ECE 3313
ELECTROMAGNETICS I

Electromagnetics (EM) - the study of electric and magnetic phenomena.

A knowledge of the fundamental behavior of electric and magnetic
fields is necessary to understand the operation of such devices as resistors,
capacitors, inductors, diodes, transistors, transformers, motors, relays,
transmission lines, antennas, waveguides, optical fibers and lasers.

All electromagnetic phenomena are governed by a set of four
equations known as Maxwell’s equations.

Maxwell’s Equations

VXE:—a_B
ot
VXH=J+8—D
ot
V-D=p,
V-B=0

E - electric field intensity
H - magnetic field intensity
D - electric flux density

B - magnetic flux density
J - current density

P, - volume charge density
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Electrostatic fields, magnetostatic fields, electromagnetic fields,

electromagnetic waves, transmission lines.
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Waveguides, fiber optics, antennas, electromagnetic compatibility,

analytical and computational electromagnetics.



Vector Algebra

The quantities of interest appearing in Maxwell’s equations along
with other quantities encountered in the study of EM can almost always be
classified as either a scalar or a vector (tensors are sometimes encountered
in EM but will not be covered in this class).

Scalar - a quantity defined by magnitude only.
[examples: distance (x), voltage (V'), charge density (p,), etc.]

Vector - a quantity defined by magnitude and direction.
[examples: velocity (v), current (1), electric field (E), etc.]

Note that vectors are denoted with boldface letters. The magnitude of a
vector may be a real-valued scalar or a complex-valued scalar (phasor).

Vector Addition (Parallelogram Law)

B

Commutative Law
A+B = B+A

Associative Law
(A+B)+C = A+(B+CO)




Vector Subtraction

A-B=A+-B)

Note:

(1) The magnitude of the vector A-B is the separation distance d
between the points a and b located by the vectors A and B,
respectively [d = |4-B| = |B-A]].

(2) The vector A-B is the vector pointing from b (origination
point) to a (termination point).

Multiplication and Division By a Scalar

a(A+B)=aA+aB (Distributive law)

A+B A+1B

1
a a a




Coordinate Systems

A coordinate system defines points of reference from which specific
vector directions may be defined. Depending on the geometry of the
application, one coordinate system may lead to more efficient vector
definitions than others. The three most commonly used coordinate systems
used in the study of electromagnetics are rectangular coordinates (or
cartesian coordinates), cylindrical coordinates, and spherical coordinates.

Rectangular Coordinates

Right-handed
coordinate system

<Y

<Y
<

5

The rectangular coordinate system is an orthogonal coordinate system
with coordinate axes defined by x, y, and z. The coordinate axes in an
orthogonal coordinate system are mutually perpendicular. By convention,
we choose to define rectangular coordinates as a right-handed coordinate
system. This convention ensures that the three coordinate axes are always
drawn with the same orientation no matter how the coordinate system may
be rotated. If we position a right-handed screw normal to the plane
containing the x and y axes, and rotate the screw in the direction of the x
axis rotated toward the y axis, the direction that the screw advances defines
the direction of the z axis in a right-handed coordinate system.



Component Scalars and Component Vectors

Given an arbitrary vector E in rectangular coordinates, the vector E
can be described (using vector addition) as the sum of three component
vectors that lie along the coordinate axes.

E = Ex +Ey +EZ

T T T Component Vectors

The component vectors can be further simplified by defining unit vectors
along the coordinate axes: X,y and Z. Each of these unit vectors have
magnitudes of unity and directions parallel to the respective coordinate
axis. The component vectors can be written in terms of the unit vectors as

E =|E|%=E%
E,=|E|y=E,p
E,=|E|£=E%

E=E, +Ey +E =E X +Eyﬁ +E 2

Lt 1

Component Scalars



Thus, using component scalars, any rectangular coordinate vector can be
uniquely defined using three scalar quantities that represent the magnitudes
of the respective component vectors.

To define a unit vector in the direction of E, we simply divide the
vector by its magnitude.

A

E EX+Ey+E3: (

d, = = unit vector in the
E|

\/Exz +Ey2 +E22 direction of E

where the magnitude of E is the diagonal of the rectangular volume formed
by the three component scalars.

Example (Unit vector)

Given the vector E = (x+y)X+3p+z2% , determine the unit vector
in the direction of E at the rectangular coordinate location of (1,1,1).

