CHEC Detector Pre-amplifiers

D.Ross, R.White. University of Leicester

Mechanical Concept

- Amplifiers with edge fingers
- Minimises connector numbers and costs
- 4 boards with 16 amps each (64 channels per detector)
- Modular (with end boards) for detector and flex interfaces.
- If real estate is needed (not currently envisaged), mezzanine boards will be added between

Interface Specification

- Draft Target Module interface specification written and circulated (SLAC)
- Basic input pulse parameters agreed:-
 - 70 Ohm system (Max SLAC can achieve, reduces power consumption, increases available peak pulse voltage)
 - Peak pulse into Target, 1.0V, positive going, capacitively coupled
 - 1.2V under consideration to improve Target signal-noise function
 - Nominal FWHM pulse width 4-9nS
 - Supply nominally 5.0V single ended, and probably <10mA per channel (3.2W per MAPMT) Amplifier dependant
 - 5.2V under consideration if 1.2V peak pulse required (common mode and rail consideration)
 - Power supply noise immunity tests for SLAC PSU design, still to be done on recently built candidate amplifiers

Candidate amplifiers

- Majority of candidates are current feedback (CFB) types, which is our preferred topology,
 - Currently testing AD8014, OPA2683 and AD8004
- Also looking at quad-core (also known as H-Bridge core) voltage-feedback (VFB) types as these may also have an adequate gain vs bandwidth suitable for this application.
 - Currently AD8038
- Current Feedback has constraints compared to voltage feedback
 - higher offset voltages
 - Higher bias currents,
 - Differing impedances on the inverting and non-inverting inputs,
 - Restricted feedback arrangements,
 - Instability due to stray capacitances.
- However we favour the low inverting input impedance and if we utilise the trans-impedance route (i.e. current to voltage conversion):-
- lower input voltage noise per given bandwidth,
- faster slew rates

٠

- lower distortion.
- We are particularly attracted by extra fast complimentary bipolar (XFCB) devices at this stage
 - e.g ADA4817-2 (first candidate being tested, but has high quiescent current which SLAC were not keen on for PSU design).

Testing

- Two amplifier systems recently built, being tested, results are promising
- Looking closely at common mode voltage restrictions to ensure batches of amplifiers / PCB build will all behave correctly
- Designs need minor modifications based on results
- Noise immunity needs urgent attention for SLAC PSU design

Initial Test Setup

- Aim: examine the pulse shape and output range.
- Prototype preamplifier boards connected into MAPM prototype module.
- All channels other MAPM channels terminated with 1K Ohm.
- 4 preamp channels terminated after amplification with 75 Ohm and input with high-Z to the scope.
- MAPM illuminated as described in Mark's talk tomorrow.

Circuit A

- 2 x ADA4817 dual channel
- Pixel 37 investigated in more detail
- ~50 mA @ 5V consumption for all 4 channels

Circuit A: DC Offsets

• ~200 mV

File	Vertical	Timeba	se Trigge	er Display	Cursors	Measure	Math	Analysis	Utilities	Help	_	-	_	_	-	_	_	_	Zoom 🗤
Measu value status	ure			P1:mean(0 206.28 r	C1) mV ✔	P2:mea 204.2	n(C2) 3 mV	P3: 1	mean(C3) 97.94 mV) F	P4:mean(C4) 207.61 mV	P	5:edqe@lv(C2)		ı(F4)				
C1 1 LeC	DC1M 100 mV/di 0.00 m 100	10 V	DCIM 0 mV/div 0.00 mV	C3 100 m 0.0	NV/div 10 mV	DD1M 100 mV/di 0.00 mV										Tir 50	mebase - 50.0 r 0 S 1	91 ns Trig is/div Aut GS/s Edg 9/5/2012	ger CDDC o 410 mV ge Positive 9:00:35 AM

Circuit A: Pulse Shape

Rise Time: ~5 ns

Fall Time: ~ 17 ns FWMH: 8.5 ns

9

Circuit A: Minimum Signal

- Single p.e. is not resolvable
- Minimum signal is ~10 mV

Circuit A: Minimum Signal

- Removing the preamp, this amount of light produces a ~40 mV signal.
- By increasing the filter, fitting the SPE and extrapolating, this is ~45 p.e.

Circuit A: Maximum Signal

- Maximum signal is ~1.9 V, very roughly this is ~350 p.e.
- Beyond this, the signal saturates.

12

Circuit B

- 4 x individual op-amps ٠
- 2 x AD8014, 2 x OPA2683 .

C4]___

C1010 0m

Circuit B: DC Offsets

• AD8014 ~ 670 mV, OPA2683 ~ 635 mV

File	Vertical	Timebas	e Trigge	r Display	y Cursors	Measure	Math	Analysis	Utilities	Help	_	-	_	_	_	Zoom 🖌
						••••••••••••••••••••••••••••••••••••••										
<u>ça</u>														+ + + +		
Meas	ure			P1:mean(C1)	P2:mea	In(C2)	P3:	mean(C3)	P4:mean(C4)	Pt	5:edqe@lv(C2)			P8:
value status C1	DC1M 200 mV/div 0.00 m\	C2 200	DCIM) mV/div 0.00 mV	671.7 200 n 0.0	mV DCIM nV/div 00 mV	672. DCIM 200 mV/di 0.00 m	6 mV		635.4 m\		638.5 mV				Timebase - 50.0 r 500 S 1	91 ns Trigger CIDC Is/div Auto 410 mV GS/s Edge Positive

Circuit B: AD8014 Pulse Shape

Rise Time: ~5.5 ns

Fall Time: ~ 14.5 ns FWMH: 19 ns

Circuit B: OPA2683 Pulse Shape

Rise Time: ~6.5 ns Fall Time: ~ 20 ns

FWMH: 13 ns

Circuit B: AD8014 Minimum Signal

• Single p.e. is resolvable

Baseline & Pedestal Subtracted Average Signal

Pulse Integral Distribution

Circuit B: OPA2683 Minimum Signal

• Single p.e. is resolvable

Baseline & Pedestal Subtracted Average Signal

Pulse Integral Distribution

Summary

	T _R (ns)	T _F (ns)	FWHM (ns)	Min (pe) (mV)	Max (pe) (V)
Circuit A: ADA4817	5	17	8.5	45 (10)	350 (1.9)
Circuit B: AD8014	5.5	14.5	19	0.8 (1.6)	550 (1.5)
Circuit B: OPA2683	6.5	20	13	0.2 (0.5)	850 (1.3)

- Initial tests look very good!
- Shaping can be altered based on these results as can output range.
- Can compare the pulse shape to Stefan's simulations:

Summary

	T _R (ns)	T _F (ns)	FWHM (ns)	Min (pe) (mV)	Max (pe) (V)
Circuit A: ADA4817	5	17	8.5	45 (10)	350 (1.9)
Circuit B: AD8014	5.5	14.5	19	0.8 (1.6)	550 (1.5)
Circuit B: OPA2683	6.5	20	13	0.2 (0.5)	850 (1.3)

- Initial tests look very good!
- Shaping can be altered based on these results as can output range.
- Can compare the pulse shape to Stefan's simulations:

Further Considerations

- MAPMT ot SiPMT ? different amplifier designs but same principle ?
- CHEC thermal impact of different amplifier power consumptions?
- Different mechanical solutions, dependant on detector configuration ?