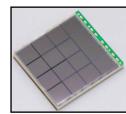
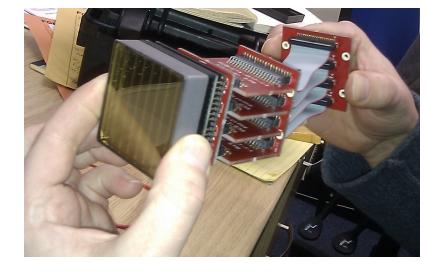
CHEC Plans

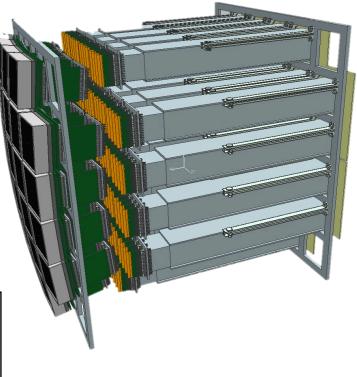
Richard White CTA-UK Meeting Liverpool Sep. 2012

This talk

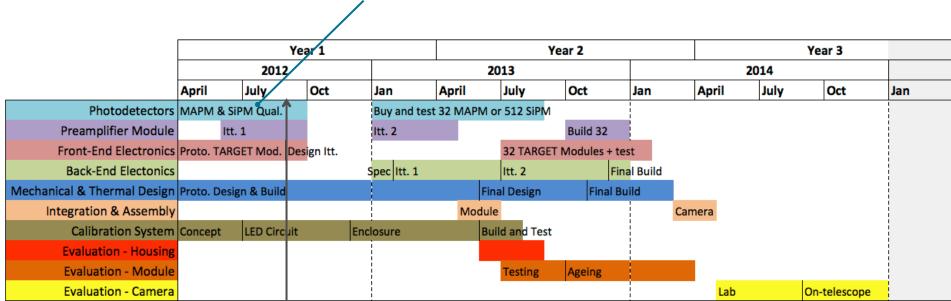
- Our original plan
- Things that will affect the plan:
 - Progress rate since the start of the grant
 - Resource changes since the start of the grant
 - Design choices
- The new plan


The Original Plan October 2011

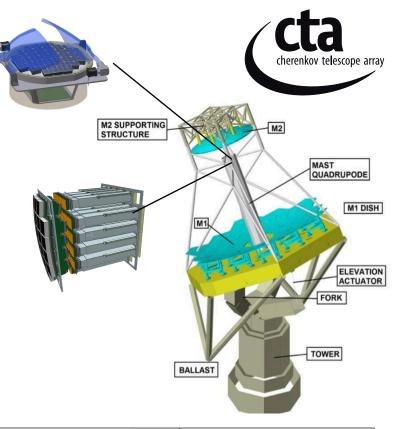


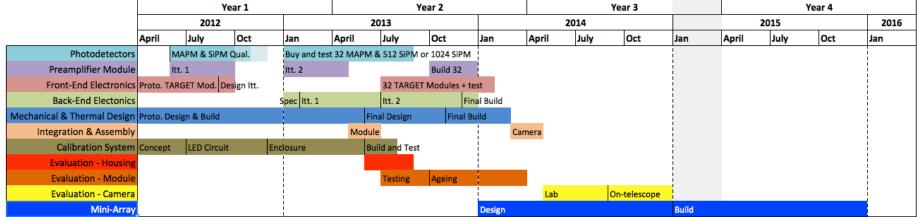

		Yea	ar 1			١	/ear 2			Year 3				
		2012			20	013				2014				
	April	July	Oct	Jan	April	July	Oct	Jan	April	July	Oct	Jan		
Photodetectors	MAPM Qua	Ι.		Buy and tes	t 32 MAPM									
Preamplifier Module	ltt.	1		ltt. 2			Build 32							
Front-End Electronics	Proto. TARG	GET Mod. Des	ign Itt.			32 TARGE	T Modules + te	st						
Back-End Electonics			:	Spec Itt. 1		ltt. 2	Fina	al Build						
Mechanical & Thermal Design	Proto. Desig	gn & Build			Fin	al Design	Final Bu	ild						
Integration & Assembly					Module			Can	nera					
Calibration System	Concept	LED Circuit	Enc	losure	Bui	ld and Test								
Evaluation - Housing								1						
Evaluation - Module						Testing	Ageing							
Evaluation - Camera			•	•		•			Lab		On-telescope			
M1 - MAPM M2 - Optimi	[Month 6] ger and F	Readout /lonth 9]	Complete	e Module Ionth 16]	1]	M4 – Complete Backend Month 21]	Mt Comple Came [Month 2	ete era 25]	M6 – Camera Deployed	Sub [N	– M7 sed SST -System lonth 36		
					D4 – ibration System			D3 Came	[M	onth 33]	D ²	1 – TDR Analysis DR 5 – Eval. Report		