E =x+y
E =3 Note that two of the component scalars
y are functions of position (the direction of
2 the vector changes with position).
E =z
A A 2 A
i, = E _(x+y)X+3y+27¢ unit vector as a

|E| J(x+y)P+9+z4 function of position

At the point (1,1,1) [x =1, y =1, z = 1], the unit vector is

a.=

; £+35+2)

1,
\/ﬁ



Example (Vector addition)

An airplane with a ground speed of 350 km/hr heading due west flies
in a wind blowing to the northwest at 40 km/hr. Determine the true air
speed and heading of the airplane.

N
A
Y
vV, - airplane ground speed vector
V,, - wind speed vector
v, - airplane true air speed vector
v, v,
W——= >E
Vg X
S

v, = 350(-x) = -350x
v, =40c0s45°(-xX)+40sin45°(y) = -28.3X +28.3y
v,=v, *tv, = -350X -28.3xX+283y = -378.3X+28.3y

a

v | = (3783)*+(28.3)* =379.4 km/hr

0= tan'lﬁ = 4.28° north of west



Dot Product
(Scalar Product)

The dot product of two vectors A and B (denoted by 4 - B) is defined
as the product of the vector magnitudes and the cosine of the smaller angle
between them.

A-B=|A||B|cosb = ABcosH , B

0
AB=B-A (commutative law) v

>
A

The dot product is commonly used to determine the component of a vector
in a particular direction. The dot product of a vector with a unit vector
yields the component of the vector in the direction of the unit vector.
Given two vectors A and B with corresponding unit vectors a, and a,, the
component of 4 in the direction of B (the projection of A onto B) is found
evaluating the dot product of 4 with a,. Similarly, the component of B in
the direction of 4 (the projection of B onto A) is found evaluating the dot
product of B with a,.

A-dy=|A||dy cosb ,=AcosO ,

B-i, = |B||d,| cosO ,=Bcosb ,




The dot product can be expressed independent of angles through the
use of component vectors in an orthogonal coordinate system.

A =Ax)2+Ayﬁ+Azzf
B=B x+B,y+B %
A-B=(4.% +Ayﬁ +4,2) (B X +By +B %)
=4, B X-X+A B X-y+A4B X%
+AB y-X+A By y+AB y-Z
+A,B ¢ X+AB 2-y+A4,B 2%

The dot product of like unit vectors yields one (0 ,, = 0°) while the dot
product of unlike unit vectors (0 ,, = 90°) yields zero. The dot product

results are

£:%=1 £9=0 £-4=0
£=0 pp=1  $-5=0
2:%=0 £:p=0 2-2=1

The resulting dot product expression is

A-B=AB +A B +ARB
xTx yoy z7z



Cross Product
(Vector Product)

The cross product of two vectors A and B (denoted by AxB) is
defined as the product of the vector magnitudes and the sine of the smaller
angle between them with a vector direction defined by the right hand rule.

AXB=|A||B|sin0 ,h = ABsin6 A

AXB=-BxA (not commutative)

Note: (1) the unit vector A is normal to
the plane in which 4 and B lie.
(2) ABsin0,, = area of the parallelogram
formed by the vectors 4 and B.

Using component vectors, the cross product of 4 and B may be
written as

A=4 x +Ayﬁ+Asz
B =B x +By Y+B. %
AxB=(A%+A,p+4,2)* (B ,X+B y+B,1)
=A B XXX+ AxByJ?: xy+A B XxZ
+AyBxﬁ><x? +AyByﬁ><ﬁ +AyBZﬁ><ZT
+A,B txX+AB xy+AB X%
The cross product of like unit vectors yields zero (0 ,, = 0°) while the cross
product of unlike unit vectors (0 ,,=90°) yields another unit vector which

is determined according to the right hand rule. The cross products results
are

£x%=0  E£xj=f  £xi=-J £
yAX.f:—i ﬁXﬁ:O J’)\Xé\:.x‘\
gx®=p  gxP=-% £x2=0 7



The resulting cross product expression is
AXxB = (AyBZ - AZBy))E +(A,B,-A By + (AxBy - AyBx) Z

This cross product result can also be written compactly in the form of a
determinant as

x 4

X AZ
B

y

4, 4,
B, B
y

X V4

Example (Dot product / Cross product)

Given E =3y +4Z and F=4xX-10p +5Z, determine
(a.) the vector component of E in the direction of F.
(b.) aunit vector perpendicular to both E and F.

(a.) To find the vector component of E in the direction of F, we must dot
the vector E with the unit vector in the direction of F.

