

Opportunities for multi-TeV gamma-ray science

Jim Hinton • **Hinton**

2 Detector Considerations

For a 3-300 TeV Imaging Atmospheric Cherenkov Telescope Array

» Collection area

- Require several km² to reach 10⁻¹³ erg cm⁻² s⁻¹ @ 10 TeV
- » Telescope size/separation
 - Separation >200m required for <100 telescopes</p>
 - > 100 pe images for 3 TeV shower @250m \rightarrow 5m mirror
 - Relatively inexpensive (but camera cost dominates)
- » Field of view
 - > 250 m spacing implies typical offset of image from source of ~3° - need an 8° camera
- » Angular resolution
 - > 1' @10 TeV shower fluctuations \downarrow with energy...

Adapted from Werner Hofmann

4 Angular resolution

3-100 TeV

- » <1 arcminute precision achievable only > TeV
- » <1 arcminute achievable at 100 TeV with modest collection efficiency

5 Gamma-ray Emission

» Need >TeV parent particles

- > Decay of "exotic" particles
 - Neutralinos, topological defects, ...
- Accelerated
 - Protons and Nuclei
 - > Dominant radiation via π_0 decay (PeV \rightarrow 10-100 TeV)
 - Electrons
 - > Dominant radiation is IC (at high energies)
 - (bremsstrahlung dominates at 1 TeV only if n>200 cm⁻³)

> Ratio?

> F(brems)/F(π_0) ~ 3 (N_e/N_p) @ 1 TeV

» TeV Astronomy = High Energy Astrophysics + TeVscale particle physics

See Anne's Talk

6 Gamma-ray Emission

» Need >TeV parent particles

- > Decay of "exotic" particles
 - Neutralinos, topological defects, ...
- Accelerated
 - Protons and Nuclei
 - > Dominant radiation via π_0 decay (PeV \rightarrow 10-100 TeV)
 - Electrons
 - > Dominant radiation is IC (at high energies)
 - (bremsstrahlung dominates at 1 TeV only if n>200 cm⁻³)
 - > Ratio?
 - > F(brems)/F(π_0) ~ 3 (N_e/N_p) @ 1 TeV
- » TeV Astronomy = High Energy Astrophysics + TeVscale particle physics

7 Galactic Pevatrons

» Locally measured cosmic ray spectrum

- > Extends smoothly to ~3 PeV (need 100 TeV photons)
- Galactic origin at least this far

Adapted from Werner Hofmann

9 X-ray Connection ?

» IC & Synchrotron emission of VHE electrons

- > $E_{sync} \sim 2 (E_e/50 \text{ TeV})^2 (B/10 \ \mu\text{G}) \text{ keV}$
- > $E_{IC} \sim 20 \ (E_e/50 \ TeV)^2$ (on CMBR) TeV
- » For typical ISM B-fields: >10 TeV IC photons probe the same electron population as X-ray synchrotron emission
 - > even with FIR target photons as then K-N effect
- » Magnetic fields can then be inferred
 - If angular resolution of both measurements is sufficient

10 Simplest non-thermal SEDs

University of Leicester

3-300 TeV

» dN/dE ~ E⁻² primary particles, E_{max}=1/100 TeV

11 Simplest non-thermal SEDs

University of Leicester

Proton acceleration beyond 100 TeV

3-300 TeV

» dN/dE ~ E^{-2} primary particles, $E_{max} = 1/100$ TeV

12 Simplest non-thermal SEDs

University of **Leicester**

ISM X-ray synchrotron emitting electrons 3-300 TeV $E^{2} dN/dE (erg cm^{-2} s^{-1})$ synchrotron Electrons, E⁻² Spectra bremsstrahlung 100 TeV E-1.5 $\mathsf{E}_{\mathsf{max}}$ 10⁻¹³ 1 TeV Te 2 ké\ 10-14 10⁻⁵ 10⁻³ 10⁹ 10¹³ 10^{3} 10⁵ 10¹¹ 10⁻¹ 10^{7} 10¹⁵ 10 $(10^{11} \text{ cm}^{2} \text{ s}^{-1})$ π^0 decay Protons, E⁻² Spectra secondary synch. 1 TeV 100 TeV 10⁻¹³ 10⁻⁵ 10⁻³ 10^{3} 10⁵ 10⁷ 10⁹ 10¹¹ 10¹³ 10⁻¹ 10¹⁵ 10 Energy (eV)