A Good Start Oxford March 2012


- Preamp Module
- TARGET Module
- Mechanical Concept
- Priorities:
 - Preamp requirements
 - Interface to telescope (camera weight and power)
 - TARGET requirements
 - Photosensors: should we stick with MAPMs or go for SiPMs?

A Good Start Oxford March 2012

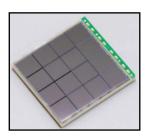



MAPM & SiPM to be considered

Sep. 2012 MAPM / SiPM Decision Point cherenkov telescope array

The Mini Array May 2012

- Meeting in Paris about the "mini array" consisting of 4-8 SSTs.
- ASTRI very open to UK cameras



Leicester Infrastructure Bid 5 July 2012

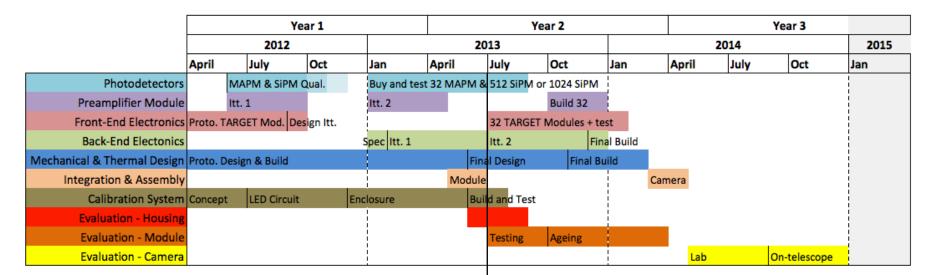
- Successful application to University central fund for:
 - New concept camera for the global CTA Observatory for high- energy frontier astrophysics, to be constructed in the University's Space Research Centre (SRC).
- Timescale similar to the first camera.
- The money must be spent on a SiPM camera.
- What's included:
 - 😑 Camera hardware
 - Redevelopment of focal plane and preamps
 - Extensive re-development
 - Manpower

£165,000

Liverpool Laser Surveying Kit (terenkov telescope array 31 July 2012

- Alignment of structures & mirrors
- A great contribution to SST prototyping.
- Could also be useful for CHEC?

JSPS Fellowship 10 August 2012


- Akira Okumura secured a JSPS fellowship for a 2 year position in Leicester.
- Fortunately (for Akira at least) he was offered a permanent job in Nagoya.
- He will still come to Leicester for 6 months
- Start date: < Feb 28, 2013
- Help with TARGET and SiPMs

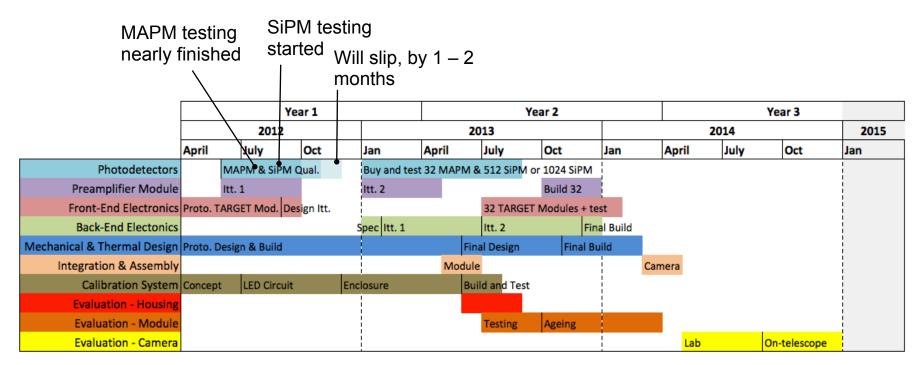
Dutch funding proposals Aug-Sep 2012

- Two applications for funding to support CHEC at the University of Amsterdam.
- Pointing:
 - Use the in-situ detectors and analyse current from stars.
 - Funding includes money for a redesign of TARGET modules to include slow ADCs and test facility in the Netherlands.
- Camera Controller:
 - Proposal for 2 years of Post Doc and ~200kE for hardware and engineering.
 - Funding for camera controller development (see back-end electronics talk).
 - Funding for Phillips SiPM development independent of CHEC, but will be incorporated if SiPM tests are successful.
 - Funding for incorporation of SiPMs into focal plane.

