Vectors and Tensor Operations in Polar Coordinates

 

 

 
 

Many simple boundary value problems in solid mechanics (such as those that tend to appear in homework assignments or examinations!) are most conveniently solved using spherical or cylindrical-polar coordinate systems.

 

The main drawback of using a polar coordinate system is that there is no convenient way to express the various vector and tensor operations using index notation MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@37E6@ everything has to be written out in long-hand.  In this section, therefore, we completely abandon index notation MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@37E6@ vector and tensor components are always expressed as matrices.

 

 

Spherical-polar coordinates

 

1.1 Specifying points in spherical-polar coordinates

 

To specify points in space using spherical-polar coordinates, we first choose two convenient, mutually perpendicular reference directions (i and k in the picture).  For example, to specify position on the Earth’s surface, we might choose k to point from the center of the earth towards the North Pole, and choose i to point from the center of the earth towards the intersection of the equator (which has zero degrees latitude) and the Greenwich Meridian (which has zero degrees longitude, by definition).

 

Then, each point P in space is identified by three numbers, R,θ,ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadkfacaGGSaGaeqiUdeNaaiilaiabew9aMjaaykW7aaa@37A7@ shown in the picture above.  These are not components of a vector.

 

In words:

R is the distance of P from the origin

θ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabeI7aXbaa@321D@ is the angle between the k direction and OP

ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabew9aMbaa@322F@ is the angle between the i direction and the projection of OP onto a plane through O normal to k

 

By convention, we choose  R0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadkfacqGHLjYScaaIWaaaaa@33BE@0θ180o MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaaicdacqGHKjYOcqaH4oqCcqGHKjYOcaaIXaGaaGioaiaaicdadaahaaWcbeqaaiaad+gaaaaaaa@3999@ and 0ϕ360o MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaaicdacqGHKjYOcqaHvpGzcqGHKjYOcaaIZaGaaGOnaiaaicdadaahaaWcbeqaaiaad+gaaaaaaa@39AB@

 

 

1.2 Converting between Cartesian and Spherical-Polar representations of points

 

When we use a Cartesian basis, we identify points in space by specifying the components of their position vector relative to the origin (x,y,z), such that r=xi+yj+zk MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahkhacqGH9aqpcaWG4bGaaCyAaiabgUcaRiaadMhacaWHQbGaey4kaSIaamOEaiaahUgaaaa@3A00@  When we use a spherical-polar coordinate system, we locate points by specifying their spherical-polar coordinates R,θ,ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadkfacaGGSaGaeqiUdeNaaiilaiabew9aMbaa@361C@

 

The formulas below relate the two representations.  They are derived using basic trigonometry

x=Rsinθcosϕy=Rsinθsinϕz=Rcosθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4bGaeyypa0JaamOuaiGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaaykW7aeaacaWG5bGaeyypa0JaamOuaiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMbqaaiaadQhacqGH9aqpcaWGsbGaci4yaiaac+gacaGGZbGaeqiUdehaaaa@5801@                    R=x2+y2+z2θ=cos1z/Rϕ=tan1y/x MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGsbGaeyypa0ZaaOaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadQhadaahaaWcbeqaaiaaikdaaaaabeaakiaaykW7aeaacqaH4oqCcqGH9aqpciGGJbGaai4BaiaacohadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWG6bGaai4laiaadkfaaeaacqaHvpGzcqGH9aqpciGG0bGaaiyyaiaac6gadaahaaWcbeqaaiabgkHiTiaaigdaaaGccaWG5bGaai4laiaadIhaaaaa@5637@

1.3 Spherical-Polar representation of vectors

 

When we work with vectors in spherical-polar coordinates, we abandon the {i,j,k} basis.  Instead, we specify vectors as components in the {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@ basis shown in the figure.  For example, an arbitrary vector a is written as a=aReR+aθeθ+aϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadggadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadggadaWgaaWcbaGaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaakiaaykW7aaa@4510@, where (aR,aθ,aϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGOaGaamyyamaaBaaaleaacaWGsbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaGGSaGaamyyamaaBaaaleaacqaHvpGzaeqaaOGaaiykaaaa@3D28@ denote the components of a.

 

The basis is different for each point P.  In words

eR MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOuaaqabaaaaa@3258@ points along OP

eθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqiUdehabeaaaaa@3337@ is tangent to a line of constant longitude through P

eϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqy1dygabeaaaaa@3349@ is tangent to a line of constant latitude through P.

 

For example if polar-coordinates are used to specify points on the Earth’s surface,  you can visualize the basis vectors like this.  Suppose you stand at a point P on the Earths surface.  Relative to you: eR MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOuaaqabaaaaa@3258@ points vertically upwards; eθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqiUdehabeaaaaa@3337@ points due South; and eϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqy1dygabeaaaaa@3349@ points due East. Notice that the basis vectors depend on where you are standing.

 

You can also visualize the directions as follows.  To see the direction of eR MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOuaaqabaaaaa@3258@, keep θ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabeI7aXbaa@321D@ and ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabew9aMbaa@322F@ fixed, and increase R. P is moving parallel to eR MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOuaaqabaaaaa@3258@.  To see the direction of eθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqiUdehabeaaaaa@3337@, keep R and ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabew9aMbaa@322F@ fixed, and increase θ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabeI7aXbaa@321D@. P now moves parallel to  eθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqiUdehabeaaaaa@3337@.  To see the direction of eϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqy1dygabeaaaaa@3349@, keep R and θ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabeI7aXbaa@321D@ fixed, and increase ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabew9aMbaa@322F@.  P now moves parallel to eϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiabew9aMbqabaaaaa@35A7@.  Mathematically, this concept can be expressed as follows.  Let r be the position vector of P.  Then

eR=1|rR|rReθ=1|rθ|rθeϕ=1|rϕ|rϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOuaaaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOuaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7aXbaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqiUdehaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaeqy1dygabeaakiabg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqy1dygaaaGaay5bSlaawIa7aaaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcqaHvpGzaaaaaa@A4D7@

By definition, the `natural basis’ for a coordinate system is the derivative of the position vector with respect to the three scalar coordinates that are used to characterize position in space (see Chapter 10 for a more detailed discussion).  The basis vectors for a polar coordinate system are parallel to the natural basis vectors, but are normalized to have unit length.  In addition, the natural basis for a polar coordinate system happens to be orthogonal. Consequently, {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@ is an orthonormal basis (basis vectors have unit length, are mutually perpendicular and form a right handed triad)

 

 

1.4 Converting vectors between Cartesian and Spherical-Polar bases

 

Let a=aReR+aθeθ+aϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadggadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadggadaWgaaWcbaGaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaakiaaykW7aaa@4510@ be a vector, with components (aR,aθ,aϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGOaGaamyyamaaBaaaleaacaWGsbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaGGSaGaamyyamaaBaaaleaacqaHvpGzaeqaaOGaaiykaaaa@3D28@ in the spherical-polar basis {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@.  Let ax,ay,az MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadggadaWgaaWcbaGaamiEaaqabaGccaGGSaGaamyyamaaBaaaleaacaWG5baabeaakiaacYcacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaa@380B@ denote the components of a in the basis {i,j,k}.

 

The two sets of components are related by

[axayaz]=[sinθcosϕcosθcosϕsinϕsinθsinϕcosθsinϕcosϕcosθsinθ0][aRaθaϕ] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabmWaaaqaaiGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabew9aMbqaaiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMbqaaiGacogacaGGVbGaai4Caiabew9aMbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaaicdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaWGsbaabeaaaOqaaiaadggadaWgaaWcbaGaeqiUdehabeaaaOqaaiaadggadaWgaaWcbaGaeqy1dygabeaaaaaakiaawUfacaGLDbaacaaMc8oaaa@871A@

while the inverse relationship is

[aRaθaϕ]=[sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinθsinϕcosϕ0][axayaz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaWGsbaabeaaaOqaaiaadggadaWgaaWcbaGaeqiUdehabeaaaOqaaiaadggadaWgaaWcbaGaeqy1dygabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWadaqaauaabeqadmaaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzaeaaciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaaciGGJbGaai4BaiaacohacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzaeaacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCaeaacqGHsislciGGZbGaaiyAaiaac6gacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaHvpGzaeaacaaIWaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiaadggadaWgaaWcbaGaamiEaaqabaaakeaacaWGHbWaaSbaaSqaaiaadMhaaeqaaaGcbaGaamyyamaaBaaaleaacaWG6baabeaaaaaakiaawUfacaGLDbaacaaMc8oaaa@871A@

 

Observe that the two 3x3 matrices involved in this transformation are transposes (and inverses) of one another.   The transformation matrix is therefore orthogonal, satisfying [Q][Q]T=[I] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGBbGaamyuaiaac2facaGGBbGaamyuaiaac2fadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaGGBbGaamysaiaac2faaaa@3C96@, where [I] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGBbGaamysaiaac2faaaa@3554@ denotes the 3x3 identity matrix.

