
Radiophysics and Quantum Electronics, Vol. 52, No. 12, 2009

ELECTROMAGNETIC FIELD OF A ROTATING MAGNETIC DIPOLE
AND ELECTRIC-CHARGE MOTION IN THIS FIELD

V.T. Sarychev ∗ UDC 537.86+537.291

In this paper, we present the results of a study of the electromagnetic field in the near and
intermediate zones of a magnetic dipole rotating in free space. Examples of solving the relativistic
equations of the charged-particle motion in this field are given. The energy, which can be acquired
by the particles during acceleration, is estimated.

1. INTRODUCTION

The field of a rotating magnetic dipole is the classical problem of electrodynamics. A similar problem
(oscillator field) is solved in [1]. Nevertheless, research workers dealing with the radiation-theory formalism
do not have enough knowledge of the details of the geometric structure of the force lines of a rotating
magnetic dipole. Such details, mutual orientation, and the ratio of the electric and magnetic fields are
mainly required for studies of pulsars. At present, the studies of the structure of electromagnetic fields of
the magnetospheres of these objects are far from completion. In fact, the collisionless motion of charged
particles in this field has not been studied. Interpretation of the extensive accumulated empirical results of
observations of the radio-pulsar impulses is not satisfactory. The author of a brief review of the state of the
art in the theory of pulsars [2] indicates very insignificant progress of the 35-year studies in this field. The
pulsar theory is mingled with myths, the number of new ideas increases, but no clear understanding of the
main operation principles of pulsars is reached. The mechanism of unipolar induction, which was proposed
40 years ago in [3], has still been governing in the pulsar theory. At the same time, the strength of the
rotational electric field induced by the dipole rotation is not allowed for. This field can significantly exceed
the field produced by unipolar induction.

Without claiming the discovery of the mechanisms of pulsar functioning, in this paper we solve only
two problems: (i) a model of the electromagnetic field of a rotating magnetic dipole is developed under the
assumption that its physical dimensions are much smaller than the radiation wavelength and the dipole field
is weakly influenced and (ii) 2) the collisionless motion of the charged particles in the electromagnetic field
of a rotating dipole is studied.

2. ELECTROMAGNETIC FIELD OF A ROTATING MAGNETIC DIPOLE

To calculate the electromagnetic field of a magnetic rotator, we can use the expression [1] for the
retarded vector potential of the dipole with a varying magnetic moment:

A =
[µr]

r3
+

[µ′r]
cr2

.
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Here, µ and µ′ are the magnetic moment of the dipole and the time derivative of this moment, respectively,
and c is the speed of light.

For a dipole rotating with the angular velocity ω, the retarded vector potential A is determined by
the expression

A = μ
[nr]

r3
+ μ

2π

λr2
[n′r], (1)

where μ is the value of the magnetic moment of the dipole (µ = μn) and λ = 2πc/ω. The rotation axis
nz is aligned with the z axis, and the unit vectors n and n′ are orthogonal to this axis. In this case, the
components of these vectors in the Cartesian coordinate system are determined by the expressions

n = {cos[ω (t− r/c)], sin[ω (t− r/c)], 0}, n′ = {− sin[ω (t− r/c)], cos[ω (t− r/c)], 0}.

If the dipole axis is not orthogonal to the rotation axis, then Eq. (1) is transformed as

A = μ cosα
[nzr]

r3
+

(
μ
[nr]

r3
+ μ

ω

r2
[n′r]

)
sinα, (2)

where α is the angle between the rotation axis and magnetic moment of the dipole. Therefore, the resulting
field is the superposition of two fields such that one field is the field of a constant dipole whose magnetic
moment is aligned with the rotation axis, while the second field is the field of a rotating dipole whose
magnetic moment is orthogonal to the rotation axis. Only the second term in Eq. (2) is responsible for the
dipole radiation. The fields determined only by this term are considered below.

With allowance for the introduced notations, the components of the vector A in a spherical coordinate
system {r, θ, ϕ} can be represented as follows:

Ar = 0, Aϕ =
μ cos θ

r2

(
2π

r

λ
sinΦ− cos Φ

)
,

Aθ =
μ

r2

(
2π

r

λ
cos Φ + sinΦ

)
, Φ = τ − 2πr/λ− ϕ.