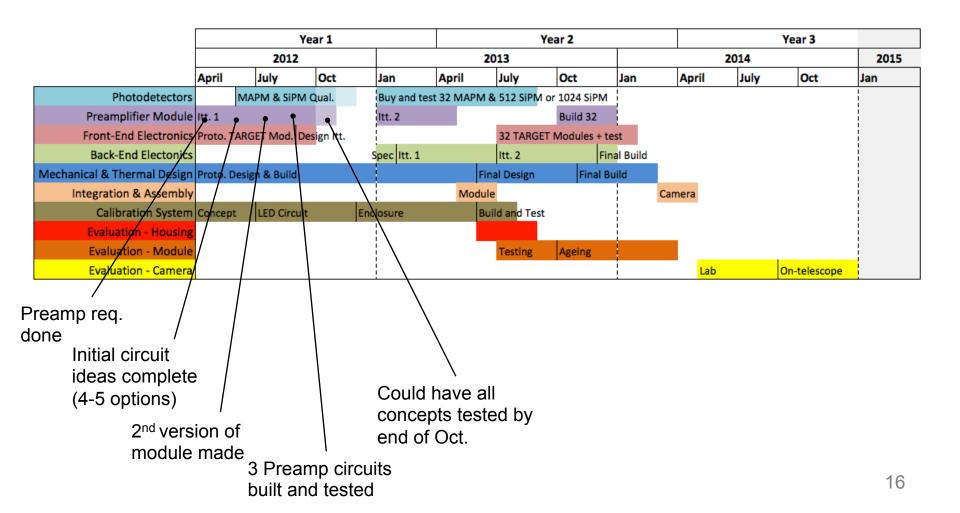
Dutch funding proposals Aug-Sep 2012

Additional Camera Controller & Pointing Funding

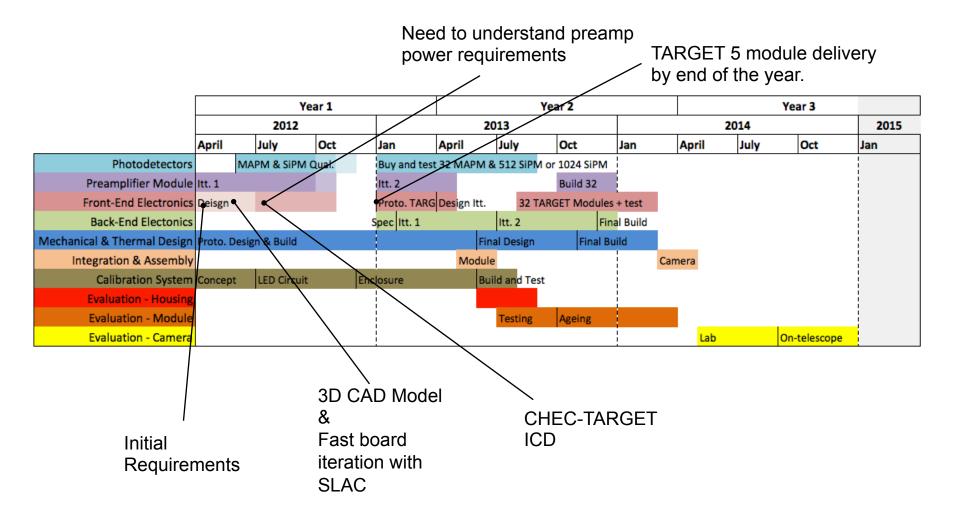
With all these resources we can contribute 2 cameras to the Mini Array