;o F _42-109+52 1 40 10505

a: =
" |F| J42 10252 /141

The dot product of E and a, is

1
E-G,=(3p+4%)- ——(4%-10p+5%)
v 141

1
3)(-10) +(4)(5)] = ~——
JTZT[( D) J141

(Scalar component of E along F)



(b.)

The vector component of E along F is

10
E-a )a,=-———(4xX-10y+52%
( F) F 141( y )

To find a unit vector normal to both E and F, we use the cross
product. The result of the cross product is a vector which is normal
to both E and F.

X y Z
ExF=l0 3 4 |=(5%+16§-12%)
4 -10 5

We then divide this vector by its magnitude to find the unit vector.

ExF _ 55%+16p-12¢ _ 1
[ExXF| /552162 +12% /3425

hi = (55%+165-12%)

The negative of this unit vector is also normal to both E and F.



Coordinate and Unit Vector Definitions

Rectangular Coordinates (x,),z) A -
(-0 <x <o)
(moo<y<e)
(- <z <o)
y
>
Cylindrical Coordinates (r,0,z)
I"=\/x2+y2 x:}"COS(I) \\\\ %a\)
b =tan’(y/x)  y=rsind Y
z=z z2=z o
(0 <r<e)
(0<dp<2m)
(~o<z<)

Spherical Coordinates (R,0,¢)

A
R:\/x2+y2+z2 x = RsinOcos R )
= Rsin 0 sin )
0 =tan™! @ Y ¢ p%ﬁ
z z=Rcos0 Pa:
¢ =tan"'(y/x)
(0 < R<)
(0<0<m) X - |
(0<p<2m) y=rsind r=Rsin0



Vector Definitions and Coordinate Transformations

Vector Definitions

Rectangular A=4X +Ayﬁ +A4.2=(4, Ay, A)

Cylindrical ~ A=A F+A $+A4,2=(A4,,4,,4,)
Spherical A=Ay R+A4,0+A4, b = (Ag, 4y, 4,)
Vector Magnitudes

A-A=|A||A|cos0° = [AP = |A|=/A4A

Rectangular |A| = \/sz +Ay2 +AZ2

Cylindrical || =4} +A4+A;

Spherical A =\ A7+ 44 +4,

Rectangular to Cylindrical Coordinate Transformation

(Ax9 Ay’ Az) = (Ara Ad)a Az)

The transformation of rectangular to cylindrical coordinates requires
that we find the components of the rectangular coordinate vector 4 in the
direction of the cylindrical coordinate unit vectors (using the dot product).

The required dot products are

. . yﬁ F+A Z-F =Ax32-f+Ayﬁ F
A¢=A (i):Ax)E (i)+Ayﬁ-(i)+A Z (|)=Ax32 (i)+Ayﬁ (i)
A, =A-Z2=AX-2+A y-2+A 22 =4,

where the Z unit vector is identical in both orthogonal coordinate systems

such that



z )

2°¢=0
£=0 Z2-Z2=1

A

F=0
+2=0 y

X

The four remaining unit vector dot products are determined according to
the geometry relationships between the two coordinate systems.

F =cospxX+sindy

P = -sinp X +cos y

-
-
.
-
-
-
-
.
-
-
.
°

=%-

=
N

(cosp X +sind y) = cosp
=y-(cosp X +sind p) =sin¢
+p =% (-sinp X +cosd ) = -sind
p-d=y-(-sind £ +cosd p) = cosd

‘=,
-

&

The resulting cylindrical coordinate vector is

A=AF+A4,b+4.%
= (A,cos +4 sind)F+(A,cosd-A,sind)p +4,2



In matrix form, the rectangular to cylindrical transformation is

(4] _cos(l) sing 0 _Ax_
Ay |= -sin¢p cosdp O
0 0 1

z z

y

Cvylindrical to Rectangular Coordinate Transformation

(4, Ay, A4,) = (4, 4,,4,)

The transformation from cylindrical to rectangular coordinates can be
determined as the inverse of the rectangular to cylindrical transformation.

11T

_A 11 cosp sing O A _
=| -sin¢p cosp O A
A 0 0 1

_cos(l) -sin¢ 0|[4 ]
=|sin¢p cos¢ O
0 0 1|4

Z -

The cylindrical coordinate variables in the transformation matrix must be
expressed in terms of rectangular coordinates.

