



### **SST Winston Cones**

07.09.2010

Isabel Braun ETH Zurich

### Winston Cones





# Winston Cones

#### Definition

- Parabola
- Tilted by desired Cutoff angle
- Shifted

#### Equation

 $(r \cos\phi + z \sin\phi)^2 + 2ar(1+\sin\phi)^2 - 2az \cos\phi(2+\sin\phi) - a^2 (1+\sin\phi)(3+\sin\phi) = 0$ not  $(r \cos\phi + z \sin\phi)^2 + ar(1+\sin\phi)^2 - 2az \cos\phi(1+\sin\phi) - a^2 (1+\sin\phi)(3+\sin\phi) = 0$ or  $(r \cos\phi + z \sin\phi)^2 + 2ar(1+\sin\phi)^2 - 2az \cos\phi(2+\sin\phi)^2 - a^2 (1+\sin\phi)(3+\sin\phi) = 0$ 

- Relations
  - Do/Di -> φ -> Height
    - $\phi = asin(Do/Di)$
    - $H = (Do+Di)/2./tan(\phi)$



φ

F

**C**<sub>Area</sub>

10.2

13.0 16.0

f/D

1.

1.2 1.4 1.6

1.8



# Simulation (3D)

- Fresnel Reflection
- Refraction
- Transmission (Plexi 7N, input: Cherenkov spectrum at 2 km)
- surface roughness
- (optical cross-talk)
- G-APD (resin, angular & spectral acceptance)





### G-APD angular acceptance

- Hamamatsu MPPC S10362-33-50C
- resin removed for the measurement
- normalized to 1 for vertical incidence





# **Vertical incidence**

Careful with tests –illumination for individual angles is not homogeneous!



■ hex – square, 9.5 – 2.8mm, parabolic



# **Simulation Roughness**

#### absolute changes not so problematic, but changes in slope



=> changes shape of angular acceptance curve



# Secondary Optics (Open Cones)

- square-square Winston Cones
- incindence angles of 60° and 75°
- G-APD, 0.2 mm resin



=> theoretically possible, but barely producable



# Secondary Optics (Solid Cones)

- assume medium with n = 1.5
- surface roughness (estimate)
- transmission of Plexiglas 7N
- increased area concentration
- prize: less background suppression



=> at least comparable signal, but more sensitive area=> mouldable!

# Secondary Optics (No Cones?)

area fill factor, but also: sensor properties (resin + angular acceptance)



=> solid always better than no cone, open can be worse than none for  $75^{\circ}$ => solid better than open above 7% (2%) diameter gain for  $60^{\circ}$  ( $75^{\circ}$ )



# Secondary Optics (Summary)



theoretical gain, but ε too low

- ⇒ there are realistic solutions for solid cones in a secondary optics telescope
- $\Rightarrow$  gain in area concentration reduces the effective camera cost





# Influence Refractive index

- vary Index for whole Cone by +/- 0.1
- all directions





# Simulation results

- Assumptions:
  - Total reflection
  - assumed surface roughness
  - G-APD angular acceptance
  - G-APD resin (thickness & index)
  - Fresnel



# **Simulation Reflektivity**

#### analogue to reflective surfaces





# **Simulation Transmission**

#### scale complete transmission curve