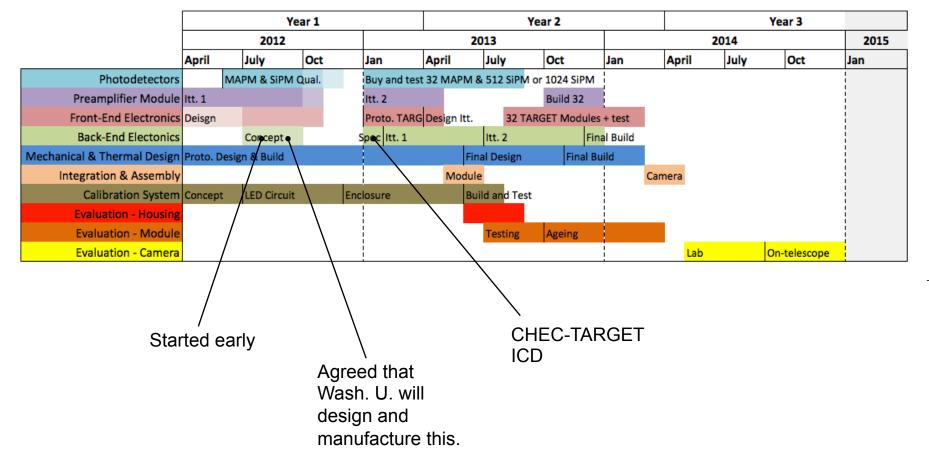

With all these resources we can contribute 2 cameras to the Mini Array

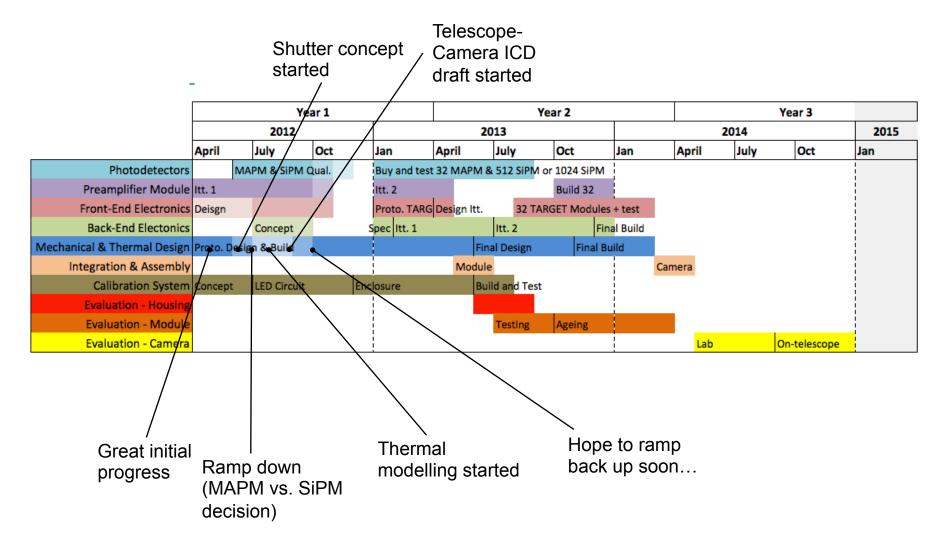
Smiley Face, LOL.



		Ye	ar 1				Ye	ear 2			Year 3			
		2012		2013						2015				
	April	July	Oct	Jan	April		July	Oct	Jan	April	July	Oct	Jan	
Photodetectors		MAPM & SiPM (Qual.	Buy and test	32 MAP	M &	512 SiPM o	or 1024 SiPM						
Preamplifier Module		ltt. 1		ltt. 2				Build 32						
Front-End Electronics	Proto. T	ARGET Mod. De	sign Itt.				32 TARGET	Modules + tes	it i					
Back-End Electonics			-	Spec Itt. 1			ltt. 2	Fina	l Build					
Mechanical & Thermal Design	Proto. D	esign & Build			Fina	l Design	Final Bu	ild						
Integration & Assembly				1 1	Мо	dule				Camera				
Calibration System	Concept	LED Circuit	Enc	losure		Buil	d and Test							
Evaluation - Housing				1										
Evaluation - Module				1			Testing	Ageing						
Evaluation - Camera										Lab		On-telescope		







cherenkov telescope array

The New Plan How to move forward

- One major decision:
 - 1 MAPM camera + 1 SiPM Camera
 - 2 SiPM Cameras.
- We could try to plan for both and set a decision point?

