

ELEC @ SST

General considerations and recommandations

General wishes of ELEC WP

- Good performance to achieve physics goal
- homogenous design across various telescope size; without loosing performance.
- Same electronics, or at least similar components if possible, even with other technical groups, prefer homogeneous devices (hardware and software).
 Lower the cost also for maintenance
- low electric power consumption, man power on site ...
- Easy to maintain (accessible in safety condition)
- Known technology
- Can be upgrade (15-20 years of operation is a long time)

		FE	LO	L1			
1	D	DESY/MPIK Heidelberg/AIT/ETH/U. Zurich/AGH/Krakow/Leeds.					
2	A/D	Pisa	Zeuthen	Zeuthen			
3	А	Pisa	IFAE-UAB	UM/CIEMAT			
4	А	IRFU/LPNHE/LPTA/ICC-UB	IFAE-UAB	UM/CIEMAT			
5	A/D	CTA-US (AGIS)					
6	-	-					

	DAQ	Central Trigger
7	MPIK Heidelberg	APC
8		Iowa state U.

			Electronics		
-	Pow	er consumption (all camera)	< 3 W/chann	el	SITE
General co	ng	siderations	< 1 W/chann	el	SITE
	band	I width before digitalization	> 300 MHz		MC
	Sam	pling rate	250 MHz to 2	2 GHz	MC
	Dyna	amic range vs telescope size	5 000 photo-	electron?	MC
	Singl (elec	e photo-electron resolution tronics noise)	pic/valley > 1	5	FPI
	Dead	l time at 10 kHz	< 5 %		ELEC
	Max	imum acquisition rate (1-fold)	10. kHz		MC
	ster	eoscopy	(20% of GHz	network)	ELEC
	cross	stalk for the electronics	< 0.1%		ELEC
	Trigg	er region size (sector or super cluster)	14-28 pixels ((investigate more)	MC
	Trigg size	er window as function of telescope	2 – 5 ns		MC
	Time	e stamp accuracy for telescope	< 80 ns		DATA
Weight	Loca auto	l time stamp accuracy in case of nomous clusters	< 15 ns		ELEC
Sector and pixel trigger	Resp	onse stability of operation	signal calibra	ted at 2%	ELEC
monitoring	Max	imum temperature	< 50°C		FPI
Anode current	Tem	perature stability under acquisition	Assuming < +	+/- 1°C during a run of 25 mn	FPI
Temperature monitoring					
Commissioning	Data	needed to be saved on disk			MC
Modularity		LST	Sampling		
Demote control		MST	Charge or pa	rameterization (? Mb/s)	
Remote control		SST	Charge		
Reliability – Low failure rate	Data	reduction			IVIC
	Pixel	readout window			IVIC
Mass Production	the c	camera readout window as function of			IVIC
Manpower for	the				
characterization/monitoring					
Manpower for operation		Low maintenance			
Cost (from PM to network)		?€/ channel vs telescope size		MC	
Peripheral infrastructure need	led				
Wednesday, September 08, 2010		SST @ Live	rpool		

SST should achieve

• ~32 telescopes of about 1 000 channels

SST should achieve – data flow

- 1 000 pixels x 1 kHz x 16 bits = 16 Mb/s
- 1 000 pixels x 1 kHz x 16 bits x 2gains= 32 Mb/s
- 1 000 pixels x 1 kHz x 16 bits x 2gains x 50 ns = 1,6 Gb/s
- 100 tel. x 1 000 pixels x 1 kHz x 16 bits x 2gains x 50 ns = 160 Gb/s
- 600 TBytes/night

- Data reduction
 - Data compression algorithm 16->8 bits/word (~1/2). No information lose.

SST @ Liverpoo

1.36481 Te

8.39054 Tr

Event #4805

Event #1340

0.225374 TeV

Separate regions

- zero suppression
- readout selected region

SST should achieve

- ~32 telescopes of about 1 000 channels
- High energy : few x 100 TeV
 - Large dynamics range
 - sophisticate readout and trigger

- Data readout
 - > MC Trigger studies

SST should achieve

- ~32 telescopes of about 1 000 channels
- High energy : few x 100 TeV
 - Large dynamics range
 - sophisticate readout and trigger
- reliability
 - Complete monitoring and slow control system
 - Accurate calibration
 - Compact design allows full construction and test in laboratory
 Only power & network connection
 - Modularity facilitates the installation and maintenance

 Something prepared and tested at home institutes or manufactories

 Accessible (at the ground level ?) and easy to maintain system (modular).

0

SST @ Liverr

 standardized interfaces and software

PNP photon dete

General considerations

 Accessible (at the ground level ?) and easy to maintain :ystem modular.

 standardized interfaces and software

CTA Store

SST should achieve

- ~32 telescopes of about 1 000 channels
- High energy : few x 100 TeV
 - Large dynamics range
 - sophisticate readout and trigger
- reliability
 - Complete monitoring and slow control system
 - Accurate calibration
 - Compact design allows full construction and test in laboratory
 Only power & network connection
 - Modularity facilitates the installation and maintenance
- Capability to evolve: maybe less critical for this telescope size.

Figures of merit

Telescope size	SST	MST	LST
Dead time	2	1	1
Linearity	1	1	1
Dynamics	1	1	2
Crosstalk	2	1	1
Electronics bandwidth	2	1	1
Trigger	3	2	1
Readout	1	2	1
Power consumption	2	1	3
Power dissipated	2	2	1
Modularity (evolution)	3	2	1
Modularity (maintenance)	1	1	2
Access to camera	1	1	2
Weight	3	2	1
Upgrade	2	2	1
Cost/channelnber 08, 2010 SST @ Liverpool	1	1	2 17

CAM-SST should achieve

- constraints and need for High Energy
- specifications for the electronics
- cost model of a full telescope
- central triggering ?
- installation, maintenance model

Remark

Remark

- Inhomogeneous system
- expensive

Remark

• Back to the futur

End