 

Derivation: It is easiest to do the transformation by expressing each basis vector {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@ as components in {i,j,k}, and then substituting.  To do this, recall that r=xi+yj+zk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahkhacqGH9aqpcaWG4bGaaCyAaiabgUcaRiaadMhacaWHQbGaey4kaSIaamOEaiaahUgaaaa@39FF@, recall also the conversion

x=Rsinθcosϕy=Rsinθsinϕz=Rcosθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabg2da9iaadkfaciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da9iaadkfaciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG6bGaeyypa0JaamOuaiGacogacaGGVbGaai4CaiabeI7aXbaa@72B8@

and finally recall that by definition

eR=1|rR|rReθ=1|rθ|rθeϕ=1|rϕ|rϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOuaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadkfaaaaacaGLhWUaayjcSdaaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadkfaaaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7aXbaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqiUdehaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaeqy1dygabeaakiabg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqy1dygaaaGaay5bSlaawIa7aaaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcqaHvpGzaaaaaa@9CB6@

Hence, substituting for x,y,z and differentiating

r=Rsinθcosϕi+Rsinθsinϕj+RcosθkrR=sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHYbGaeyypa0JaamOuaiGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacqGHRaWkcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOAaiabgUcaRiaadkfaciGGJbGaai4BaiaacohacqaH4oqCcaWHRbGaaGPaVdqaaiabgkDiEpaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadkfaaaGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgUcaRiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHRbaaaaa@7C20@

Conveniently we find that |rR|=1 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOuaaaaaiaawEa7caGLiWoacqGH9aqpcaaIXaaaaa@39F8@. Therefore

eR=sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaaC4AaiaaykW7aaa@5706@

Similarly

rθ=Rcosθcosϕi+RcosθsinϕjRsinθkrϕ=Rsinθsinϕi+Rsinθcosϕj MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaadaWcaaqaaiabgkGi2kaahkhaaeaacqGHciITcqaH4oqCaaGaeyypa0JaamOuaiGacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacqGHRaWkcaWGsbGaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOAaiabgkHiTiaadkfaciGGZbGaaiyAaiaac6gacqaH4oqCcaWHRbGaaGPaVdqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabew9aMbaacqGH9aqpcqGHsislcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiabgUcaRiaadkfaciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcaWHQbGaaGPaVdaaaa@7D13@

while |rθ|=R MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqiUdehaaaGaay5bSlaawIa7aiabg2da9iaadkfaaaa@3AF3@, |rϕ|=Rsinθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabew9aMbaaaiaawEa7caGLiWoacqGH9aqpcaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaaa@41F1@ so that

eθ=cosθcosϕi+cosθsinϕjsinθk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWHRbGaaGPaVdaa@57EB@     eϕ=sinϕi+cosϕj MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4Caiabew9aMjaahQgacaaMc8oaaa@4969@

Finally, substituting

a=aR[sinθcosϕi+sinθsinϕj+cosθk]+aθ[cosθcosϕi+cosθsinϕjsinθk]+aϕ[sinϕi+cosϕj] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHHbGaeyypa0JaamyyamaaBaaaleaacaWGsbaabeaakiaacUfaciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcaWHPbGaey4kaSIaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaaCOAaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXjaahUgacaGGDbGaaGPaVdqaaiaaygW7caaMb8UaaGzaVlaaygW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaamyyamaaBaaaleaacqaH4oqCaeqaaOGaai4waiGacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdeNaaC4Aaiaac2faaeaacaaMb8UaaGzaVlaaygW7caaMb8UaaGzaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaWGHbWaaSbaaSqaaiabew9aMbqabaGccaGGBbGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4Caiabew9aMjaahQgacaGGDbaaaaa@A74E@

Collecting terms in i, j and k, we see that

ax=sinθcosϕaR+cosθcosϕaθsinϕaϕay=sinθsinϕaR+cosθsinϕaθ+cosϕaϕaz=cosθaRsinθaθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaamyyamaaBaaaleaacaWGsbaabeaakiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaadggadaWgaaWcbaGaeqiUdehabeaakiabgkHiTiGacohacaGGPbGaaiOBaiabew9aMjaadggadaWgaaWcbaGaeqy1dygabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqabaGccqGH9aqpciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWGHbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaamyyamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqy1dyMaamyyamaaBaaaleaacqaHvpGzaeqaaaGcbaGaamyyamaaBaaaleaacaWG6baabeaakiabg2da9iGacogacaGGVbGaai4CaiabeI7aXjaadggadaWgaaWcbaGaamOuaaqabaGccqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaaMc8oaaaa@917D@

This is the result stated.

 

To show the inverse result, start by noting that

a=aReR+aθeθ+aϕeϕ=axi+ayj+azkaeR=aR=axieR+ayjeR+azkeR MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHHbGaeyypa0JaamyyamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGHbWaaSbaaSqaaiabew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaaCyAaiabgUcaRiaadggadaWgaaWcbaGaamyEaaqabaGccaWHQbGaey4kaSIaamyyamaaBaaaleaacaWG6baabeaakiaahUgacaaMc8oabaGaeyO0H4TaaCyyaiabgwSixlaahwgadaWgaaWcbaGaamOuaaqabaGccqGH9aqpcaWGHbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0JaamyyamaaBaaaleaacaWG4baabeaakiaahMgacqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWG5baabeaakiaahQgacqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaamyyamaaBaaaleaacaWG6baabeaakiaahUgacqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaaaaaa@7AD9@

(where we have used eθeR=eϕeR=0 MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0JaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaeyyXICTaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iaaicdaaaa@43DB@ ).  Recall that

eR=sinθcosϕi+sinθsinϕj+cosθkieR=sinθcosϕjeR=sinθsinϕkeR=cosθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgUcaRiGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHRaWkciGGJbGaai4BaiaacohacqaH4oqCcaWHRbGaaGPaVdqaaiabgkDiElaahMgacqGHflY1caWHLbWaaSbaaSqaaiaadkfaaeqaaOGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHQbGaeyyXICTaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaC4AaiabgwSixlaahwgadaWgaaWcbaGaamOuaaqabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqCaaaa@9713@

Substituting, we get

aR=sinθcosϕax+sinθsinϕay+cosθaz MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBaaaleaacaWGsbaabeaakiabg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaadggadaWgaaWcbaGaamiEaaqabaGccqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWGHbWaaSbaaSqaaiaadMhaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaamyyamaaBaaaleaacaWG6baabeaakiaaykW7aaa@5A73@

Proceeding in exactly the same way for the other two components gives the remaining expressions

aθ=cosθcosϕax+cosθsinϕaysinθazaϕ=sinϕax+cosϕay MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGHbWaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpciGGJbGaai4BaiaacohacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzcaWGHbWaaSbaaSqaaiaadIhaaeqaaOGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dyMaamyyamaaBaaaleaacaWG5baabeaakiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXjaadggadaWgaaWcbaGaamOEaaqabaGccaaMc8oabaGaamyyamaaBaaaleaacqaHvpGzaeqaaOGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaamyyamaaBaaaleaacaWG4baabeaakiabgUcaRiGacogacaGGVbGaai4Caiabew9aMjaadggadaWgaaWcbaGaamyEaaqabaaaaaa@6E7C@

Re-writing the last three equations in matrix form gives the result stated.

 

 

 

1.5 Spherical-Polar representation of tensors

The triad of vectors {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@ is an orthonormal basis (i.e. the three basis vectors have unit length, and are mutually perpendicular).  Consequently, tensors can be represented as components in this basis in exactly the same way as for a fixed Cartesian basis {e1,e2,e3} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIZaaabeaakiaac2haaaa@3967@.  In particular, a general second order tensor S can be represented as a 3x3 matrix

S[SRRSRθSRϕSθRSθθSθϕSϕRSϕθSϕϕ] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHtbGaeyyyIO7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGsbGaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabew9aMbqabaaakeaacaWGtbWaaSbaaSqaaiabew9aMjaadkfaaeqaaaGcbaGaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaaaaOGaay5waiaaw2faaaaa@5AEF@

You can think of SRR MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaaaaa@3578@ as being equivalent to S11 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaaa@3540@, SRθ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaaa@3657@ as S12 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaaaaa@3541@, and so on. All tensor operations such as addition, multiplication by a vector, tensor products, etc can be expressed in terms of the corresponding operations on this matrix, as discussed in Section B2 of Appendix B.