The New Plan How to move forward

- One major decision:
 - 1 MAPM camera + 1 SiPM Camera
 - 2 SiPM Cameras.
- We could try to plan for both and set a decision point?
- I asked the internet what to do:
 - Q: "How do I add a decision point into MS Project and branch the Gantt chart based on that decision?"
 - A: "If you need to do that, then you don't know what your project is. Decide on what you want to do first."
- Detailed Gantt, Milestones and Deliverables can't easily be completed beyond this decision point.

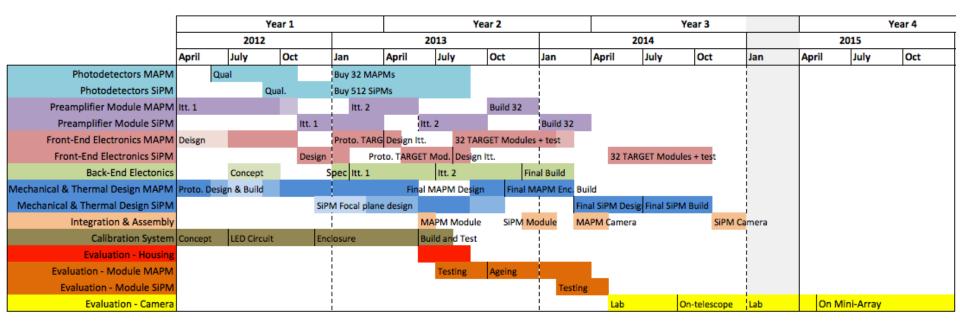
The New Plan How to move forward

- One major decision:
 - 1 MAPM camera + 1 SiPM Camera
 - 2 SiPM Cameras.
- We could try to plan for both and set a decision point?
 - the Gantt chart based on that decision?"
 - A: "If you need to do that, then you don't know what your project is. Decide on what you want to do first."
- Detailed Gantt, Milestones and Deliverables can't easily be completed beyond this decision point.

The New Plan MAPM & SiPM Camera

- MAPM camera is a good service to CTA.
- How to do it?
 - Build the MAPM components then worry about SiPMs?
 - No slip in the camera 1 timeline
 - Could potentially use "better" SiPMs if we can wait
 - Could still be viable for both on Mini Array timescale
 - Build both in parallel?
 - I think we would have to do this due to the funding restrictions.
 - Potentially a large slip in the timescale...
- Resources will be very stretched for the SiPM camera (depending on Dutch proposal).
- Requires:
 - New focal plane

- New cooling scheme
- New preamp + module
 New TARGET module (HV -> 70 V)
- SiPM camera may only be 1/2 as good as it could have been.


The New Plan 2 SiPM Cameras

- SiPMs are "the future", can be used now and will only get better and cheaper.
- Danger of looking like we're stealing the Italian's idea?
- MAPM work would stop
 - Potentially wasted time on mechanics and preamp
- Potentially a 3-5 month slip in time line, but could catch up
- Resources not as stretched.
- Chance to focus on other areas of the camera to get them "production ready".
- Would both cameras be the same? Or would they be iterations?

The New Plan MAPM & SiPM Camera

The New Plan 2 SiPM Cameras

	Year 1 Year 2									Year 3							Year 4			
	2012				2013					2014							2015			
	April	July	Oct	Jan	1	April	July	Oct		Jan	April	Ju	ly	Oct	Jan	April	J	luly	Oct	
Photodetectors	Sif	PM Qual.		Buy	and test	1024 SiPM														
Preamplifier Module			ltt. 1		ltt. 3	2			Build	64										
Front-End Electronics		Des	sign Pro	oto. T	ARGET N	1od. Design	ltt. 32	TARGET M	odules +	test										
Back-End Electonics		Concept		Spec	ltt. 1		ltt. 2		Fina	Build x 2										
Mechanical & Thermal Design	Proto. Desig			gn & 1	Build			Final Design Fina			inal Build x	al Build x 2								
Integration & Assembly							Module	2			Camera	1 Ca	mera 2							
Calibration System	Concept	LED Circuit	En	nclosu	re	Bui	ild and To	est	i						i					
Evaluation - Housing				1					1						1					
Evaluation - Module								Testing	Agei	ng										
Evaluation - Camera 1				i					i			Lab		On-telescop	e	On Min	i-Array	,		
Evaluation - Camera 2				!									Lab		Lab	On Min	i-Array	·		

Conclusions

Good progress so far! More resources than expected. Need to make a decision about what to build....