X X
cosp == =
r x2+y?
Sind):X:L
r 2,2

xX-+ty



The resulting transformation is

o [ x N 4 o_ o
A /x2+y2 /x2+y2 A,
X

4, = Y 0 A
A \/x2+y2 \/x2+y2 A
0 0 1

The cylindrical to rectangular transformation can be written as

A=4 x +Ay)3 +A4.2
=(4,cos$ -4, sin@) X+ (A4, sinp +A,cosdp)y+4,2

A, —" -4, —F | %
Jx2+y? x2ey?

+ Ar - +A¢ ad yA
/x2+y2 /x2+y2

+A4 7

V4

Rectangular to Spherical Coordinate Transformation

(Ax7 Ay’ Az) = (AR9 AG? Ad))

The dot products necessary to determine the transformation from
rectangular coordinates to spherical coordinates are



The geometry relationships between the rectangular and spherical unit
vectors are illustrated below.

R =sinB#+cosB2
=sinO [cosPp X +sindp p] + cosO 2
=sin0 cos} X +sin0 sin¢p y + cosO 2
0 = cosO 7 - cos(90°-0) 2
=cosO[cosp xX+sindp p] -sinb 2
=cos0 cosp X +cosO sin y - sin0 2

A

¢ = -sindp X + cosPp y

The dot products are then

A A A

X-R=sinOcosp p-R=sinOsinp Z-R =cos0
%0 =cosOcosp p-0=cosOsing 2-0=-sin0
2+ b = -sind P+ =cosd 2-p=0

and the rectangular to spherical transformation may be written as



R _ sinOcosd sinOsing cosbO _ _Ax _
o |=|cosOcosp cosOsing -sin6 A,
4, -sin cos 0 A,

Spherical to Rectangular Coordinate Transformation

(Ag, Ag> Ay) = (4, 4, 4.)

The spherical to rectangular coordinate transformation is the inverse
of the rectangular to spherical coordinate transformation so that

_Ax_ _sinﬁcosd) sin@sin cosB I
1= cosOcosd cosOsing -sinO
A, -sin¢ cosd 0 A
_sinﬂcosd) cosOsing -sing _ _AR
=|sinOsing cosOsing cos¢p ||A4,
cos -sin@ 0 4,

The spherical coordinate variables in terms of the rectangular coordinate

variables are

2.2
: v X+ z z
sinf = — = J cosf = = =
R \/x2+y2+22 R \/x2+y2+22
. X X
Sln(l)ZX: Y COS(I)=—=
v x2+y? r x2+y?



The complete spherical to rectangular coordinate transformation is

X Xz -y
] \/x2+y2+22 \/x2+y2 \/x2+y2+22 \/x2+y2
Ax AR
Y yz X
y|~ Jx2+y2ez? Jx24y2 [x2ep2az? ([x24yp? Ay

4 A
|z ] Z eyt ) o |

_ \/x2+y2+22 \/x2+y2+22




Coordinate Transformation Procedure

(1) Transform the component scalars into the new coordinate
system.

(2) Insertthe component scalars into the coordinate transformation
matrix and evaluate.

Steps (1) and (2) can be performed in either order.

Example (Coordinate Transformations)

Given the rectangular coordinate vector

Pl /x2+y2 . yz
\/x2+y2+22 \/x2+y2+22

(a.) transform the vector A4 into cylindrical and spherical
coordinates.

(b.) transform the rectangular coordinate point P (1,3,5) into
cylindrical and spherical coordinates.

(c.) evaluate the vector 4 at P in rectangular, cylindrical and
spherical coordinates.

Z

2 2

(@)  x=rcosd A_= Xy o __r
y =rsing \/x2+y2+22 p2 472
z=z 4 = yz _ _zrsind
‘ [x2+y2ez? 22 2
r
_Ar |1 cos¢p sing 0 _ _Ax _ cos¢p singp O _ 22 452
4, |= -sing cosdp O A,|= -sing cos¢p O 0
A, 0 0 1|4, 0 0 1]||_zrsing
- N ' 22




A=—" (cosdp 7-sind ¢ -zsind 2)

r2+z2

2...2 .
4 - Vx“+y =Rsmﬁ - sin6

X

x = RsinOcos¢

2.,..,2.,.2 R
y = RsinOsin¢ \/x Yoz
2 = RcosO 4 - yz _ _R’sinBcosOsind
‘ [x2+yier? R
= -Rsin0OcosOsind