 

 

The component representation of a tensor can also be expressed in dyadic form as

S=SRReReR+SRθeReθ+SRϕeReϕ+SθReθeR+Sθθeθeθ+Sθϕeθeϕ+SϕReϕeR+Sϕθeϕeθ+Sϕϕeϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOabaeqabaGaaC4uaiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGsbGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkfacqaHvpGzaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaykW7caWGtbWaaSbaaSqaaiabeI7aXjaadkfaaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaadofadaWgaaWcbaGaeqy1dyMaamOuaaqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaHvpGzaeqaaaaaaa@B7E6@

 

Furthermore, the physical significance of the components can be interpreted in exactly the same way as for tensor components in a Cartesian basis.  For example, the spherical-polar coordinate representation for the Cauchy stress tensor has the form

σ[σRRσRθσRϕσθRσθθσθϕσϕRσϕθσϕϕ] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHdpGaeyyyIO7aamWaaeaafaqabeWadaaabaGaeq4Wdm3aaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqiUdehabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcaWGsbaabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabew9aMbqabaaakeaacqaHdpWCdaWgaaWcbaGaeqy1dyMaamOuaaqabaaakeaacqaHdpWCdaWgaaWcbaGaeqy1dyMaeqiUdehabeaaaOqaaiabeo8aZnaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaaaaOGaay5waiaaw2faaaaa@63A5@

The component σθR MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaamOuaaqabaaaaa@3742@ represents the traction component in direction eR MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiaadkfaaeqaaaaa@34B7@ acting on an internal material plane with normal eθ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHLbWaaSbaaSqaaiabeI7aXbqabaaaaa@3596@, and so on.  Of course, the Cauchy stress tensor is symmetric, with σθR=σRθ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaamOuaaqabaGccqGH9aqpcqaHdpWCdaWgaaWcbaGaamOuaiabeI7aXbqabaaaaa@3CCE@

 

 

 

1.6 Constitutive equations in spherical-polar coordinates

 

The constitutive equations listed in Chapter 3 all relate some measure of stress in the solid (expressed as a tensor) to some measure of local internal deformation (deformation gradient, Eulerian strain, rate of deformation tensor, etc), also expressed as a tensor.  The constitutive equations can be used without modification in spherical-polar coordinates, as long as the matrices of Cartesian components of the various tensors are replaced by their equivalent matrices in spherical-polar coordinates.

 

For example, the stress-strain relations for an isotropic, linear elastic material in spherical-polar coordinates read

[εRRεθθεϕϕ2εθϕ2εRϕ2εRθ]=1E[1νν000ν1ν000νν10000002(1+ν)0000002(1+ν)0000002(1+ν)][σRRσθθσϕϕσθϕσRϕσRθ]+αΔT[111000] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaadmaabaqbaeqabyqaaaaabaGaeqyTdu2aaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiabew7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiabew9aMjabew9aMbqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiabeI7aXjabew9aMbqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaadkfacqaHvpGzaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaWGsbGaeqiUdehabeaaaaaakiaawUfacaGLDbaacqGH9aqpdaWcaaqaaiaaigdaaeaacaWGfbaaamaadmaabaqbaeqabyGbaaaaaeaacaaIXaaabaGaeyOeI0IaeqyVd4gabaGaeyOeI0IaeqyVd4gabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaeyOeI0IaeqyVd4gabaGaaGymaaqaaiabgkHiTiabe27aUbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiabe27aUbqaaiabgkHiTiabe27aUbqaaiaaigdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeGbbaaaaeaacqaHdpWCdaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaacqaHdpWCdaWgaaWcbaGaeqy1dyMaeqy1dygabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkfacqaHvpGzaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadkfacqaH4oqCaeqaaaaaaOGaay5waiaaw2faaiabgUcaRiabeg7aHjabfs5aejaadsfadaWadaqaauaabeqageaaaaqaaiaaigdaaeaacaaIXaaabaGaaGymaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaaaaiaawUfacaGLDbaaaaa@B48D@

 

HEALTH WARNING: If you are solving a problem involving anisotropic materials using spherical-polar coordinates, it is important to remember that the orientation of the basis vectors {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@ vary with position.   For example, for an anisotropic, linear elastic solid you could write the constitutive equation as

σ=C(εαΔT)σ=[σRRσθθσϕϕσθϕσRϕσRθ]C=[c11c12c13c14c15c16c12c22c23c24c25c26c13c23c33c34c35c36c14c24c34c44c45c46c15c25c35c45c55c56c16c26c36c46c56c66]ε=[εRRεθθεϕϕ2εθϕ2εRϕ2εRθ]α=[αRRαθθαϕϕ2αθϕ2αRϕ2αRθ] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakqaabeqaaiaaho8acqGH9aqpcaWHdbGaaiikaiaahw7acqGHsislcaWHXoGaeuiLdqKaamivaiaacMcaaeaacaWHdpGaeyypa0JaaGPaVpaadmaabaqbaeqabyqaaaaabaGaeq4Wdm3aaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiabew9aMjabew9aMbqabaaakeaacqaHdpWCdaWgaaWcbaGaeqiUdeNaeqy1dygabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiabeo8aZnaaBaaaleaacaWGsbGaeqiUdehabeaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahoeacqGH9aqpdaWadaqaauaabeqagyaaaaaabaGaam4yamaaBaaaleaacaaIXaGaaGymaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGymaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOmaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaIYaaabeaaaOqaaiaadogadaWgaaWcbaGaaGOmaiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIYaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGOmaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaG4maaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaIZaaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiodaaeqaaaGcbaGaam4yamaaBaaaleaacaaIZaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaiodacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI0aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaisdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI0aGaaGinaaqabaaakeaacaWGJbWaaSbaaSqaaiaaisdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGinaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGynaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiwdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI0aGaaGynaaqabaaakeaacaWGJbWaaSbaaSqaaiaaiwdacaaI1aaabeaaaOqaaiaadogadaWgaaWcbaGaaGynaiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaIXaGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaikdacaaI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaG4maiaaiAdaaeqaaaGcbaGaam4yamaaBaaaleaacaaI0aGaaGOnaaqabaaakeaacaWGJbWaaSbaaSqaaiaaiwdacaaI2aaabeaaaOqaaiaadogadaWgaaWcbaGaaGOnaiaaiAdaaeqaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaCyTdiabg2da9maadmaabaqbaeqabyqaaaaabaGaeqyTdu2aaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiabew7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiabew9aMjabew9aMbqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiabeI7aXjabew9aMbqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaadkfacqaHvpGzaeqaaaGcbaGaaGOmaiabew7aLnaaBaaaleaacaWGsbGaeqiUdehabeaaaaaakiaawUfacaGLDbaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahg7acqGH9aqpdaWadaqaauaabeqageaaaaqaaiabeg7aHnaaBaaaleaacaWGsbGaamOuaaqabaaakeaacqaHXoqydaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiabeg7aHnaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaGcbaGaaGOmaiabeg7aHnaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaaGOmaiabeg7aHnaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiaaikdacqaHXoqydaWgaaWcbaGaamOuaiabeI7aXbqabaaaaaGccaGLBbGaayzxaaaaaaa@3A41@

however, the elastic constants c11,c12,... MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGJbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaacYcacaWGJbWaaSbaaSqaaiaaigdacaaIYaaabeaakiaacYcacaGGUaGaaiOlaiaac6caaaa@3B65@ would need to be represent the material properties in the basis {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@, and would therefore be functions of position (you would have to calculate them using the lengthy basis change formulas listed in Section 3.2.11).  In practice the results are so complicated that there would be very little advantage in working with a spherical-polar coordinate system in this situation.

 

 

1.7 Converting tensors between Cartesian and Spherical-Polar bases

 

Let S be a tensor, with components

S[SRRSRθSRϕSθRSθθSθϕSϕRSϕθSϕϕ][SxxSxySxzSyxSyySyzSzxSxySzz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHtbGaeyyyIO7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGsbGaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaamOuaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabew9aMbqabaaakeaacaWGtbWaaSbaaSqaaiabew9aMjaadkfaaeqaaaGcbaGaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWG4bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@8949@

in the spherical-polar basis {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@ and the Cartesian basis {i,j,k}, respectively.  The two sets of components are related by

[SxxSxySxzSyxSyySyzSzxSxySzz]=[sinθcosϕcosθcosϕsinϕsinθsinϕcosθsinϕcosϕcosθsinθ0][SRRSRθSRϕSθRSθθSθϕSϕRSϕθSϕϕ][sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinθsinϕcosϕ0] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakqaabeqaamaadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamiEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaaaaaakiaawUfacaGLDbaacqGH9aqpaeaadaWadaqaauaabeqadmaaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaH4oqCciGGJbGaai4BaiaacohacqaHvpGzaeaacqGHsislciGGZbGaaiyAaiaac6gacqaHvpGzaeaaciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaHvpGzaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaaIWaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaam4uamaaBaaaleaacaWGsbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOuaiabew9aMbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkfaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaam4uamaaBaaaleaacqaHvpGzcaWGsbaabeaaaOqaaiaadofadaWgaaWcbaGaeqy1dyMaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaeqy1dyMaeqy1dygabeaaaaaakiaawUfacaGLDbaacaaMc8+aamWaaeaafaqabeWadaaabaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqy1dygabaGaaGimaaaaaiaawUfacaGLDbaaaaaa@EF69@

[SRRSRθSRϕSθRSθθSθϕSϕRSϕθSϕϕ]=[sinθcosϕsinθsinϕcosθcosθcosϕcosθsinϕsinθsinϕcosϕ0][SxxSxySxzSyxSyySyzSzxSxySzz][sinθcosϕcosθcosϕsinϕsinθsinϕcosθsinϕcosϕcosθsinθ0] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakqaabeqaamaadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaam4uamaaBaaaleaacaWGsbGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOuaiabew9aMbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkfaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaam4uamaaBaaaleaacqaHvpGzcaWGsbaabeaaaOqaaiaadofadaWgaaWcbaGaeqy1dyMaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaeqy1dyMaeqy1dygabeaaaaaakiaawUfacaGLDbaacqGH9aqpaeaacaaMc8+aamWaaeaafaqabeWadaaabaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqy1dygabaGaaGimaaaaaiaawUfacaGLDbaadaWadaqaauaabeqadmaaaeaacaWGtbWaaSbaaSqaaiaadIhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaaaaGccaGLBbGaayzxaaWaamWaaeaafaqabeWadaaabaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dygabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4CaiaacMgacaGGUbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdeNaci4CaiaacMgacaGGUbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqy1dygabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaaGimaaaaaiaawUfacaGLDbaaaaaa@EF69@

 

These results follow immediately from the general basis change formulas for tensors .