Here, τ = ωt and the factor sinα is omitted. To allow for this factor, we should replace μ by μ sinα.

Therefore, using standard electrodynamic expressions, we easily obtain the expressions for the com-
ponents of the electric field E and the magnetic field B

Br = 2 sin θ
μ

r3

(
cos Φ− 2π

r

λ
sinΦ

)
,

Bθ = cos θ
μ

r3

(
− cos Φ + 2π

r

λ
sinΦ +

(
2π

r

λ

)2
cos Φ

)
,

Bϕ =
μ

r3

(
− sinΦ− 2π

r

λ
cos Φ +

(
2π

r

λ

)2
sinΦ

)
,

Er = 0, Eθ = −2πμ

λr2

(
cos Φ− 2π

r

λ
sinΦ

)
,

Eϕ = −2πμ

λr2
cos θ

(
sinΦ + 2π

r

λ
cos Φ

)
. (3)

In the spherical coordinate system, the components of the Poynting vector averaged over time τ on the
interval [0, 2π] are determined by the expressions

Sr =
ω4μ2

8πr2c3
(1 + cos2 θ), Sθ = 0, Sϕ =

ωμ2

4πr5

[
1 +

(
2π

r

λ

)2
]
sin θ. (4)

The corresponding expression for the radiated power has the form
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Fig. 1.

I = 2π

π∫
0

Srr
2 sin θ dθ =

2

3

ω4μ2

c3
. (5)

It should be noted that Eqs. (3)–(5) are valid at any distance from a dipole, provided that the distance is
greater than the physical size of the dipole.

The electromagnetic-field lines are planar and form a set of coplanar circumferences on the sphere
surface. The normal to the plane in which these lines are located is determined by the expression

k = 2πn− n′

r
.

The magnetic-field lines remain planar only in the equatorial plane θ = π/2. In this case, by analogy
with the motionless dipole, only the polar force line is open, while all other lines are closed and have return
points. Therefore, the magnetic-field lines are not broken during the dipole rotation and are only extended
and deformed. Figure 1 shows the examples of such lines, i.e., Fig. 1a shows the open polar magnetic-field
line and Fig. 1b shows the closed equatorial magnetic-field line. Hereafter the Cartesian coordinates x and
y in the plane θ = π/2 are normalized to λ.

The line shapes were calculated by using the Runge–Kutta method for solving the system of ordinary
differential equations

dr/ds = B/|B|,
where ds is the element of the magnetic-field line.

Although the magnetic-field lines which are not located in the equatorial plane θ = π/2 cease to be
planar, they are all closed. Figures 2a and 2b show the examples of such lines (in Fig. 2b, the line is drawn
to the return point to avoid overloading the figure, and the shape of the line returning to the dipole is the
same as that leaving the dipole).

The character of interaction of the electromagnetic radiation with charged particles depends on the
vector and scalar product of the fields E and B:

Z = [EB]/B2, cos(E∧B) = EB/(|E| |B|), 〈EB〉 = ωμ2

cr5
cos θ.

If |Z| < 1, then the motion includes cyclotron rotation and drift. In this case, the particle energy can
vary only if the fields E and B are not orthogonal to each other. However, for |Z| > 1, the particle energy
will vary in any case.
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Fig. 2.

Fig. 3.

Figure 3 shows the components Z of the vector as functions of r for various values of the polar angle
θ (reckoned from the rotation axis).

Figure 4 shows the value (averaged over the dipole-rotation period) of the cosine of the angle between
the electric and magnetic fields as a function of r. It is obvious from Fig. 4 that the charged particles undergo
maximum acceleration at small distances from the center of the dipole (r < 0.2) in the vicinity of its rotation
axis (θ ∼ 0).

3. MOTION OF ELECTRICALLY CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD

In the nonrelativistic case, motion of charged particles in the mutually orthogonal electric and mag-
netic fields is represented as the circular and drift motions of the circle center [4]. However, in the relativistic
case, the situation is drastically changed. First of all, the circular motion becomes elliptic for |E| < |B| and
hyperbolic for |E| > |B|. Some examples of relativistic motions can be found in [5].

