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Introduction:

— Radio-loud AGN and their physics
— The power of inverse-Compton

— Where are the TeV electrons?

Existing TeV sources

Inverse-Compton modelling and its
implications

What can the CTA do for us?
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Radio galaxy physics

* Two key emission processes are:

— Synchrotron radiation (relativistic electrons +
magnetic fields) — peak freguency goes as
By?, total emlsswlty as B2y<. For B ~ 1-10 nT,
y~103-10% electrons give rlse to GHz-freq
radio emission

— Synchrotron appears in all wavebands from
radio through to X-ray. Higher frequencies =>
higher electron energies.

— In general B not known => inferring physical
conditions is hard from synchrotron alone.



Radio galaxy physics

* Two key emission processes are:
— Inverse-Compton scattering (relativistic electrons

and background photon field, e.g. the CMB or the
opt|cal AGN emission). Peak frequency goes as
VohotonY?: tOtal emissivity as U0 Y2 For CMB,
y~10§ electrons scatter to ~ 1 lkev X- ray photons

nverse-Compton Is seen in optical & X-ray and in
orinciple up to high-energy y-ray (no significant
ow-frequency photon background to scatter).

n general photon energy density is known to
reasonable accuracy. With observations of both
processes, B can be measured if Uy, 1S known.




X-ray inverse Compton emission
from radio lobes

Inverse-Compton scattering
mainly of the CMB.

Now routinely detected from
FRII radio galaxies by
Chandra & XMM

Allows direct measurement
of electron density, since
CMB photon energy density
Is well known.

X-ray IC + radio synchrotron
from same electron
populations provide direct
measurement of B.

)Coloeur: XMM IC
*  Contours: radio
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Inverse-Compton from hotspots
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Powerful sources have
magnetic fields and
corresponding total energy
densities close to the
equipartition value.

Highest synchrotron
photon density =>
photon field is
synchrotron.




Hotspot spectra

Some hotspots are consistent with SSC in X-ray, others plausibly synchrotron
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Offsets between radio and X-ray may be a
sign of multiple X-ray emission processes

Complicated hotspots
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Population statistics with X-ray IC
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Croston et al. 2005 ApJ
626 733:

B fields in sample of 33
FRII radio-loud AGN
from 3C catalogue,
redshifts from ~0.05 — 2
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Inverse-Compton beyond the X-ray

e Some cases where

existing gamma-ray
data provide best
constraint — e.g., giant
lobes of Cen A

Fermi detection
predicted for some
electron energy
spectrum models, can't
comment on results
(but paper submitted to
Science, should be out
soon).
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TeV inverse-Compton

Should be detectable (in principle) from sources
containing >TeV electrons (as possibly in some
SNR)

For high B-fields (compact, kpc-scale regions of
the source) these will be X-ray synchrotron
sources — so X-ray Is no use for measuring B.

Can make use of relatively good sensitivity and
resolution of y-ray telescopes at highest energies.

Probably not contaminated by p-p gammas since
proton density is low or zero in these regions.



Where are the TeV electrons?

1) Sub-pc jets of all classes of object?

2) FRII hotspots — as discussed above
3) Jets of FRI radio galaxies, and

4) Shocks around the large-scale lobes

In the last two cases nearby objects give us exquisitely
detailed pictures of the electron distribution...
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Existing TeV sources

Many blazars, plus a total of 2.5 radio galaxies:

* M87: long-standing detection; recent timing
analysis shows at least some TeV associated
with inner jet (Acciari+ 09)
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Existing TeV sources

Many blazars, plus a total of 2.5 radio galaxies:

* M87: long-standing detection; recent timing
analysis shows at least some TeV associated
with inner jet (Acciari+ 09)

* Cen A: recent HESS detection (Aharonian+
)

« 3C66B7? Confused with blazar 3C66A, but a
possible detection (e.g. Tavecchio +
Ghisellini 09)

All 3 RGs have bright X-ray jets (TeV electrons
on kpc scales).



Models for RG TeV emission

Three general classes of IC models:

1) From close to accretion flow — e.g. Rieger +
Aharonian 09 for Cen A.

2) From pc-scale jet — e.g. Ghisellini+ 05. Requires
assumptions about electron distributions that are
not directly testable, but consistent with variability
observations in M87 & with many detections of
blazars; probably true at some level.

3) From kpc-scale structures (e.g. Stawarz+ 03) —
constrained by, and constraining of, reasonably
well-understood physics.



Extended IC modelling

* Electron energy distribution constrained via
synchrotron observations

 Various photon fields must be considered:
— Synchrotron photons (SSC)
— CMB
— Extragalactic background light (EBL)
— Starlight (inside host galaxy)
— Hidden quasar/blazar
* Crucial to take Klein-Nishina effects and

anisotropy of photon fields, IC emissivity into
account. Work in progress...
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of a lepton-dominated pressure
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09).



Extended IC modelling

* Work still needed on spatially resolved
modelling codes, but

« At the moment it appears that HESS
detections of Cen A are already
constraining — limits set on B-field
strength.

« Could also consider non-varying
component of M87 TeV flux?



What can the CTA do for us?

* Improved sensitivity

— But we are going to struggle to detect new
non-nuclear IC sources, see next slides

* Improved spatial resolution

— Helps us separate nuclear and off-nuclear
components, important for emission
mechanism constraints.



Pictor A

Brightest nearby X-ray (09, (Eneray/o%)

synchrotron hotspot. ¢ s o s 0

Not readily detectable
In SSC for fields close
to equipartition.

(Consistent with
Zhang+ 09 — they
assume B << B,.)

Tough to detect
hotspots even with
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3C66B

Representative nearby
(D = 100 Mpc) FRI radio
galaxy — not M87 or Cen
JAY

Better luck here thanks to
starlight — but still only
marginally detectable in
this one-zone model.

(Electron distribution
gives IC peak in between
CTA and Fermi sensitivity
maxima.)

MAGIC detection, if real,
IS probably not jet IC?
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CTA resolution

» Peak resolution ~ couple of arcmin

« Capable of resolving nearby FRIIl sources
— If any are detectable (B << B)

* Marginally resolves Cen A jet and inner
lobes! — If jet Is not detected strong
constraints are placed on B-field strength
In jet.



Summary

« TeV studies of (lobe-dominated) radio-loud AGN
provide us with the opportunity to extend
successful use of inverse-Compton diagnostics to
systems in which X-ray studies are not possible.
TeV IC is mandatory for X-ray synchrotron
sources.

« Detalled inverse-Compton studies taking into
account all the physics have not yet been done,
but existing constraints are already interesting for
a few famous objects.

« CTA sensitivity and resolution will improve things,
though there will still be a lot that we can’t see!