 

 

1.8 Vector Calculus using Spherical-Polar Coordinates

 

Calculating derivatives of scalar, vector and tensor functions of position in spherical-polar coordinates is complicated by the fact that the basis vectors are functions of position.  The results can be expressed in a compact form by defining the gradient operator, which, in spherical-polar coordinates, has the representation

(eRR+eθ1Rθ+eϕ1Rsinθϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacqGHhis0cqGHHjIUdaqadaqaaiaahwgadaWgaaWcbaGaamOuaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkfaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiabew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqy1dygaaaGaayjkaiaawMcaaaaa@55DE@

In addition, the derivatives of the basis vectors are

eRR=eθR=eϕR=0eRθ=eθeθθ=eReϕθ=0eRϕ=sinθeϕeθϕ=cosθeϕeϕϕ=sinθeRcosθeθ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOabaeqabaWaaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiaadkfaaeqaaaGcbaGaeyOaIyRaamOuaaaacqGH9aqpdaWcaaqaaiabgkGi2kaahwgadaWgaaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kaadkfaaaGaeyypa0ZaaSaaaeaacqGHciITcaWHLbWaaSbaaSqaaiabew9aMbqabaaakeaacqGHciITcaWGsbaaaiabg2da9iaaicdacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kabeI7aXbaacqGH9aqpcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabg2da9iabgkHiTiaahwgadaWgaaWcbaGaamOuaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacqaHvpGzaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabg2da9iaaicdaaeaadaWcaaqaaiabgkGi2kaahwgadaWgaaWcbaGaamOuaaqabaaakeaacqGHciITcqaHvpGzaaGaeyypa0Jaci4CaiaacMgacaGGUbGaeqiUdeNaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaahwgadaWgaaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kabew9aMbaacqGH9aqpciGGJbGaai4BaiaacohacqaH4oqCcaWHLbWaaSbaaSqaaiabew9aMbqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiabgkGi2kaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kabew9aMbaacqGH9aqpcqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaeyOeI0Iaci4yaiaac+gacaGGZbGaeqiUdeNaaCyzamaaBaaaleaacqaH4oqCaeqaaaaaaa@E168@

You can derive these formulas by differentiating the expressions for the basis vectors in terms of {i,j,k}

eR=sinθcosϕi+sinθsinϕj+cosθk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacaWGsbaabeaakiabg2da9iGacohacaGGPbGaaiOBaiabeI7aXjGacogacaGGVbGaai4Caiabew9aMjaahMgacqGHRaWkciGGZbGaaiyAaiaac6gacqaH4oqCciGGZbGaaiyAaiaac6gacqaHvpGzcaWHQbGaey4kaSIaci4yaiaac+gacaGGZbGaeqiUdeNaaC4AaiaaykW7aaa@5706@   eθ=cosθcosϕi+cosθsinϕjsinθk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaeyypa0Jaci4yaiaac+gacaGGZbGaeqiUdeNaci4yaiaac+gacaGGZbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXjGacohacaGGPbGaaiOBaiabew9aMjaahQgacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCcaWHRbGaaGPaVdaa@57EB@     eϕ=sinϕi+cosϕj MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaeyypa0JaeyOeI0Iaci4CaiaacMgacaGGUbGaeqy1dyMaaCyAaiabgUcaRiGacogacaGGVbGaai4Caiabew9aMjaahQgacaaMc8oaaa@4969@

and evaluating the various derivatives. When differentiating, note that {i,j,k} are fixed, so their derivatives are zero.  The details are left as an exercise.

 

The various derivatives of scalars, vectors and tensors can be expressed using operator notation as follows. 

 

Gradient of a scalar function: Let f(R,θ,ϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadAgacaGGOaGaamOuaiaacYcacqaH4oqCcaGGSaGaeqy1dyMaaiykaaaa@3861@ denote a scalar function of position.  The gradient of f is denoted by

f=f(eRR+eθ1Rθ+eϕ1Rsinθϕ)=eRfR+eθ1Rfθ+eϕ1Rsinθfϕ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlaadAgacqGH9aqpcaWGMbWaaeWaaeaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWGsbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacqaHvpGzaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabew9aMbaaaiaawIcacaGLPaaacqGH9aqpcaWHLbWaaSbaaSqaaiaadkfaaeqaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamOuaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiabew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabew9aMbaaaaa@769A@

Alternatively, in matrix form

f=[fR,1Rfθ,1Rsinθfϕ]T MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlaadAgacqGH9aqpdaWadaqaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kaadkfaaaGaaiilamaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeqiUdehaaiaacYcadaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabew9aMbaaaiaawUfacaGLDbaadaahaaWcbeqaaiaadsfaaaaaaa@4FB3@

 

Gradient of a vector function Let v=vReR+vθeθ+vϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaaaaa@43D0@ be a vector function of position. The gradient of v is a tensor, which can be represented as a dyadic product of the vector with the gradient operator as

v=(vReR+vθeθ+vϕeϕ)(eRR+eθ1Rθ+eϕ1Rsinθϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGHxkcXcqGHhis0cqGH9aqpdaqadaqaaiaadAhadaWgaaWcbaGaamOuaaqabaGccaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaamODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaamODamaaBaaaleaacqaHvpGzaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaaGccaGLOaGaayzkaaGaey4LIq8aaeWaaeaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWGsbaaaiabgUcaRiaahwgadaWgaaWcbaGaeqiUdehabeaakmaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaGaey4kaSIaaCyzamaaBaaaleaacqaHvpGzaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabew9aMbaaaiaawIcacaGLPaaaaaa@6AC4@

The dyadic product can be expanded MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@37E6@ but when evaluating the derivatives it is important to recall that the basis vectors are functions of the coordinates (R,θ,ϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacIcacaWGsbGaaiilaiabeI7aXjaacYcacqaHvpGzcaGGPaaaaa@3776@ and consequently their derivatives do not vanish.  For example

1Rθ(vReR)eθ=1RvRθeReθ+vRReRθeθ=1RvRθeReθ+vRReθeθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaWaaeWaaeaacaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaaaOGaayjkaiaawMcaaiabgEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabg2da9maalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkdaWcaaqaaiaadAhadaWgaaWcbaGaamOuaaqabaaakeaacaWGsbaaamaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kabeI7aXbaacqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kabeI7aXbaacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSYaaSaaaeaacaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamOuaaaacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaaaaa@7C0F@

Verify for yourself that the matrix representing the components of the gradient of a vector is

v[vRR1RvRθvθR1RsinθvRϕvϕRvθR1Rvθθ+vRR1RsinθvθϕcotθvϕRvϕR1Rvϕθ1Rsinθvϕϕ+cotθvθR+vRR] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGHxkcXcqGHhis0cqGHHjIUdaWadaqaauaabeqadmaaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOuaaqabaaakeaacqGHciITcaWGsbaaaaqaamaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgkHiTmaalaaabaGaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaamOuaaaaaeaadaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGsbaabeaaaOqaaiabgkGi2kabew9aMbaacqGHsisldaWcaaqaaiaadAhadaWgaaWcbaGaeqy1dygabeaaaOqaaiaadkfaaaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabeI7aXbqabaaakeaacqGHciITcaWGsbaaaaqaamaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabeI7aXbqabaaakeaacqGHciITcqaH4oqCaaGaey4kaSYaaSaaaeaacaWG2bWaaSbaaSqaaiaadkfaaeqaaaGcbaGaamOuaaaaaeaadaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqy1dygaaiabgkHiTiGacogacaGGVbGaaiiDaiabeI7aXnaalaaabaGaamODamaaBaaaleaacqaHvpGzaeqaaaGcbaGaamOuaaaaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kaadkfaaaaabaWaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kabeI7aXbaaaeaadaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacqaHvpGzaeqaaaGcbaGaeyOaIyRaeqy1dygaaiabgUcaRiGacogacaGGVbGaaiiDaiabeI7aXnaalaaabaGaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaamOuaaaacqGHRaWkdaWcaaqaaiaadAhadaWgaaWcbaGaamOuaaqabaaakeaacaWGsbaaaaaaaiaawUfacaGLDbaaaaa@B26C@

 

Divergence of a vector function Let v=vReR+vθeθ+vϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaaaaa@43D0@ be a vector function of position. The divergence of v is a scalar, which can be represented as a dot product of the vector with the gradient operator as

v=(eRR+eθ1Rθ+eϕ1Rsinθϕ)(vReR+vθeθ+vϕeϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahAhacqGH9aqpdaqadaqaaiaahwgadaWgaaWcbaGaamOuaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkfaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiabew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqy1dygaaaGaayjkaiaawMcaaiabgwSixpaabmaabaGaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaaakiaawIcacaGLPaaaaaa@6B46@