AR- -sinﬁcosd) sinOsin¢g cosO I sin 0

Ay |=|cosOcosp cosOsing -sin6 0

Ay | | -sin¢ cosh 0 | | -RsinBcosOsind

A, = sin*0 cosd - RsinO cos0 sind
Ay =sinBcosOcosdp + R sin?0 cos 0 sind

4y = -sin O sin ¢

A =sin0 (sinOcosdp - Rcos?Osind ) R
+sin®cosO (cosP + RsinOsind ) O
~sinOsind ¢



(b) P(1,3,5) = x=1,y=3,z=5

r=yx2+y? =/12+32=/10 =3.16
¢ =tan!(y/x) =tan"1(3/1) = 71.6°

z=z=5

R=yx2+y?+z% =/12+32+5% = /35 =5.92

2 2 /12 2
e = tan_l(x—W) = tan_l(%J = 32.30

z

b =tan(y/x) =tan"'(3/1) = 71.6°

P(1,3,5 = P(3.16,71.6°5) = P (5.92,32.3°71.6°

(c.) A(L3,5) = V123 . (3)(5)

£2=10535x-2.54z¢

V12+3%2+52 12+32+52

A(3.16,71.6%5) = — 310 (00571.6°F-sin71.6°
/3162 + 52

-55in71.6° %)

=1 0.1697-0.507 -2.532

A(5.92,32.3°,71.6°) =
sin32.3° (sin32.3%°cos71.6° - 5.92cos? 32.3°sin71.6° ) R

+5in32.3°¢0s32.3% (cos 71.6° + 5.925in32.3°sin71.6° ) O
-5in32.3°5in71.6° §

= —2.05R +1.500 +0.507




Separation Distances

Given a vector R, locating the point P, and a vector R, locating the
point P,, the distance d between the points is found by determining the
magnitude of the vector pointing from P, to P,, or vice versa.

d=|R,-R,| = |R-R,|

Rectangular

Pl = (xl,yl,zl) Pz = (xzayzazz)
d= (=2, +(3, -3, +(2,-7,)°

Cylindrical
P] = (I‘l, d)pzl) P2 = (1‘2, d)zazz)

d = \/rzz +r12—2rlrzcos((l>2—¢1) +(z,-2,)"

Spherical
P =R,0,0) P,=(R,0,0¢,)

d= \/Rz2 +R12 -2R R,cos0,cos0, -2R R,sin0,sin0 cos(Pp,-¢,)




Constant Coordinate Surfaces

Rectangular Coordinates

Xx = constant
R

i

|

I

!

H ~

z = constant i F
]
I
B i et ion —
/ 7]
X ~ y = constant
Cylindrical Coordinates
r = constant sk ___‘__H‘\

|

: z = constant
|

/Q_“\. i p| 2R

|

|

I

)——-— — b |
7£~7<’
% ¢ = constant

Spherical Coordinates

1

0 = constant

R = constant
e

™~ ¢ = constant




Volumes, Surfaces and Lines in Rectangular,
Cylindrical and Spherical Coordinates

We may define particular volumes, surfaces and lines in rectangular,
cylindrical and spherical coordinates by specifying ranges on the

coordinate variables.

Rectangular volume (2x2x5 box)

yd
(1<x<3)
- 2<y<4)
139 aas (0<z<5)
525 1G.45)
— i / (1,4,0) y
(3.2.0) (3,4,0)

Cylindrical volume (cylinder of length = 5, diameter = 2)

z
_— (0<r<l)
- (0<p<2m)
(0<z<)9)
5
: y



Spherical volume (sphere of diameter = 4)

(0<R<2)
(0<0<m)
(0<dp<2m)

Specific surfaces and lines can be defined in a given coordinate
system according to which coordinate variable(s) is(are) held constant. A
surface results when one of the coordinate variables is held constant while
a line results when two of the coordinate variables are held constant.

Surface on the Rectangular volume

(front face of the box)
(3,2.5)
x=73 (x - constant)
2<y<4)

(0<z<5) /

X

Surface on the Cylindrical volume
(cylinder surface)

r=1 (» - constant)
0<Pp<2m)
(0<z<)5)

(3.4,0)

(14.5)

J 1,40 y



donohoe

donohoe

donohoe


Surface on the Spherical volume .
(outer surface of the sphere)

R=2 (»- constant)
(0<B<m) 7
0O<p<2m) -

Line on the Rectangular volume -
(upper edge of the front face)

(1.4,5)

G2HTTTTGAS)

x=3
2<y<4)

z=15 (z - constant) JNE S s TP
/(3,2,0) TTTTGAD

X

(x - constant)

