC FADC

FADC FADC

RICHARD WHITE

Electronics Telescope Trigger

- Schemes:
 - Majority of neighbours above threshold
 - Clipped Sum
 - Many more.
- Implementation:
 - Analogue
 - Sum signals from pixels
 - Digital
 - Threshold then digital lookup in FPGA (13 E/ch)
 - Use FADC samples and sum pure digital (free)
- SST:
 - SO and conventional trigger ideology can be the same.
 - Clustering of physical pixels will look different and implementation will depend on FE
 - Remember that SST events can be long... 200 ns
 - So a trigger system that allows clusters to be read out asynchronously (say within a long event) would be beneficial (each cluster would be centred on a different time within the image) - saves reading out 200 ns of data from the whole camera.
 - This is easy to implement with a dead-time free FE.... ie you don't have to, just readout the whole camera, then another part of the same image triggers the camera again.

Electronics Central Trigger

Electronics Central Trigger

Electronics Central Trigger

- Hard
- Soft

Electronics

- Ethernet Based:
 - Implement in FPGAs at FE
 - Cascading switches
 - I x GB Ethernet from camera.

30 Byte / pixel / evt (20 nsec @ ~ 800 MHz x 2 gain) 2000 channels

10 kHz camera triggers

To Camera CPU 600 MByte/sec

To Central CPU 10 MByte/sec

C.Bauer, C.Föhr, G. Hermann, W. Hofmann , T.Kihm, F.Köck- MPI für Kernphysik

Electronics

- Ethernet Based:
 - Implement in FPGAs at FE
 - Cascading switches
 - I x GB Ethernet from

→ Sustained 700 MByte/sec
 → loss free
 (low cost solution, standard components, includes slow

Test @ MPIK

C.Bauer, C.Föhr, G. Hermann, W. Hofmann , T.Kihm, F.Köck- MPI für Kernphysik

Summary

Summary

- We know what's under investigation
- What's been ruled out:
 - Very fast FADC too expensive, too power hungry
 - Non-integrated cameras for the MST and LST
 - Analogue transmission over fibre
- What's not been ruled out... but maybe should be for the SST:
 - Sealed cameras with environmental control.
 - Lots of control and monitoring.
- What's not currently being focussed on by FPI/ELEC:
 - Links with MC... ie the specification motivation.
 - The SST

Pub-based ideas Sub title