Again, when expanding the dot product, it is important to remember to differentiate the basis vectors. Alternatively, the divergence can be expressed as trace(v) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaabshacaqGYbGaaeyyaiaabogacaqGLbGaaiikaiaahAhacqGHxkcXcqGHhis0caGGPaaaaa@3AED@, which immediately gives

vvRR+2vRR+1Rvθθ+1Rsinθvϕϕ+cotθvθR MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahAhacqGHHjIUdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOuaaqabaaakeaacqGHciITcaWGsbaaaiabgUcaRiaaikdadaWcaaqaaiaadAhadaWgaaWcbaGaamOuaaqabaaakeaacaWGsbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkfaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabeI7aXbqabaaakeaacqGHciITcqaH4oqCaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOuaiGacohacaGGPbGaaiOBaiabeI7aXbaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgkGi2kabew9aMbaacqGHRaWkciGGJbGaai4BaiaacshacqaH4oqCdaWcaaqaaiaadAhadaWgaaWcbaGaeqiUdehabeaaaOqaaiaadkfaaaaaaa@632E@

 

Curl of a vector function Let v=vReR+vθeθ+vϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqy1dygabeaaaaa@43D0@ be a vector function of position. The curl of v is a vector, which can be represented as a cross product of the vector with the gradient operator as

×v=(eRR+eθ1Rθ+eϕ1Rsinθϕ)×(vReR+vθeθ+vϕeϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgEna0kaahAhacqGH9aqpdaqadaqaaiaahwgadaWgaaWcbaGaamOuaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkfaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiabew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqy1dygaaaGaayjkaiaawMcaaiabgEna0oaabmaabaGaamODamaaBaaaleaacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabew9aMbqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaaakiaawIcacaGLPaaaaaa@6AE0@

The curl rarely appears in solid mechanics so the components will not be expanded in full

 

 

Divergence of a tensor function.   Let S MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahofaaaa@3144@ be a tensor, with dyadic representation

S=SRReReR+SRθeReθ+SRϕeReϕ+SθReθeR+Sθθeθeθ+Sθϕeθeϕ+SϕReϕeR+Sϕθeϕeθ+Sϕϕeϕeϕ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOabaeqabaGaaC4uaiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGsbGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkfacqaHvpGzaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaykW7caWGtbWaaSbaaSqaaiabeI7aXjaadkfaaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaadofadaWgaaWcbaGaeqy1dyMaamOuaaqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaHvpGzaeqaaaaaaa@B7E6@

The divergence of S is a vector, which can be represented as

S=(eRR+eθ1Rθ+eϕ1Rsinθϕ)(SRReReR+SRθeReθ+SRϕeReϕ+SθReθeR+Sθθeθeθ+Sθϕeθeϕ+SϕReϕeR+Sϕθeϕeθ+Sϕϕeϕeϕ) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahofacqGH9aqpcaaMc8UaaGPaVlaaykW7daqadaqaaiaahwgadaWgaaWcbaGaamOuaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkfaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiabew9aMbqabaGcdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqy1dygaaaGaayjkaiaawMcaaiabgwSixlaaykW7daqadaqaauaabeqadeaaaeaacaWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGsbGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOuaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkfacqaHvpGzaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgUcaRiaaykW7caWGtbWaaSbaaSqaaiabeI7aXjaadkfaaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqy1dygabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqy1dygabeaaaOqaaiabgUcaRiaadofadaWgaaWcbaGaeqy1dyMaamOuaaqabaGccaWHLbWaaSbaaSqaaiabew9aMbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaOGaaCyzamaaBaaaleaacqaHvpGzaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaHvpGzaeqaaaaaaOGaayjkaiaawMcaaiaaykW7aaa@CE6A@

Evaluating the components of the divergence is an extremely tedious operation, because each of the basis vectors in the dyadic representation of S must be differentiated, in addition to the components themselves.  The final result (expressed as a column vector) is

S[SRRR+2SRRR+1RSθRθ+cotθSθRR+1RsinθSϕRϕ1R(Sθθ+Sϕϕ)SRθR+2SRθR+1RSθθθ+cotθSθθR+1RsinθSϕθϕ+SθRRcotθSϕϕRSRϕR+2SRϕR+sinθRSθϕθ+cosθSθϕR+1RsinθSϕϕϕ+1R(SϕR+Sϕθ)] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahofacqGHHjIUdaWadaqaauaabeqadeaaaeaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamOuaiaadkfaaeqaaaGcbaGaeyOaIyRaamOuaaaacqGHRaWkcaaIYaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadkfacaWGsbaabeaaaOqaaiaadkfaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOuaaaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaeqiUdeNaamOuaaqabaaakeaacqGHciITcqaH4oqCaaGaey4kaSIaci4yaiaac+gacaGG0bGaeqiUde3aaSaaaeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkfaaeqaaaGcbaGaamOuaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaHvpGzcaWGsbaabeaaaOqaaiabgkGi2kabew9aMbaacqGHsisldaWcaaqaaiaaigdaaeaacaWGsbaaamaabmaabaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaGccaGLOaGaayzkaaaabaWaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaGcbaGaeyOaIyRaamOuaaaacqGHRaWkcaaIYaWaaSaaaeaacaWGtbWaaSbaaSqaaiaadkfacqaH4oqCaeqaaaGcbaGaamOuaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGsbaaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgUcaRiGacogacaGGVbGaaiiDaiabeI7aXnaalaaabaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaamOuaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaaGcbaGaeyOaIyRaeqy1dygaaiabgUcaRmaalaaabaGaam4uamaaBaaaleaacqaH4oqCcaWGsbaabeaaaOqaaiaadkfaaaGaeyOeI0Iaci4yaiaac+gacaGG0bGaeqiUde3aaSaaaeaacaWGtbWaaSbaaSqaaiabew9aMjabew9aMbqabaaakeaacaWGsbaaaaqaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiabgkGi2kaadkfaaaGaey4kaSIaaGOmamaalaaabaGaam4uamaaBaaaleaacaWGsbGaeqy1dygabeaaaOqaaiaadkfaaaGaey4kaSYaaSaaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaWGsbaaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgUcaRiGacogacaGGVbGaai4CaiabeI7aXnaalaaabaGaam4uamaaBaaaleaacqaH4oqCcqaHvpGzaeqaaaGcbaGaamOuaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGsbGaci4CaiaacMgacaGGUbGaeqiUdehaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaHvpGzcqaHvpGzaeqaaaGcbaGaeyOaIyRaeqy1dygaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkfaaaWaaeWaaeaacaWGtbWaaSbaaSqaaiabew9aMjaadkfaaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaHvpGzcqaH4oqCaeqaaaGccaGLOaGaayzkaaaaaaGaay5waiaaw2faaaaa@006F@

 

 

 

2: Cylindrical-polar coordinates

 

 

2.1 Specifying points in space using in cylindrical-polar coordinates

To specify the location of a point in cylindrical-polar coordinates, we choose an origin at some point on the axis of the cylinder, select a unit vector k to be parallel to the axis of the cylinder, and choose a convenient direction for the basis vector i, as shown in the picture.  We then use the three numbers r,θ,z MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadkhacaGGSaGaeqiUdeNaaiilaiaadQhaaaa@3573@ to locate a point inside the cylinder, as shown in the picture.  These are not components of a vector.

 

In words

r is the radial distance of P from the axis of the cylinder

ϕ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabew9aMbaa@3801@ is the angle between the i direction and the  projection of OP onto the i,j plane

z is the length of the projection of OP on the axis of the cylinder.

By convention r>0 and 0θ360o MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaaicdacqGHKjYOcqaH4oqCcqGHKjYOcaaIZaGaaGOnaiaaicdadaahaaWcbeqaaiaad+gaaaaaaa@3999@

 

2.2 Converting between cylindrical polar and rectangular cartesian coordinates

 

When we use a Cartesian basis, we identify points in space by specifying the components of their position vector relative to the origin (x,y,z), such that r=xi+yj+zk MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahkhacqGH9aqpcaWG4bGaaCyAaiabgUcaRiaadMhacaWHQbGaey4kaSIaamOEaiaahUgaaaa@3A00@  When we use a spherical-polar coordinate system, we locate points by specifying their spherical-polar coordinates r,θ,z MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadkhacaGGSaGaeqiUdeNaaiilaiaadQhaaaa@3573@

 

The formulas below relate the two representations.  They are derived using basic trigonometry

x=rcosθy=rsinθz=z MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWG4bGaeyypa0JaamOCaiGacogacaGGVbGaai4CaiabeI7aXjaaykW7aeaacaWG5bGaeyypa0JaamOCaiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaadQhacqGH9aqpcaWG6baaaaa@4989@                  r=x2+y2θ=tan1y/xz=z MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGYbGaeyypa0ZaaOaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyEamaaCaaaleqabaGaaGOmaaaaaeqaaOGaaGPaVdqaaiabeI7aXjabg2da9iGacshacaGGHbGaaiOBamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaadMhacaGGVaGaamiEaaqaaiaadQhacqGH9aqpcaWG6baaaaa@4B67@

 

 

2.3 Cylindrical-polar representation of vectors

 

When we work with vectors in spherical-polar coordinates, we specify vectors as components in the {er,eθ,ez} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaiyFaaaa@3ADF@ basis shown in the figure.  For example, an arbitrary vector a is written as a=arer+aθeθ+azez MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaSbaaSqaaiaadkhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadggadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadggadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaGPaVdaa@43BE@, where (ar,aθ,az) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGOaGaamyyamaaBaaaleaacaWGYbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaGGSaGaamyyamaaBaaaleaacaWG6baabeaakiaacMcaaaa@3C7F@ denote the components of a.