The law of conservation of momentum p is the same for both relativistic and nonrelativistic cases:

dp

dt
= e (E+ [vB]/c),
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where e is the particle charge. In the dimensionless form,

Fig. 4.

this expression is written as

dU

dτ ′
= e+ [Ub]/U0. (6)

Here, (U0,U) is the dimensionless 4-velocity. Its com-
ponents are determined by the speed of light c and the
dimensional velocity v of a particle with the help of the
expressions

U0 = 1/
√

1− β2, U = vU0/c, β = |v|/c.

The dimensionless time is introduced as τ ′ = Ωt. Here
Ω = eB0/(mc) is the cyclotron frequency, where B0 is the

magnetic-field value typical of this problem, and m is the particle mass. The dimensionless fields e and b
in Eq. (7) are determined by the relations e = E/B0 and b = B/B0, respectively.

Generally, the particle-motion trajectory is found by numerical solution (using the Runge–Kutta
method) of a system of six ordinary differential equations of the first order, three of which represent the law
of conservation of momentum (see Eq. (6)), while other three equations are determined by the derivatives
of the coordinates

dr′

dτ ′
=

U

U0
. (7)

Here, r′ = Ωr/c = r/ρL is the dimensionless radius vector, r is the dimensional radius vector, and ρL = c/Ω
is the length unit which is equal to the Larmor radius if the particle would gyrate with light velocity.

If the electromagnetic field is constant and uniform, then the system of equations (6) and (7) can be
solved analytically. To this end, we should pass to the coordinate system in which the vector product [ẽb̃]
of the transformed fields is zero. In [6], an algorithm allowing one to realize the Lorentz transformations
without coordinate-system rotation is described. According to that algorithm, the components of a 4-vector
(X0 and X) are transformed as follows:

X̃0 = U0X0 −UX, X̃ = X+U
UX

U0 + 1
−UX0.

Applying this expression to the vector potential (ϕ and A) and taking into account that

e(r) = −∇ϕ, b(r) = [∇A], r = r̃+U

(
Ur

U0 + 1
+ τ̃

)
,

we write the result of the Lorentz transformations of the fields e and b in the form

ẽ = U0e−U
eU

U0 + 1
+ [Ub], b̃ = U0b−U

bU

U0 + 1
− [Ue]. (8)

If [eb] �= 0, then a particle drifts normally to the plane of the vectors e and b. Hence, the drift velocity Ud

can be found from the condition [ẽb̃] = 0. This condition holds if the drift velocity is determined by the
expressions

Ud = xd [eb], x2d =
1

2 [eb]2

(
e2 + b2√

(e2 + b2)2 − 4 [eb]2
− 1

)
. (9)

Figure 5 shows the drift velocity as a function of the ratio of the electric field to the magnetic field
and the angle ϑ between the directions of the vectors e and b. The solid curves correspond to Eq. (9), while
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the dashed curves correspond to the classical definition of

Fig. 5.

the drift velocity, for which xd = U0.

Upon substitution of Eq. (9) for the drift velocity
into Eq. (8), the latter is transformed as

ẽ = e (U0 − xdb
2) + xdb (eb),

b̃ = b (U0 − xde
2) + xde (eb). (10)

Here, the fields e and b are dimensionless.

The above transformations make it possible to re-
duce the solution of the problem of the charge motion in
a uniform field to one of the solutions presented in [5].
Indeed, if (eb) = 0 and |e| < |b|, then ẽ = 0 and
b̃ = b

√
b2 − e2/b. In the drift frame, a particle moves

with constant velocity along the vector b̃ and gyrates.
When passing to the laboratory system, the particle ac-
quires the drift velocity, while gyration becomes elliptic due to the Lorentz contraction. The minor semiaxis
is aligned with the drift velocity and is smaller than the major semiaxis by a factor of U0.

For (eb) = 0 and |e| > |b|, in the drift system we have b̃ = 0 and ẽ = e
√
e2 − b2/e. The problem is

reduced to motion in a uniform electric field. If (eb) �= 0, then the charge in a system drifting with velocity
Ud moves in the parallel electric and magnetic fields.

