
ECE 3313

ELECTROMAGNETICS I

Electromagnetics (EM) - the study of electric and magnetic phenomena.

A knowledge of the fundamental behavior of electric and magnetic

fields is necessary to understand the operation of such devices as resistors,

capacitors, inductors, diodes, transistors, transformers, motors, relays,

transmission lines, antennas, waveguides, optical fibers and lasers.

All electromagnetic phenomena are governed by a set of four

equations known as Maxwell’s equations.

Maxwell’s Equations

E - electric field intensity

H - magnetic field intensity

D - electric flux density

B - magnetic flux density

J - current density

vD  - volume charge density

ECE 3313  Electromagnetics I

Electrostatic fields, magnetostatic fields, electromagnetic fields,

electromagnetic waves, transmission lines.

ECE 3323 Electromagnetics II

Waveguides, fiber optics, antennas, electromagnetic compatibility,

analytical and computational electromagnetics.



Vector Algebra

The quantities of interest appearing in Maxwell’s equations along

with other quantities encountered in the study of EM can almost always be

classified as either a scalar or a vector (tensors are sometimes encountered

in EM but will not be covered in this class).

Scalar - a quantity defined by magnitude only.

v[examples: distance (x), voltage (V ), charge density (D ), etc.]

Vector - a quantity defined by magnitude and direction.

[examples: velocity (v), current (I ), electric field (E ), etc.]

Note that vectors are denoted with boldface letters.  The magnitude of a

vector may be a real-valued scalar or a complex-valued scalar (phasor).

Vector Addition (Parallelogram Law)



Vector Subtraction

Note:

(1) The magnitude of the vector A!B is the separation distance d

between the points a and b located by the vectors A and B,

respectively [d = *A!B* = *B!A*].
(2) The vector A!B is the vector pointing from b (origination

point) to a (termination point).

Multiplication and Division By a Scalar



Coordinate Systems

A coordinate system defines points of reference from which specific

vector directions may be defined.  Depending on the geometry of the

application, one coordinate system may lead to more efficient vector

definitions than others.  The three most commonly used coordinate systems

used in the study of electromagnetics are rectangular coordinates (or

cartesian coordinates), cylindrical coordinates, and spherical coordinates.

Rectangular Coordinates

The rectangular coordinate system is an orthogonal coordinate system

with coordinate axes defined by x, y, and z.  The coordinate axes in an

orthogonal coordinate system are mutually perpendicular.  By convention,

we choose to define rectangular coordinates as a right-handed coordinate

system.  This convention ensures that the three coordinate axes are always

drawn with the same orientation no matter how the coordinate system may

be rotated.  If we position a right-handed screw normal to the plane

containing the x and y axes, and rotate the screw in the direction of the x

axis rotated toward the y axis, the direction that the screw advances defines

the direction of the z axis in a right-handed coordinate system.



Component Scalars and Component Vectors

Given an arbitrary vector E in rectangular coordinates, the vector E

can be described (using vector addition) as the sum of three component

vectors that lie along the coordinate axes.

The component vectors can be further simplified by defining unit vectors

along the coordinate axes:                    .  Each of these unit vectors have

magnitudes of unity and directions parallel to the respective coordinate

axis.  The component vectors can be written in terms of the unit vectors as



Note that two of the component scalars
are functions of position (the direction of
the vector changes with position).

Thus, using component scalars, any rectangular coordinate vector can be

uniquely defined using three scalar quantities that represent the magnitudes

of the respective component vectors.

To define a unit vector in the direction of E, we simply divide the

vector by its magnitude.

where the magnitude of E is the diagonal of the rectangular volume formed

by the three component scalars.

Example (Unit vector)

Given the vector                                        , determine the unit vector

in the direction of E at the rectangular coordinate location of (1,1,1).

At the point (1,1,1) [x = 1, y = 1, z = 1], the unit vector is



Example (Vector addition)

An airplane with a ground speed of 350 km/hr heading due west flies

in a wind blowing to the northwest at 40 km/hr.  Determine the true air

speed and heading of the airplane.  



Dot Product
(Scalar Product)

The dot product of two vectors A and B (denoted by A @B ) is defined

as the product of the vector magnitudes and the cosine of the smaller angle

between them.

The dot product is commonly used to determine the component of a vector

in a particular direction.  The dot product of a vector with a unit vector

yields the component of the vector in the direction of the unit vector.

A BGiven two vectors  A and B with corresponding unit vectors a  and a , the

component of A in the direction of B (the projection of A onto B) is found

Bevaluating the dot product of A with a .  Similarly, the component of B in

the direction of A (the projection of B onto A) is found evaluating the dot

Aproduct of B with a . 



The dot product can be expressed independent of angles through the

use of component vectors in an orthogonal coordinate system.

ABThe dot product of like unit vectors yields one (2  = 0 ) while the doto

ABproduct of unlike unit vectors  (2  = 90 ) yields zero.  The dot producto

results are

The resulting dot product expression is



Cross Product
(Vector Product)

The cross product of two vectors A and B (denoted by A × B ) is

defined as the product of the vector magnitudes and the sine of the smaller

angle between them with a vector direction defined by the right hand rule.

   Note:  (1) the unit vector     is normal to 

the plane in which A and B lie.

AB (2) AB sin2  = area of the parallelogram 

formed by the vectors A and B.