 

The basis vectors are selected as follows

er MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOCaaqabaaaaa@3278@ is a unit vector normal to the cylinder at P

eθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaeqiUdehabeaaaaa@3337@ is a unit vector circumferential to the cylinder at P, chosen to make {er,eθ,ez} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaiyFaaaa@3ADF@ a right handed triad

ez MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahwgadaWgaaWcbaGaamOEaaqabaaaaa@3280@ is parallel to the k vector.

 

You will see that the position vector of point P would be expressed as

r=rer+zez=rcosθi+rsinθj+zk MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCOCaiabg2da9iaadkhacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamOEaiaahwgadaWgaaWcbaGaamOEaaqabaGccqGH9aqpcaWGYbGaci4yaiaac+gacaGGZbGaeqiUdeNaaCyAaiabgUcaRiaadkhaciGGZbGaaiyAaiaac6gacqaH4oqCcaWHQbGaey4kaSIaamOEaiaahUgacaaMc8oaaa@5346@

 

Note also that the basis vectors are intentionally chosen to satisfy

er=1|rr|rreϕ=1|rθ|rθez=1|rz|rz MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaCyzamaaBaaaleaacaWGYbaabeaakiabg2da9maalaaabaGaaGymaaqaamaaemaabaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOCaaaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaamOCaaaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWHLbWaaSbaaSqaaiabew9aMbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kabeI7aXbaaaiaawEa7caGLiWoaaaWaaSaaaeaacqGHciITcaWHYbaabaGaeyOaIyRaeqiUdehaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaahwgadaWgaaWcbaGaamOEaaqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaadaabdaqaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadQhaaaaacaGLhWUaayjcSdaaamaalaaabaGaeyOaIyRaaCOCaaqaaiabgkGi2kaadQhaaaGaaGPaVdaa@A479@

The basis vectors have unit length, are mutually perpendicular, and form a right handed triad and therefore {er,eθ,ez} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaiyFaaaa@3ADF@ is an orthonormal basis.  The basis vectors are parallel to (but not equivalent to) the natural basis vectors for a cylindrical polar coordinate system (see Chapter 10 for a more detailed discussion).

 

 

2.4 Converting vectors between Cylindrical and Cartesian bases

Let a=arer+aθeθ+azez MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahggacqGH9aqpcaWGHbWaaSbaaSqaaiaadkhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadggadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadggadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaGPaVdaa@43BE@ be a vector, with components (ar,aθ,az) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGOaGaamyyamaaBaaaleaacaWGYbaabeaakiaacYcacaWGHbWaaSbaaSqaaiabeI7aXbqabaGccaGGSaGaamyyamaaBaaaleaacaWG6baabeaakiaacMcaaaa@3C7F@ in the spherical-polar basis {eR,eθ,eϕ} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkfaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiabew9aMbqabaGccaGG9baaaa@3B88@.  Let ax,ay,az MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadggadaWgaaWcbaGaamiEaaqabaGccaGGSaGaamyyamaaBaaaleaacaWG5baabeaakiaacYcacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaa@380B@ denote the components of a in the basis {i,j,k}.

 

The two sets of components are related by

[axayaz]=[cosθsinθ0sinθcosθ0001][araθaz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiabg2da9maadmaabaqbaeqabmWaaaqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaaicdaaeaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmqaaaqaaiaadggadaWgaaWcbaGaamOCaaqabaaakeaacaWGHbWaaSbaaSqaaiabeI7aXbqabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiaaykW7aaa@63A5@     [araθaz]=[cosθsinθ0sinθcosθ0001][axayaz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKc9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaWGYbaabeaaaOqaaiaadggadaWgaaWcbaGaeqiUdehabeaaaOqaaiaadggadaWgaaWcbaGaamOEaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaci4CaiaacMgacaGGUbGaeqiUdehabaGaaGimaaqaaiabgkHiTiGacohacaGGPbGaaiOBaiabeI7aXbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeWabaaabaGaamyyamaaBaaaleaacaWG4baabeaaaOqaaiaadggadaWgaaWcbaGaamyEaaqabaaakeaacaWGHbWaaSbaaSqaaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiaaykW7aaa@63A5@

 

Observe that the two 3x3 matrices involved in this transformation are transposes (and inverses) of one another.   The transformation matrix is therefore orthogonal, satisfying [Q][Q]T=[I] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGBbGaamyuaiaac2facaGGBbGaamyuaiaac2fadaahaaWcbeqaaiaadsfaaaGccqGH9aqpcaGGBbGaamysaiaac2faaaa@3C96@, where [I] MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaGGBbGaamysaiaac2faaaa@3554@ denotes the 3x3 identity matrix.

 

The derivation of these results follows the procedure outlined in E.1.4 exactly, and is left as an exercise.
 

 

2.5 Cylindrical-Polar representation of tensors

 

The triad of vectors {er,eθ,ez} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaiyFaaaa@3ADF@ is an orthonormal basis (i.e. the three basis vectors have unit length, and are mutually perpendicular).  Consequently, tensors can be represented as components in this basis in exactly the same way as for a fixed Cartesian basis {e1,e2,e3} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaaigdaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaaGOmaaqabaGccaGGSaGaaCyzamaaBaaaleaacaaIZaaabeaakiaac2haaaa@3967@.  In particular, a general second order tensor S can be represented as a 3x3 matrix

S[SrrSrθSrzSθrSθθSθzSzrSzθSzz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHtbGaeyyyIO7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGYbGaamOCaaqabaaakeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@56F9@

You can think of Srr MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaaaaa@35B8@ as being equivalent to S11 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIXaaabeaaaaa@3540@, Srθ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaaa@3677@ as S12 MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWGtbWaaSbaaSqaaiaaigdacaaIYaaabeaaaaa@3541@, and so on. All tensor operations such as addition, multiplication by a vector, tensor products, etc can be expressed in terms of the corresponding operations on this matrix, as discussed in Section B2 of Appendix B.

 

The component representation of a tensor can also be expressed in dyadic form as

S=Srrerer+Srθereθ+Srzerez+Sθreθer+Sθθeθeθ+Sθzeθez+Szrezer+Szθezeθ+Szzezez MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOabaeqabaGaaC4uaiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGYbGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkhacaWG6baabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGPaVlaadofadaWgaaWcbaGaeqiUdeNaamOCaaqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaH4oqCcaWG6baabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaamOEaaqabaaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWG6bGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaakiaahwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQhaaeqaaaaaaa@AFFA@

The remarks in Section E.1.5 regarding the physical significance of tensor components also applies to tensor components in cylindrical-polar coordinates.

 

 

2.6 Constitutive equations in cylindrical-polar coordinates

 

The constitutive equations listed in Chapter 3 all relate some measure of stress in the solid (expressed as a tensor) to some measure of local internal deformation (deformation gradient, Eulerian strain, rate of deformation tensor, etc), also expressed as a tensor.  The constitutive equations can be used without modification in cylindrical-polar coordinates, as long as the matrices of Cartesian components of the various tensors are replaced by their equivalent matrices in spherical-polar coordinates.

 

For example, the stress-strain relations for an isotropic, linear elastic material in cylindrical-polar coordinates read

[εrrεθθεzz2εθz2εrz2εrθ]=1E[1νν000ν1ν000νν10000002(1+ν)0000002(1+ν)0000002(1+ν)][σrrσθθσzzσθzσrzσrθ]+αΔT[111000] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaadmaabaqbaeqabyqaaaaabaGaeqyTdu2aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiabew7aLnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeqyTdu2aaSbaaSqaaiaadQhacaWG6baabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGaeqiUdeNaamOEaaqabaaakeaacaaIYaGaeqyTdu2aaSbaaSqaaiaadkhacaWG6baabeaaaOqaaiaaikdacqaH1oqzdaWgaaWcbaGaamOCaiabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaamyraaaadaWadaqaauaabeqagyaaaaaabaGaaGymaaqaaiabgkHiTiabe27aUbqaaiabgkHiTiabe27aUbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiabgkHiTiabe27aUbqaaiaaigdaaeaacqGHsislcqaH9oGBaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacqGHsislcqaH9oGBaeaacqGHsislcqaH9oGBaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGOmamaabmaabaGaaGymaiabgUcaRiabe27aUbGaayjkaiaawMcaaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaikdadaqadaqaaiaaigdacqGHRaWkcqaH9oGBaiaawIcacaGLPaaaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIYaWaaeWaaeaacaaIXaGaey4kaSIaeqyVd4gacaGLOaGaayzkaaaaaaGaay5waiaaw2faamaadmaabaqbaeqabyqaaaaabaGaeq4Wdm3aaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaeq4Wdm3aaSbaaSqaaiaadQhacaWG6baabeaaaOqaaiabeo8aZnaaBaaaleaacqaH4oqCcaWG6baabeaaaOqaaiabeo8aZnaaBaaaleaacaWGYbGaamOEaaqabaaakeaacqaHdpWCdaWgaaWcbaGaamOCaiabeI7aXbqabaaaaaGccaGLBbGaayzxaaGaey4kaSIaeqySdeMaeuiLdqKaamivamaadmaabaqbaeqabyqaaaaabaGaaGymaaqaaiaaigdaaeaacaaIXaaabaGaaGimaaqaaiaaicdaaeaacaaIWaaaaaGaay5waiaaw2faaaaa@AF45@

The cautionary remarks regarding anisotropic materials in E.1.6 also applies to cylindrical-polar coordinate systems.