4. MOTION OF ELECTRICALLY CHARGED PARTICLES IN THE ELECTROMAGNETIC
FIELD OF A ROTATING DIPOLE

The study of charged-particle motions in the electromagnetic field of a rotating dipole is based on the
Runge–Kutta numerical solution of the system of differential equations (6) and (7) whose right-hand sides
are determined by the components of an electromagnetic field varying in space and time according to Eq. (3).
The ratios of the spatiotemporal scales of the motion and field equations are determined by the quantity
Ω/ω, where Ω = eB0/(mc) is the cyclotron frequency and ω is the dipole rotation frequency. Calculations
were performed for two values of the above ratio, namely, Ω/ω = 9.2 ·1016 and Ω/ω = 5 ·1013. The first value
was used for calculating the electron motion, while the second value was used for calculating the proton
motion. The corresponding value of the magnetic field was B0 = 1012 G and the dipole rotation frequency
was assumed equal to 30 Hz. Such a high ratio of the frequencies makes us perform calculations using double
accuracy. In addition, during calculations of the particle trajectories, the time step was determined by the
value of the cyclotron frequency Ω. Since the electromagnetic field in the vicinity of the particle varies only
slightly during one period of Larmor gyration, the character of the particle motion described in the previous
section mainly remains intact.

We calculated the trajectories of the electrons and protons which were injected with nonrelativistic
velocities in the vicinity of the sphere of a small radius r0 = 0.00101. Initial values of the azimuthal angles
were ϕ1 = −πr0 and ϕ2 = π/2 − πr0. For each value, the polar angles θ varied in the intervals [0, π/2] and
[π/2, π] for electrons and protons, respectively. The tracking of the particle motion was stopped once one
of the two following conditions was satisfied: r < rp (the dimensional value r′p = 10 km corresponds to the
value rp = 0.001 for the chosen system of units) or r > 1. The initial value r0 was taken to be greater than
the value of rp by 1% to rule out the possibility of the particle penetration into the sphere with radius rp in
the first Larmor rotation. The values of ϕ1 and ϕ2 corresponded to two mutually perpendicular meridional
planes. The features of the particle motion were different in these planes.

Figure 6a shows the Lorentz factor, which determines particle acceleration, as a function of the polar
angle θ of injection and the azimuthal angle ϕ (for protons, the polar angle equals 180◦ − θ). The numbers
of the curves correspond to the subscript of the azimuthal angle ϕ. As is obvious from Fig. 6, the particles
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Fig. 6.

Fig. 7.

starting from the meridian ϕ2 are accelerated to lower values of U0 than the particles starting from the
meridian ϕ1. However, this is not the only difference. The particles with the initial azimuthal angle ϕ1 and
the initial polar angle θ < 68◦ first move increasing the distance r from the dipole to a certain value rmax

and then move back until they reach the surface r = rp.
The particles with the initial polar angle close to

Fig. 8.

70◦ (with an accuracy of 1◦–2◦) form “radiational belts”
in the vicinity of the sphere of radius r ≈ 0.008. Here,
they participate in three types of motion, i.e., cyclotron
rotation, latitudinal drift, and oscillations between the
mirror points. For such trajectories, Fig. 6b shows the
radial coordinate as a function of the dimensionless time
t = τω/Ω (dipole rotates by one radian for t = 1).

The particles injected for θ > 72◦ are delayed in
the radiation belts during the time that is shorter than the
dipole rotation period and then move increasing monoton-
ically the distance from the dipole. An example of such
motion is shown in Figs. 7 and 8.
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5. CONCLUSIONS

In the classical work [3], the nature of the electric field of neutron stars is explained by the unipolar-
inductor mechanism. To ensure effective operation of the unipolar machine, the directions of the rotation
and magnetic-moment axes should coincide. If these directions do not coincide, there appears a rotational
electric field which cannot be compensated by polarization. Moreover, in the near region of the rotating
dipole, there exist regions in which the strength of the rotational electric field can exceed the magnetic-field
strength, and these fields are not orthogonal. Under such conditions, the electrically charged particles can
acquire relativistic energies.

The calculated values of the Lorentz factor U0 = 1012 for electrons and U0 = 109 for protons corre-
spond to the energies of these particles of about 1018 eV. Allowing for the radiative loss, we can reduce the
above value by several orders of magnitude.

This work was performed within the framework of the Analytical Program “Development of Research
Potential of Higher School (2009–2010) of the Ministry of Education of the Russian Federation” and the
Russian Federal Programs “Studies and Development in High-Priority Directions of Progress of the Research-
and-Technology Complex of Russia for 2007–2012” and “Research and Pedagogical Workers for Innovative
Russia (2009–2013).”
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