Using component vectors, the cross product of A and B may be

written as

ABThe cross product of like unit vectors yields zero (2  = 0 ) while the crosso

ABproduct of unlike unit vectors  (2  = 90 ) yields another unit vector whicho

is determined according to the right hand rule.  The cross products results

are



The resulting cross product expression is

This cross product result can also be written compactly in the form of a

determinant as

Example (Dot product / Cross product)

Given                                                            , determine

(a.) the vector component of E in the direction of F.

(b.) a unit vector perpendicular to both E and F.

(a.) To find the vector component of E in the direction of F, we must dot

the vector E with the unit vector in the direction of F.

FThe dot product of E and a  is

          (Scalar component of E along F )



The vector component of E along F is

(b.) To find a unit vector normal to both E and F, we use the cross

product.  The result of the cross product is a vector which is normal

to both E and F.

We then divide this vector by its magnitude to find the unit vector.

The negative of this unit vector is also normal to both E and F.



Coordinate and Unit Vector Definitions

Rectangular Coordinates (x,y,z)

Cylindrical Coordinates (r,N,z)

Spherical Coordinates (R,2,N)



Vector Definitions and Coordinate Transformations

Vector Definitions

Vector Magnitudes

Rectangular to Cylindrical Coordinate Transformation

x y rz N z(A , A , A )  Y  (A , A , A )

The transformation of rectangular to cylindrical coordinates requires

that we find the components of the rectangular coordinate vector A in the

direction of the cylindrical coordinate unit vectors (using the dot product).

The required dot products are

where the      unit vector is identical in both orthogonal coordinate systems

such that



The four remaining unit vector dot products are determined according to

the geometry relationships between the two coordinate systems.

The resulting cylindrical coordinate vector is



In matrix form, the rectangular to cylindrical transformation is

Cylindrical to Rectangular Coordinate Transformation

r x yN z z(A , A , A )  Y  (A , A , A )

The transformation from cylindrical to rectangular coordinates can be

determined as the inverse of the rectangular to cylindrical transformation.

The cylindrical coordinate variables in the transformation matrix must be

expressed in terms of rectangular coordinates.



The resulting transformation is

The cylindrical to rectangular transformation can be written as

Rectangular to Spherical Coordinate Transformation

x y z R 2 N(A , A , A )  Y  (A , A , A )

The dot products necessary to determine the transformation from

rectangular coordinates to spherical coordinates are



The geometry relationships between the rectangular and spherical unit

vectors are illustrated below.

The dot products are then

and the rectangular to spherical transformation may be written as



Spherical to Rectangular Coordinate Transformation

R x y z2 N(A , A , A )  Y  (A , A , A )

The spherical to rectangular coordinate transformation is the inverse

of the rectangular to spherical coordinate transformation so that

The spherical coordinate variables in terms of the rectangular coordinate

variables are



The complete spherical to rectangular coordinate transformation is 



Coordinate Transformation Procedure

(1) Transform the component scalars into the new coordinate

system.

(2) Insert the component scalars into the coordinate transformation

matrix and evaluate.

Steps (1) and (2) can be performed in either order.

Example (Coordinate Transformations)

Given the rectangular coordinate vector

(a.) transform the vector A into cylindrical and spherical

coordinates.

(b.) transform the rectangular coordinate point P (1,3,5) into

cylindrical and spherical coordinates.

(c.) evaluate the vector A at P in rectangular, cylindrical and

spherical coordinates.

(a.)





(b.) P (1, 3, 5)    Y    x = 1, y = 3, z = 5

P (1, 3, 5)    Y    P (3.16, 71.6 , 5)    Y    P (5.92, 32.3 , 71.6 )o o  o

(c.)



Separation Distances

1 1 2Given a vector R  locating the point P  and a vector R  locating the

2point P , the distance d between the points is found by determining the

1 2magnitude of the vector pointing from P  to P , or vice versa. 



x = constant

z = constant

y = constant

r = constant

z = constant

N = constant

R = constant

N = constant

2 = constant

Constant Coordinate Surfaces

Rectangular Coordinates

Cylindrical Coordinates

Spherical Coordinates



Volumes, Surfaces and Lines in Rectangular,

Cylindrical and Spherical Coordinates

We may define particular volumes, surfaces and lines in rectangular,

cylindrical and spherical coordinates by specifying ranges on the

coordinate variables.

Rectangular volume  (2×2×5 box)

(1#x#3)

(2#y#4)

(0#z#5)

  

Cylindrical volume (cylinder of length = 5, diameter = 2)

(0#r#1)

(0#N#2B)

(0#z#5)

  



donohoe

donohoe

donohoe



donohoe

donohoe

donohoe



Differential Lengths, Surfaces and Volumes

When integrating along lines, over surfaces, or throughout volumes,

the ranges of the respective variables define the limits of the respective

integrations.  In order to evaluate these integrals, we must properly define

the differential elements of length, surface and volume in the coordinate

system of interest. The definition of the proper differential elements of

length (dl for line integrals) and area (ds for surface integrals) can be

determined directly from the definition of the differential volume (dv for

volume integrals) in a particular coordinate system.

Rectangular Coordinates

Cylindrical Coordinates



Spherical Coordinates



donohoe

donohoe

donohoe



donohoe

donohoe

donohoe



donohoe

donohoe

donohoe



(c.)
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