 

 

2.7 Converting tensors between Cartesian and Spherical-Polar bases

 

Let S be a tensor, with components

S[SrrSrθSrzSθrSθθSθzSzrSzθSzz][SxxSxySxzSyxSyySyzSzxSxySzz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacaWHtbGaeyyyIO7aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGYbGaamOCaaqabaaakeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyyyIORaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWG4bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamiEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG5baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaaaa@871C@

in the cylindrical-polar basis {er,eθ,ez} MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaacUhacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaaiilaiaahwgadaWgaaWcbaGaeqiUdehabeaakiaacYcacaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaaiyFaaaa@3ADF@ and the Cartesian basis {i,j,k}, respectively.  The two sets of components are related by

[SxxSxySxzSyxSyySyzSzxSxySzz]=[cosθsinθ0sinθcosθ0001][SrrSrθSrzSθrSθθSθzSzrSzθSzz][cosθsinθ0sinθcosθ0001] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaadaWadaqaauaabeqadmaaaeaacaWGtbWaaSbaaSqaaiaadIhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacaWG4baabeaaaOqaaiaadofadaWgaaWcbaGaamiEaiaadMhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0ZaamWaaeaafaqabeWadaaabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaaGimaaqaaiGacohacaGGPbGaaiOBaiabeI7aXbqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiaaicdaaeaacaaIWaaabaGaaGimaaqaaiaaigdaaaaacaGLBbGaayzxaaWaamWaaeaafaqabeWadaaabaGaam4uamaaBaaaleaacaWGYbGaamOCaaqabaaakeaacaWGtbWaaSbaaSqaaiaadkhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacqaH4oqCcaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadkhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaeqiUdehabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadQhaaeqaaaaaaOGaay5waiaaw2faaiaaykW7daWadaqaauaabeqadmaaaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaaciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaaIWaaabaGaeyOeI0Iaci4CaiaacMgacaGGUbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaaaaiaawUfacaGLDbaaaaa@A5D4@

[SrrSrθSrzSθrSθθSθzSzrSzθSzz]=[cosθsinθ0sinθcosθ0001][SxxSxySxzSyxSyySyzSzxSxySzz][cosθsinθ0sinθcosθ0001] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaadaWadaqaauaabeqadmaaaeaacaWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaaaOqaaiaadofadaWgaaWcbaGaamOCaiabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiaadkhacaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaeqiUdeNaamOCaaqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjabeI7aXbqabaaakeaacaWGtbWaaSbaaSqaaiabeI7aXjaadQhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOCaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacqaH4oqCaeqaaaGcbaGaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaaaaGccaGLBbGaayzxaaGaeyypa0JaaGPaVpaadmaabaqbaeqabmWaaaqaaiGacogacaGGVbGaai4CaiabeI7aXbqaaiGacohacaGGPbGaaiOBaiabeI7aXbqaaiaaicdaaeaacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacaaIWaaabaGaaGimaaqaaiaaicdaaeaacaaIXaaaaaGaay5waiaaw2faamaadmaabaqbaeqabmWaaaqaaiaadofadaWgaaWcbaGaamiEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadIhacaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamyEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG5bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadMhacaWG6baabeaaaOqaaiaadofadaWgaaWcbaGaamOEaiaadIhaaeqaaaGcbaGaam4uamaaBaaaleaacaWG4bGaamyEaaqabaaakeaacaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaaaaaakiaawUfacaGLDbaadaWadaqaauaabeqadmaaaeaaciGGJbGaai4BaiaacohacqaH4oqCaeaacqGHsislciGGZbGaaiyAaiaac6gacqaH4oqCaeaacaaIWaaabaGaci4CaiaacMgacaGGUbGaeqiUdehabaGaci4yaiaac+gacaGGZbGaeqiUdehabaGaaGimaaqaaiaaicdaaeaacaaIWaaabaGaaGymaaaaaiaawUfacaGLDbaaaaa@A5D4@

 

 

 

 

 

 

2.8 Vector Calculus using Cylindrical-Polar Coordinates

 

Calculating derivatives of scalar, vector and tensor functions of position in cylindrical-polar coordinates is complicated by the fact that the basis vectors are functions of position.  The results can be expressed in a compact form by defining the gradient operator, which, in spherical-polar coordinates, has the representation

(err+eθ1rθ+ezz) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rk0le9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaGadeaadaaakeaacqGHhis0cqGHHjIUdaqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGaayjkaiaawMcaaaaa@4E7C@

In addition, the nonzero derivatives of the basis vectors are

erθ=eθeθθ=er(all other derivatives are zero) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacaWGYbaabeaaaOqaaiabgkGi2kabeI7aXbaacqGH9aqpcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabg2da9iabgkHiTiaahwgadaWgaaWcbaGaamOCaaqabaGccaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caGGOaGaaeyyaiaabYgacaqGSbGaaeiiaiaab+gacaqG0bGaaeiAaiaabwgacaqGYbGaaeiiaiaabsgacaqGLbGaaeOCaiaabMgacaqG2bGaaeyyaiaabshacaqGPbGaaeODaiaabwgacaqGZbGaaeiiaiaabggacaqGYbGaaeyzaiaabccacaqG6bGaaeyzaiaabkhacaqGVbGaaeykaaaa@7CD5@

 

The various derivatives of scalars, vectors and tensors can be expressed using operator notation as follows. 

 

Gradient of a scalar function: Let f(r,θ,z) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaadAgacaGGOaGaamOCaiaacYcacqaH4oqCcaGGSaGaamOEaiaacMcaaaa@37B8@ denote a scalar function of position.  The gradient of f is denoted by

f=(err+eθ1rθ+ezz)f=erfr+eθ1rfθ+ezfz MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlaadAgacqGH9aqpdaqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGaayjkaiaawMcaaiaadAgacqGH9aqpcaWHLbWaaSbaaSqaaiaadkhaaeqaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamOCaaaacqGHRaWkcaWHLbWaaSbaaSqaaiabeI7aXbqabaGcdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaamOEaaaaaaa@67D6@

Alternatively, in matrix form

f=[fr,1rfθ,fz]T MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlaadAgacqGH9aqpdaWadaqaamaalaaabaGaeyOaIyRaamOzaaqaaiabgkGi2kaadkhaaaGaaiilamaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWGMbaabaGaeyOaIyRaeqiUdehaaiaacYcadaWcaaqaaiabgkGi2kaadAgaaeaacqGHciITcaWG6baaaaGaay5waiaaw2faamaaCaaaleqabaGaamivaaaaaaa@48FA@

 

Gradient of a vector function Let v=vrer+vθeθ+vzez MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaaiaadkhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadAhadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaaaa@427E@ be a vector function of position. The gradient of v is a tensor, which can be represented as a dyadic product of the vector with the gradient operator as

v=(vrer+vθeθ+vzez)(err+eθ1rθ+ezz) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGHxkcXcqGHhis0cqGH9aqpdaqadaqaaiaadAhadaWgaaWcbaGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaamODamaaBaaaleaacqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaamODamaaBaaaleaacaWG6baabeaakiaahwgadaWgaaWcbaGaamOEaaqabaaakiaawIcacaGLPaaacqGHxkcXdaqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGaayjkaiaawMcaaaaa@6210@

The dyadic product can be expanded MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr4rNCHbGeaGqiFKI8=feu0dXdh9vqqj=hEeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaGqaaKqzGfaeaaaaaaaaa8qacaWFtacaaa@37E6@ but when evaluating the derivatives it is important to recall that the basis vectors are functions of the coordinate θ MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabeI7aXbaa@321E@ and consequently their derivatives may not vanish.  For example

1rθ(vrer)eθ=1rvrθereθ+vrrerθeθ=1rvrθereθ+vrreθeθ MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaamaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITaeaacqGHciITcqaH4oqCaaWaaeWaaeaacaWG2bWaaSbaaSqaaiaadkhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaaaOGaayjkaiaawMcaaiabgEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabg2da9maalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadkhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkdaWcaaqaaiaadAhadaWgaaWcbaGaamOCaaqabaaakeaacaWGYbaaamaalaaabaGaeyOaIyRaaCyzamaaBaaaleaacaWGYbaabeaaaOqaaiabgkGi2kabeI7aXbaacqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGH9aqpdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWGYbaabeaaaOqaaiabgkGi2kabeI7aXbaacaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSYaaSaaaeaacaWG2bWaaSbaaSqaaiaadkhaaeqaaaGcbaGaamOCaaaacaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaaaaa@7DCF@