~~

IN

Line on the Cylindrical volume
(outer edge of the upper surface)

r=1 (r- constant)
(0<p<2m)
z=15 (z- constant)

Line on the Spherical volume
(equator of the sphere)

R=2 (R - constant)
0=mn/2 (0 - constant)
(0<p<2m)



donohoe

donohoe

donohoe


Differential Lengths, Surfaces and Volumes

When integrating along lines, over surfaces, or throughout volumes,
the ranges of the respective variables define the limits of the respective
integrations. In order to evaluate these integrals, we must properly define
the differential elements of length, surface and volume in the coordinate
system of interest. The definition of the proper differential elements of
length (d! for line integrals) and area (ds for surface integrals) can be
determined directly from the definition of the differential volume (dv for
volume integrals) in a particular coordinate system.

Rectangular Coordinates

dv = (dx)(dy)(dz)

dy x-constant ds=dydz
L y-constant ds =dxdz

z-constant ds =dxdy

x,y-constant dl=dz

y X ,z-constant dl=dy
y,z-constant dl =dx

Cvylindrical Coordinates

dv =(dr)(rdd)(dz)
=rdrdd dz

r-constant ds=r dpdz

¢ —constant ds=drdz

z-constant ds=rdrdd

r,$ —constant dl=dz

- ] ]
r,Zz-constant di=r do

¢ ,z-constant dl =dr



Spherical Coordinates

"""""
..

dv = (dR)(RdO)(Rsindd)
= R%sin0 dR d0 dd

R-constant  ds=R’sin0d0dd
O-constant  ds=RsinO dRd}
¢-constant  ds=RdRdO

R,0-constant  d/=R sin0O d¢
R,p-constant d/=R_dO
0,p-constant d/=dR



Example (Line/surface/volume integration)

Using the appropriate differential elements, show that
(a.) the circumference of a circle of radius 7, is 27,
(b.) the surface area of a sphere of radius R, is 4T R .
(c.) the volume of a sphere of radius R, is (4/3) TR, .

(a.)

27 27 27
L:fdl=frod¢=rofd¢=ro[¢]|0 z
0 0
| |
" L=2mr, |
1~
X dl =r,dd
(b) 2n w
Sszds = ijsinededcb
$=0 6=0 Z | ds = R?sinBdO dp
2n 0w :
\
=R, sin0 dO do N
¢[0 9[0 - R, =
) ) ’ 2n y
=R, fsmﬂd@fdd)
0 0 X

i 27
=R, [-cos0]| []]

=R} (2)(27)

§S=4nR3§



donohoe

donohoe

donohoe


(c)

V=fffdv Z| 4v-R?sin0dRAOdd
27 T Ro ‘k\.‘f:\
= f f fstianRdBdcb R L
$=0 0=0 R=0 D I
R, i 27 J
= [R%dR [sin®dO [ dp X
jrajumsa]
- RD
) R3 ) T 2n
=1 5| | [-eos0l] 1011
- 0
R3
= —21(2)(2=n
3 (2)(2m)
V=£7tRO3 i
| 3 |
|



donohoe

donohoe

donohoe


Example (Surface/volume integration in spherical coordinates)

A three-dimensional solid is described in spherical coordinates
according to
(0O<R<1) (0 <0 <m/4) (0 < ¢ <2m)
(a.) Sketch the solid.
(b.) Determine the volume of the solid.
(c.) Determine the surface area of the solid

(a)
spherical coordinate differential volume
dv = (dR)(RdO)(RsinBdd)
ds,,, = R sin® d0d¢ = sin0 d@ d(b
(R,=1) z
N _ 0=45°
7 5
O<=/ 1
. v ds,,,=Rsin® dRdd =— RdRd
i ; (8, =45 V2
. \ “ y
X R =1
b.
( ) 2n w/4 1
V= fffdv = f f f R?2sin®dR db d
$=0 =0 R=0
1
/4

fdeR fsmGdG qu) [ - cose]i [q)][z:

0

q

1
= —||-—+1|(27) .V =0.613 units>
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(c)

S=§,_+8§

top cone

J [

top surface

21 w4

[ ]

$=0 6=0
/4

f sin O dO

0

=[- cosG]|

1,

V2

f fdscone

cone surface

0d0dp + RAR dd
' 2 ¢f0 Rfo

f@+_J%&f®

1
27
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S = 4.06 units?
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