» dN/dE ~ E^{-2} primary particles, $E_{max} = 1/100$ TeV

13 Source Morphology

University of Leicester

» Emission region size

- Protons and nuclei
 - > likely diffusion limited growing with energy
 - $r \sim E^{\Delta/2}, \Delta = 0.3-1.0$
- Electrons
 - > likely cooling limited shrinking with energy

 $t_{cool} \sim 1/E_{e}$, $r \sim t^{a}$

» Substructure

- Electrons
 - Located very close to their acceleration sites at high E
- Protons
 - Substructure from distribution of target material

Supernova Remnants

5'

1'

•

16 With resolved E-dep. morphology

- » Identification of the nature of the radiating particles (hadrons versus leptons)
 - Together with current and future X-ray and radio telescopes to probe synchrotron emission
- » Understanding of the transport of ultrarelativistic particles
 - At the moment we know very little
- » Understanding the magnetic field strength and structure in SNRs, PWN, ...
- » Identification of currently UnID sources
 - > and better understanding of source evolution

The Galactic Centre

HESS

Many targets
 Angular resolution critical to disentangle them...

NRAO: 20cm, 1.1mm, 5 µm

The Galactic Centre

Many targets
 Angular resolution critical to disentangle them...

19 Cosmic Ray Diffusion

- » Simulation of the GC region as seen by an instrument 10× more sensitive than HESS
 - > p diffusion
 - > p-p gammas
 - Instrument response
- Measure energy -dependence of Diffusion Coefficient

University of

Leicester

20 SNR RX J1713.7-3946

HESS

University of Leicester

ASCA 5'

ASCA 1.5'

- » Small-scale (<10% radius) structure of B-fields and CRs ?
- » Test theory of magnetic field amplification in CR modified shocks

21 Unresolvable systems?

- > Not resolvable, but...
- » Orbital modulation See Julian's talk
 - Probe acceleration, transport etc under different conditions
 - Need better statistics / sensitivity to provide phaseresolved wide-band spectra
- » Internal Cascading: $\gamma\gamma \rightarrow e^+e^-$
 - > Cross section peaks at $(E_{\gamma}/TeV) \times (E_t/eV) \sim 0.9$
 - Recovery at higher energies
 - For T~10⁴ K, E_t ~1 eV
 - Back to intrinsic spectrum at 10 TeV

22 Galactic Source Populations

University of

eicester

- » Typical index 2.3 no cut-offs below ~10 TeV
 » Many multi-TeV galactic sources
- » Confusion limit reached for current angular resolution and a factor ~3 better sensitivity
 - A future TeV instrument must have better angular resolution
- » Wide field of view
 - Improves survey sensitivity
 - Improves control of background (off-plane regions in FoV)

23 The gamma-ray horizon

University of **Leicester**

From Franceschini et al 2009

24 The gamma-ray horizon

University of Leicester

From Franceschini et al 2009

25 The gamma-ray horizon

😫 University of

eicester

- » Multi-TeV horizon at redshift ~0.25
- » Very likely all **unbeamed** sources detectable >3 TeV
- » Hard/strong sources detectable even with $\tau=5$
- » Deeply absorbed TeV sources tightly constrain FIR EBL

26 Starburst Galaxies

» M 82

VERITAS Discovery 2009

» NGC 253HESS Discovery 2009

z=0.0008

z=0.0008

Enhanced star formation / supernova rate in a high density starburst region TeV implies CR density ~ SFR, but TeV emission from π_0 inside starburst or IC in superwind, or ...

27 Active Galactic Nuclei

- » Nearby Radio Galaxies See Martin's talk
 - > M 87
 - Probe fast variability close to SMBH
 - > Cen A
 - Separating lobes from nucleus
- » Blazars
 - Several are close enough for detailed studies @ ~3 TeV
 Acceleration, cooling lags [factor ~50 more statistics]
 - LIV constraints see Ulisses' talk

28 Cluster-scale AGN outbursts

Hinton, Domainko & Pope 2007

29 Conclusions

- » 3-300 TeV sensitivity is critical to address the major questions in high energy astrophysics / particle astrophysics
- » Excellent angular resolution (the best possible anywhere above ~100 keV) is both possible and required