

CHEC Mechanical/Thermal Update

Jon Sykes and Duncan Ross Space Research Centre University of Leicester

www.le.ac.uk

University of **Leicester** CHEC Mechanical/Thermal Update

- Mechanical Design Overview
 - Envelope
 - Working assumptions on mechanical interface
 - Baseline Camera concept (MAPMTs)
- Thermal Design Overview
 - Working assumptions
 - Thermal control system concept
- Preliminary Assembly Concept
- Interfaces and Interface Management
- Current and near future work

University of **Leicester** CHEC Mechanical Envelope

- Envelope definition
 - ASTRI imposed length limit= 500mm
 - Shadowing. Allowable
 volume defined as 12
 degree 'shadow' from
 front face
 - Ref email Tim Greenshaw 14/5/2012
 - This determines the open door envelope
 - Tube interface based on assumptions inferred from ASTRI interface drawing ASS_28_06_12

 Need to confirm working assumptions and any other restrictions and document in ICD

University of **Leicester** CHEC Mechanical Interface

Δ-Δ

20,00

n ad officer and

345,00

32,00

- 'Working' Mechanical Interface
 - based on assumptions inferred from ASTRI interface drawing ASS_28_06_12 and untitled ASTRI drawing 27/4/2012
- Need to confirm (or otherwise) with ASTRI/Project Office

N.6 Ø6,50 PASS. ON Ø450

University of **Leicester** CHEC Mechanical – MAPMT assy

University of Leicester CHEC Mechanical TARGET MODULE rack assy

University of **Leicester** CHEC Thermal Requirements

- Environment Currently specified as:
 - Normal Operation
 - +30 to -10 degrees C
 - 5% to 95% relative humidity
 - Survival Conditions
 - +60 to -25 degrees C
 - 0% to 100% relative humidity
- Power dissipation
 - 400W total internal
- Temperature limits working assumptions:
 - MAPMT assumed not a driver
 - Target module max nominal environment temperature 40 degrees stated in CHEC to Target ICD
 - Si detector requirements TBD

- Ref email Tomas Bulik 5 September (Moonless time)
- CHEC Thermal Interface
 - Assumed to be cooling water supply
 - Temperature?
 - Flow Rate?

University of **Leicester** CHEC Thermal Control System

- Majority of dissipation in TARGET modules
- Recirculating internal flow over heatsink
- External water cooled heat exchanger
- Connections routed via telescope tube?
- Analysis of internal flow ongoing at Leicester
 - Siemens NX
 Thermal/Flow
 model

• Baseplate

Add Cover

Add Thermal Control

• Add Bipods

• Add Rack

Add Detectors

- External Interface Management
 - CHEC to ASTRI telescope ICD in progress
 - Project office document with camera team inputs
 - Dedicated interface meetings/splinters (optical, mechanical)?
- Internal Interface Management
 - CHEC to TARGET module ICD issued (draft?)
 - UoL document with SLAC inputs
 - CHEC to Door Mechanism ICD required
 - Propose UoL to draft
 - Meeting at UoL to discuss ~end September
 - Collect and document other subassembly interfaces e.g. calibration assy
 - Functional diagram (at least a working version) would inform

University of **Leicester** Current and Near Future Work

- Near term work
 - Interface definition and documentation a priority:
 - Confirm working assumptions and formalise
 - Minimise nugatory work
 - Allow engineering design of mechanical and thermal systems to progress on both sides of interface
 - Thermal design/analysis
 - To follow detector choice:
 - Si detectors may place more stringent thermal requirements on thermal control system
 - Thermal design update as required
 - Analysis of internal flow
 - Specification of thermal interface
 - Define schedule and scope of test model activities
 - Plan design/build of test camera hardware

University of Leicester Notes added during meeting

- Assembly/mechanical config:
 - Consider attaching rack to primary structure rather than baseplate
- Thermal control:
 - May need better flow path around preamps
 - E.g. suitable baffle system at the front end
 - May be possible to relax the shadowing requirement if this reasults in adequate space for the thermal control system
 - Progress thermal modelling