Verify for yourself that the matrix representing the components of the gradient of a vector is

v[vrr1rvrθvθrvrzvθr1rvθθ+vrrvθzvzr1rvzθvzz] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGHxkcXcqGHhis0cqGHHjIUdaWadaqaauaabeqadmaaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcaWGYbaaaaqaamaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadkhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgkHiTmaalaaabaGaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaamOCaaaaaeaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcaWG6baaaaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaamOCaaaaaeaadaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacqaH4oqCaeqaaaGcbaGaeyOaIyRaeqiUdehaaiabgUcaRmaalaaabaGaamODamaaBaaaleaacaWGYbaabeaaaOqaaiaadkhaaaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiabeI7aXbqabaaakeaacqGHciITcaWG6baaaaqaamaalaaabaGaeyOaIyRaamODamaaBaaaleaacaWG6baabeaaaOqaaiabgkGi2kaadkhaaaaabaWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOEaaqabaaakeaacqGHciITcqaH4oqCaaaabaWaaSaaaeaacqGHciITcaWG2bWaaSbaaSqaaiaadQhaaeqaaaGcbaGaeyOaIyRaamOEaaaaaaaacaGLBbGaayzxaaaaaa@8176@

 

Divergence of a vector function Let v=vrer+vθeθ+vzez MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaaiaadkhaaeqaaOGaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadAhadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaaaa@427E@ be a vector function of position. The divergence of v is a scalar, which can be represented as a dot product of the vector with the gradient operator as

v=(err+eθ1rθ+ezz)(vrer+vθeθ+vzez) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahAhacqGH9aqpdaqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGaayjkaiaawMcaaiabgwSixpaabmaabaGaamODamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaadQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaaaOGaayjkaiaawMcaaaaa@6292@

Again, when expanding the dot product, it is important to remember to differentiate the basis vectors. Alternatively, the divergence can be expressed as trace(v) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaabshacaqGYbGaaeyyaiaabogacaqGLbGaaiikaiaahAhacqGHxkcXcqGHhis0caGGPaaaaa@3AED@, which immediately gives

vvrr+vrr+1rvθθ+vzz MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahAhacqGHHjIUdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOCaaqabaaakeaacqGHciITcaWGYbaaaiabgUcaRmaalaaabaGaamODamaaBaaaleaacaWGYbaabeaaaOqaaiaadkhaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaeqiUdehabeaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiabgkGi2kaadAhadaWgaaWcbaGaamOEaaqabaaakeaacqGHciITcaWG6baaaaaa@5216@

 

Curl of a vector function Let v=vReR+vθeθ+vzez MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahAhacqGH9aqpcaWG2bWaaSbaaSqaaiaadkfaaeqaaOGaaCyzamaaBaaaleaacaWGsbaabeaakiabgUcaRiaadAhadaWgaaWcbaGaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadAhadaWgaaWcbaGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaaaa@423E@ be a vector function of position. The curl of v is a vector, which can be represented as a cross product of the vector with the gradient operator as

×v=(err+eθ1rθ+ezz)×(vrer+vθeθ+vzez) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgEna0kaahAhacqGH9aqpdaqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGaayjkaiaawMcaaiabgEna0oaabmaabaGaamODamaaBaaaleaacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWG2bWaaSbaaSqaaiaadQhaaeqaaOGaaCyzamaaBaaaleaacaWG6baabeaaaOGaayjkaiaawMcaaaaa@622C@

The curl rarely appears in solid mechanics so the components will not be expanded in full

 

 

Divergence of a tensor function.   Let S MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiaahofaaaa@3144@ be a tensor, with dyadic representation

S=Srrerer+Srθereθ+Srzerez+Sθreθer+Sθθeθeθ+Sθzeθez+Szrezer+Szθezeθ+Szzezez MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOabaeqabaGaaC4uaiabg2da9iaaykW7caaMc8UaaGPaVlaaykW7caWGtbWaaSbaaSqaaiaadkhacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGYbGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadkhacaWG6baabeaakiaahwgadaWgaaWcbaGaamOCaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaaGPaVlaadofadaWgaaWcbaGaeqiUdeNaamOCaaqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaH4oqCcqaH4oqCaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacqaH4oqCcaWG6baabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaamOEaaqabaaakeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7cqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacaWGYbaabeaakiaahwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWG6bGaeqiUdehabeaakiaahwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHRaWkcaWGtbWaaSbaaSqaaiaadQhacaWG6baabeaakiaahwgadaWgaaWcbaGaamOEaaqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQhaaeqaaaaaaa@AFFA@

The divergence of S is a vector, which can be represented as

S=(err+eθ1rθ+ezz)(Srrerer+Srθereθ+Srzerez+Sθreθer+Sθθeθeθ+Sθzeθez+Szrezer+Szθezeθ+Szzezez) MathType@MTEF@5@5@+=feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahofacqGH9aqpcaaMc8UaaGPaVlaaykW7daqadaqaaiaahwgadaWgaaWcbaGaamOCaaqabaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kaadkhaaaGaey4kaSIaaCyzamaaBaaaleaacqaH4oqCaeqaaOWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeI7aXbaacqGHRaWkcaWHLbWaaSbaaSqaaiaadQhaaeqaaOWaaSaaaeaacqGHciITaeaacqGHciITcaWG6baaaaGaayjkaiaawMcaaiabgwSixlaaykW7daqadaabaeqabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaam4uamaaBaaaleaacaWGYbGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWcbaGaamOCaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWGYbGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadkhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baabeaaaOqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabgUcaRiaaykW7caWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaOGaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaakiaahwgadaWgaaWcbaGaeqiUdehabeaakiabgEPielaahwgadaWgaaWcbaGaeqiUdehabeaakiabgUcaRiaadofadaWgaaWcbaGaeqiUdeNaamOEaaqabaGccaWHLbWaaSbaaSqaaiabeI7aXbqabaGccqGHxkcXcaWHLbWaaSbaaSqaaiaadQhaaeqaaaGcbaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaey4kaSIaam4uamaaBaaaleaacaWG6bGaamOCaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWGYbaabeaakiabgUcaRiaadofadaWgaaWcbaGaamOEaiabeI7aXbqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacqaH4oqCaeqaaOGaey4kaSIaam4uamaaBaaaleaacaWG6bGaamOEaaqabaGccaWHLbWaaSbaaSqaaiaadQhaaeqaaOGaey4LIqSaaCyzamaaBaaaleaacaWG6baabeaaaaGccaGLOaGaayzkaaGaaGPaVdaa@DF7C@

Evaluating the components of the divergence is an extremely tedious operation, because each of the basis vectors in the dyadic representation of S must be differentiated, in addition to the components themselves.  The final result (expressed as a column vector) is

S[Srrr+Srrr+1rSθrθ+SzRzSθθr1rSθθθ+Srθr+Srθr+Sθrr+SzθzSzzz+Srzr+Srzr+1rSθzθ] MathType@MTEF@5@5@+=feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLnhiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8rkY=vipgYlH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqaq=JfrVkFHe9pgea0dXdar=Jb9hs0dXdbPYxe9vr0=vr0=vqpWqaaeaabiGaciaacaqabeaacmqaamaaaOqaaiabgEGirlabgwSixlaahofacqGHHjIUdaWadaqaauaabeqadeaaaeaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaeyOaIyRaamOCaaaacqGHRaWkdaWcaaqaaiaadofadaWgaaWcbaGaamOCaiaadkhaaeqaaaGcbaGaamOCaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGYbaaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacqaH4oqCcaWGYbaabeaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamOEaiaadkfaaeqaaaGcbaGaeyOaIyRaamOEaaaacqGHsisldaWcaaqaaiaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiaadkhaaaaabaWaaSaaaeaacaaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaeqiUdeNaeqiUdehabeaaaOqaaiabgkGi2kabeI7aXbaacqGHRaWkdaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamOCaiabeI7aXbqabaaakeaacqGHciITcaWGYbaaaiabgUcaRmaalaaabaGaam4uamaaBaaaleaacaWGYbGaeqiUdehabeaaaOqaaiaadkhaaaGaey4kaSYaaSaaaeaacaWGtbWaaSbaaSqaaiabeI7aXjaadkhaaeqaaaGcbaGaamOCaaaacqGHRaWkdaWcaaqaaiabgkGi2kaadofadaWgaaWcbaGaamOEaiabeI7aXbqabaaakeaacqGHciITcaWG6baaaaqaamaalaaabaGaeyOaIyRaam4uamaaBaaaleaacaWG6bGaamOEaaqabaaakeaacqGHciITcaWG6baaaiabgUcaRmaalaaabaGaeyOaIyRaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacqGHciITcaWGYbaaaiabgUcaRmaalaaabaGaam4uamaaBaaaleaacaWGYbGaamOEaaqabaaakeaacaWGYbaaaiabgUcaRmaalaaabaGaaGymaaqaaiaadkhaaaWaaSaaaeaacqGHciITcaWGtbWaaSbaaSqaaiabeI7aXjaadQhaaeqaaaGcbaGaeyOaIyRaeqiUdehaaaaaaiaawUfacaGLDbaaaaa@A31D@