

AGIS Camera Front-end Electronics Development

Stefan Funk for the CTA-US Camera group

Sep, 8-9, 2010 Liverpool, SST Meeting

CTA-US Camera Front-end Electronics Development

Stefan Funk for the CTA-US Camera group

Sep, 8-9, 2010 Liverpool, SST Meeting

AGIS Camera design

9 "subfields" each with 36, 32, or 15 camera modules:

Example subfield with 36 camera modules:

 64 pixels per MAPMT • each pixel is 0.05-0.1°

36 telescopes x 224 modules x 64 pixels = ~500k channels total for AGIS

Camera module:

2" multi-anode PMT

readout electronics

Camera Electronics Overview

- Camera modules: ~200/camera (~13k pixels)
 - Waveform sampling and digitization, 16 triggers

- Subfield boards: ~10/camera (~36 modules/field)
 - Cross-link trigger information
 - Subfield trigger
- Camera backplane board:
 - Camera trigger
 - Gb ethernet link to outside (or any other commercial solution)

Camera module: general idea

- Increase ~3k to ~500k total channels requires
 - Low cost, power per channel
 - Robust design: modular
- Goal: \$20/channel (electronics + Ma PMT)
 - Current generation is ~\$1k/channel
- Main cost saving through:
 - (1) MaPMT
 - (2) TARGET readout (ASIC) chip
 - "TeV Array with Gsa/s sampling and Experimental Trigger"
- TARGET based on LABRADOR (ANITA) and BLAB-(1-3) chips (Super-B factory)

- 16 channels per TARGET chip
 - i.e. 4 TARGET digitizer ASIC per 64-channel MaPMT
- Properties:
 - Switched capacitor array consisting of 4096 capacitors per channel
 - 1 GSample/s sampling of each channel (i.e. 4 µs buffer depth)
 - Sampling rates from 0.5 GSample/s to 3.5 GSample/s possible
 - Digitization via Wilkinson-type ramp (12 bit encoding, 10 bit range)
 - Trigger on-board (currently OR of 16 channels. Will be analog sum of 4)
 - Multi-hit buffer (8 independent rows)

Buffer layout

At occurrence of trigger (internal or external)

- Digitization:
 - Wilkinson-type ramp (counting time-steps until comparator matches V_{sample})
 - 12-bit gray code counter currently on FPGA, will be on ASIC in next version (effectively 450 MHz)
 - Digitization is done for atomic blocks of 16 in 2 channels simultaneously
 - Rows are independent, digitization can be done deadtime-free

Summary of digitization

Spec	TARGET 1		
Dynamic Range	12-bit (4096)		
Channels	16		
Sampling Capacitors	4096		
ADC Clock Speed	223 (445 effective) MHz		
Samples per Digitization	16		
Channels per Digitization	2		
Ramp Time	4096 / (223MHz x 2) = 9.3 µs		
Ramps per Channel	64/16 = 4		
Totals Ramps	16/2 x 4 = 32		
Channel Digitization Time	4 x 9.3 μs = 37 μs		
Total Digitization Time (16 channels)	32 x 9.3 µs = 290 µs		

TARGET Performance

- Dynamic range: ~1 V with ~1 mV noise level, 10 bit, therefore effective 9 bits
- Bandwidth (150 MHz) and crosstalk (~5% at 400 MHz)
- Sampling rate stable
 - Sampling rate different between even and odd capacitor rows (2% level)
 - Temperature dependence: 10⁻⁴/K (stabilized by a feed back circuit)
- Power consumption: 7.1 mW/channel for TARGET only, 70mW/channel including everything (FPGA, fiber optics etc.)

Transfer function

- Correlation between input voltage and output ADC counts
- Standard deviation due to variation from capacitor to capacitor (but shape is the same)
- Residuals to 4th order polynomial fit within capacitor smaller 1 ACD count

Status of work

Going from TARGET 1 to TARGET 2

- TARGET 2 design well underway (production run in the fall)
 - Trigger on analog sum of 4 channels
 - Longer look-back time for buffer (4 μ s \rightarrow 16 μ s)
 - Faster readout (16 μ s \rightarrow 2 μ s) or more dynamic range
 - Higher bandwidth (150 MHz \rightarrow 380 MHz), lower cross-talk (1%)
 - More trigger outputs $(1 \rightarrow 4)$

Summary of digitization for TARGET 2

Spec	TARGET 1	TARGET 2	
Dynamic Range	12-bit (4096)	12-bit (4096), 10 bit effective	
Channels	16	16	
Sampling Capacitors	4096	16384	
ADC Clock Speed	223 (445 effective) MHz	700 effective MHz	
Samples per Digitization	16	32	
Channels per Digitization	2	16	
Ramp Time	4096 / (223MHz x 2) = 9.3 µs	1024 / (650 MHz) = 1.5 µs	
Ramps per Channel	64/16 = 4	64/32 = 2	
Totals Ramps	16/2 x 4 = 32	16/16 x 2 = 2	
Channel Digitization Time	4 x 9.3 µs = 37 µs	2 x 1.5 µs = 3 µs	
Total Digitization Time	32 x 9.3 µs = 290 µs	2 x 1.5 µs = 3 µs	

• In case of TARGET 2, the deadtime will be dominated by transfer time from chip

Cost Estimate for Front-End Module

- No labor for testing and calibrations included
- Numbers in **blue** are based on real quotes

Item	13,000 channels		640,000 channels	
	Unit price	Cost/ch	Unit price	Cost/ch
ASIC	\$65	\$4.06	\$15	\$0.94
FPGA (XC5VLX30T)	\$235	\$3.67	\$176	\$2.75
HV module	\$140	\$2.19	\$105	\$1.64
Connectors		\$1.17		\$0.88
FPGA board components		\$2.42		\$1.82
PS board components		\$1.14		\$0.85
PCB fabrications	\$9~38	\$1.70	\$5~22	\$0.91
Board loading	\$10~40	\$2.44	\$8~30	\$1.76
Total		\$18.70		\$11.54

The next steps

TARGET 2 ASIC development

- Testing and characterization of next-generation chip
- Board development
 - Provide a TARGET-board, similar to DRS-4, so that people could add their own triggering, HV system, ... to the readout channel

- In discussion what needs to be done to redesign for SST
- Backplane development
 - Develop backplane for CTA-US camera that takes the different pixel trigger channels and combines them into a camera trigger.