Conclusions

cherenkov telescope array

Good progress so far! More resources than expected. Need to make a decision about what to build.... NOW!

Conclusions

Good progress so far! More resources than expected. • Need to make a decision about what to build.... NOW!

In fact, I'm locking the door and you can't leave until we know what to do.

Additional Information

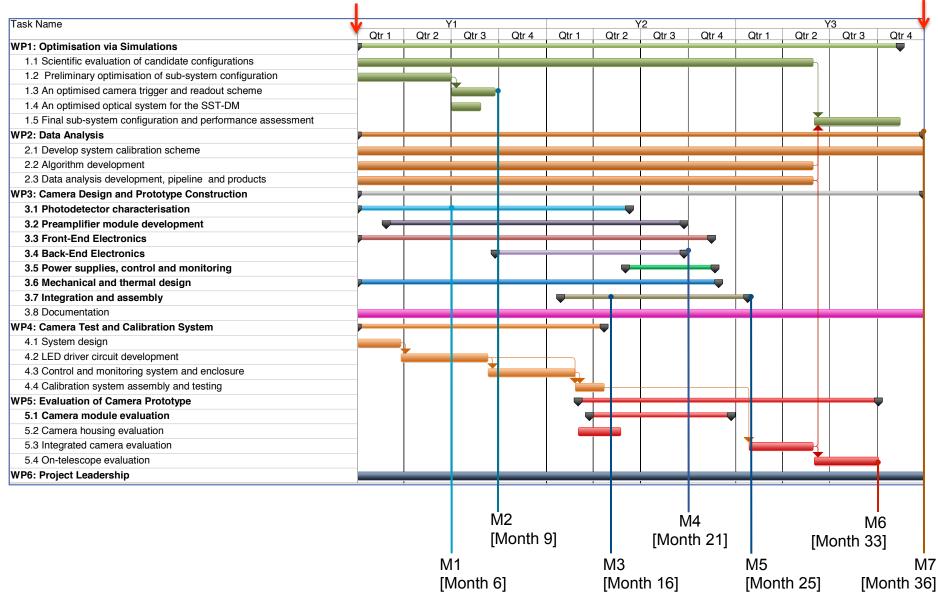
Durham (Total £9,590):

LEDs/laser diodes 1,000 PCB fabrication (3 runs) 1,050 LED drivers 1,070 Optical components 1,530 Monitoring/communication system 950 Power supplies 250 Enclosures 1,000 Connectors/cabling 500 Pump for salt fog chamber 440 Pipework, valves, etc. for salt fog chamber 1,800

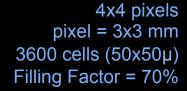
Leicester (Total £83,160):

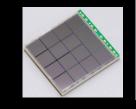
Prototype Back-end Electronics Components 13,840 Prototype Preamplifier Module Components 6,300 Prototype Readout Electronics Components 1,720 Prototype Power System Components 400 Prototype Cooling System Components 2,300 Prototype Internal Mechanical Components 9,500 Prototype External Mechanical Components 9,700 Assembly Rig Components 900 Preamplifier Module Components 9,960 Back-end Electronic Components 5,880 Readout Electronic Components 1,720 Power System Components 400 Cooling System Components 2,300 Internal Mechanical Components 7,600 External Mechanical Components 7,760 Custom Pulse Generator 800 Low Noise, High Precision Power supply 600 High Voltage Power Supply 1,480

Liverpool (Total £9,960):

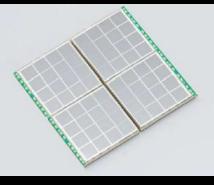

Materials for construction of camera shutter prototype and production version 9,960

Schedule




Spring-Summer 2012

Key Technology photosensors


- Dual Mirror candidates:
- MAPMT (H10966):
 - SBa photocathode
 - QE: 30% @ 350 nm, but low (0.7)
 CE
 - Gain variation x2 across 64 ch
- SiPM (S11828-3344M):
 - PDE: ~45% @ 350 nm,
 - Dark noise ~MHz (room temp.)
 - Gain depends on temperature
 - Gain depends on DC illumination (NSB)

